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Abstract—A new technique of hiding a speech signal clip 
inside a digital color image is proposed in this paper to improve 
steganography security and loading capacity. The suggested 
technique of image steganography is achieved using both 
spatial and cepstral domains, where the Mel-frequency cepstral 
coefficients (MFCCs) are adopted, as very efficient features of the 
speech signal. The presented technique in this paper contributes 
to improving the image steganography features through two 
approaches. First is to support the hiding capacity by the usage 
of the extracted MFCCs features and pitches extracted from the 
speech signal and embed them inside the cover color image rather 
than directly hiding the whole samples of the digitized speech 
signal. Second is to improve the data security by hiding the secret 
data (MFCCs features) anywhere in the host image rather than 
directly using the least significant bits substitution of the cover 
image. At the recovering side, the proposed approach recovers 
these hidden features and using them to reconstruct the speech 
waveform again by inverting the steps of MFCCs extraction to 
recover an approximated vocal tract response and combine it 
with recovered pitch based excitation signal. The results show 
a peak signal to noise ratio of 52.4 dB of the stego-image, which 
reflect a very good quality and a reduction ratio of embedded 
data to about (6%–25%). In addition, the results show a speech 
reconstruction degree of about 94.24% correlation with the 
original speech signal.

Index Terms—Image steganography, Mel-frequency cepstral 
coefficients, Speech reconstruction.

I. Introduction
Steganography is the science of hiding covert information 
in a cover public media without attracting attention. 
Modern steganography methods use the characteristics of 
digital media using them as carriers (covers) to hold secret 
information. Covers can be different types including text, 
speech/audio, image, and video. Thus, the sender embeds 

secret data in a digital cover file using a key to generate a 
stego-file, in which that an observer cannot feel the existence 
of the hidden message (Cox, et al., 2008). 

The name of the steganography method depends on the 
type of cover media file used for hiding the secret data (such 
as image steganography, audio steganography, and video 
steganography) (Saroj, and Dewangan, 2018). 

Many state of art algorithms have been suffering from 
the capacity storage area of the host image, low security, 
and robustness. This paper proposes a new technique in 
image steganography type, in which a secret speech signal 
is to be hidden inside a digital color image as a cover 
media. The most two common challenges that facing 
any steganography techniques are: How can increase the 
capacity of the host cover image to embed as much as 
possible secret data and in the same time, and how the 
unauthorized persons cannot distinguish the presence of 
hidden message.

This work contributes to develop in these both two 
challenges mentioned above. As it does not depend on 
directly hiding all the speech signal samples inside the 
digital image, it rather extracts some important features 
from the speech signal and embeds them inside the digital 
image.

On the authorized person side that receives the stego-
image, the algorithm will extract the confidential information 
(features) from the transmitted stego-image. Then, these 
returned features will be used to reconstruct the speech 
clip again by reversing the steps of getting these features 
and then merging the result with an excitation frequency 
(Pitch) to get back the speech clip again. These features 
are called Mel-frequency cepstral coefficients (MFCCs). 
The usage of MFCCs features as data to be hidden rather 
than all the samples of the speech signal themselves. This 
means decreasing the amount of the data to be embedded. 
The reduction ratio depends on the time width of the frames 
chosen during the MFCCs extraction process (will be 
discussed later). The method of hiding the extracting MFCCs 
features inside the cover digital image will exploit the all 
bits in the three digital color image components (Red, Green, 
and Blue) rather than using only the least significant bits 
(LSBs) or the bits in the image edges as traditionally done 
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in most image steganography approaches. This technique will 
increase the hiding capacity of the cover image.

Many articles consider the image steganography to 
hide the human speech signal as the secret information. 
Saroj and Dewangan (2018) presented a method to hide 
the audio secret data in image with multilevel protection 
using LSB techniques. Their technique implements hybrid 
audio steganography which hides the audio information by 
encrypting in multiple levels and embed into the variable 
LSB’s of the selected samples based on polynomial 
expression as a function of audio and image cover file. 
Sharma (2015) proposed a method works by hiding sequence 
of speech signal elements in an image by varying the y 
dimension of the image while keeping x and z dimension 
of the image as constant. The value of the x dimension is 
changed by some interval for storing next speech signal 
elements. For the varied value of x dimension, y dimension 
is varied across the same interval as above whereas z 
dimension is constant here the next sequence of speech 
signal elements is saved. 

Nipanikar, Deepthi and Kulkarni (2017) proposed a 
method for image steganography using sparse representation, 
and an algorithm named particle swarm optimization (PSO) 
algorithm for effective selection of the pixels for embedding 
the secret audio signal in the image. PSO-based pixel 
selection procedure uses a fitness function that depends on 
the cost function. Cost function calculates the edge, entropy, 
and intensity of the pixel for evaluating fitness.

In this work a new method for speech hiding and 
reconstruction is developed, based on the model of speech 
production. Section II briefly reviews the speech model 
parameters, cepstral analysis, and MFCCs that need to be 
extracted from the speech signal. Section III considers the 
methodology of the proposed approach. Results, evaluation 
of the steganography and speech reconstruction is presented 
in Section IV and a conclusion comes in Section V.

II. Cepstral Analysis and MFCCs
The excitation vocal signal which is generated by the human 
vocal cords is filtered by the shape of the vocal tract that includes 
the fauces, tongue, and teeth. This shape specifies what sound 
comes out. If it can determine the shape accurately, this could 
give an accurate representation of the phoneme being generated. 
The form of the vocal tract appears within the envelope of the 
speech power spectrum. Fig. 1 and equation (1) represent the 
human voice speech model s(n).

 s n e n v n� � � � � � �*  (1)

Where e (n) is the glottal excitation signal represents the 
signal which is produced by the vocal cords. It is periodic 
pulses with a relatively high frequency in its spectrum 
E(k). The v(n) represents as the impulse response of 
the vocal tract which has low frequency spectrum V(k) 
compared with the excitation signal frequency. The shape 
of the vocal tract is unique for every human that gives the 

person his/her voiceprint. It is referred to as the filter with 
a relatively smooth frequency response V(k) that specifies 
what sound comes out and the person voiceprint. Then, the 
speech features should be extracted from V(k) rather than 
E(k). Therefore, two components of S(k) are combined 
(convolution) together and should be separated into two 
components E(k) and V(k). The Fourier transform of s(n) 
gives S(k), as shown in equation (2) below:

 ( ) ( ) . ( )S k E k V k=  (2)

If the components were combined in the convolution, 
no clear results would be got after using a filter as these 
two components in the frequency domain (spectrum) are 
multiplied (nonlinearly combined). 

Now, it is necessary to transform the Spectrum into a new 
domain called “Cepstrum” or new frequency domain called 
“Quefrency domain” that represents a transformation on 
speech signal with two important properties:
1) The two signal components will be separated.
2) The components will be linearly combined (summation of 

components).
By taking the logarithm of the absolute part of the 

spectrum, the real cepstrum domain is generated that achieves 
the above two properties. Equation (3) and Fig. 2 abbreviate 
the computation of the real cepstrum.

 C S ks ( ) log ( )� �

 
� � � � �log .E k V k

 � � � � � �log E k logV k

 � � � � � �C k C ke v � � � � �  (3)

The purpose of real cepstrum is to resolve the two 
convolved parts of the speech e(n) and v(n), into two additive 
components as in equation (4):

 ( ) ( ) ( ) s e vc n c n c n= +  (4)

Using a low time lifter (lifter is equivalent to filter in 
frequency domain) to select the vocal tract component Cv (k) 
and eliminate the excitation one Ce (k).

Fig. 2. Computation of the real cepstrum.

Fig. 1. Basic speech model.
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For this reason, the MFCCs are selected as good features 
that reflect the speech in which these features come from 
cepstral analysis. The job of MFCCs is to accurately 
represent the envelope of the speech spectrum (Huang, Acero 
and Hon, 2001). The motivating idea of using MFCCs is to 
reduce information about the vocal tract (smoothed spectrum) 
into a little number of coefficients.

MFCCs are features widely used in speech recognition, 
speaker identification, and verification. MFCCs are 
understood to represent the filter (vocal tract). They were 
presented by Davis and Mermelstein (1980).

This following introduces the MFCCs extraction steps, as 
shown in Fig. 3: 
1. Dividing the signal into series of short overlapped time 

segments (frames) with width 20–40 ms.
2. Windowing each individual frame (Typically Hamming 

window). 
3. Computing the Fast Fourier Transform for each frame and 

its power spectrum (periodogram).
4. Applying the Mel-frequency filter bank to the power spectra, 

sum the energy in each filter.
5. Taking the logarithm of all filter-bank energies.
6. Taking the discrete cosine transform (DCT) of the log filter-

bank energies. 
The Mel filter bank has a triangular band-pass frequency 

response, as shown in Fig. 4. The spacing and the bandwidth 
are determined by a constant Mel frequency interval. The 
number of Mel spectrum coefficients is 12–40, as shown 
in Fig. 4. The filter bank comes as vectors. Each vector is 
mostly zeros, but it is non-zero for a particular section of 
the spectrum. To calculate filter-bank energies, each filter 
bank is multiplied with the power spectrum, and then sum 
of the coefficients is numbers that show how much energy 
was in each filter bank. The Mel-frequency scale is a linear 
frequency spacing below 1000 Hz and a logarithmic spacing 
above 1000 Hz. Equation (5) represents the transfer function 
from linear to Mel frequency scale. Mel filter banks perform 
the sum of energy that exists in various frequency regions. 
The first filter is very narrow and gives a sign of how much 
energy exists close to 0 Hertz. As the frequencies go higher, 
the filters become wider because it becomes less attentive 
about variations (Chakroborty, Roy and Saha, 2007).

 ( ) ( )( ) 2595log 1 / 700F Mel scaled f Hz = +   (5)

Once the filter-bank energies is calculated, the logarithm 
of them is taken. Human hearing also motivates this. The 

human does not hear loudness on a linear scale. In general, to 
double the perceived volume of a sound it must put 8 times 
as energy amount into it. This means that large variations in 
energy might not sound all that different if the sound is loud, 
to start with. This operation makes the extracted features 
match more closely what humans actually hear.

The last step is converting the log Mel spectrum 
coefficients back to time domain using the DCT. DCT 
decorrelates the features, taking the DCT of the log filter-
bank energies to get the cepstral coefficients. According to 
the application and the accuracy required, any desired number 
of coefficients can be kept and neglecting the others. For 
example, in case of speech or speaker recognition, only 12 
(2nd–13th) of the DCT coefficients are kept as they are enough 
for this application. In the current research, 26 coefficients 
per frame will be taken. A short notation can summarize the 
steps as in equation (6):

 ( )( log     )vc DCT Mel PSD =    (6)

Where cv is the cepstral coefficients (MFCCs) associated 
with the vocal tract part of speech model, Mel means the 
Mel-Filter bank, and power spectral density (PSD) is the 
PSD of the speech signal (magnitude spectrum).

III. Methodology 
In general, the proposed technique consists of two main 

parts. The first one is the analyzing a voice in terms of its 
pitch (fundamental frequency) and spectral envelope and then 
extracting the MFCCs features. These extracted features are 
embedded inside the cover digital color image. The second 
part is the recovering the hidden data (MFCCs features and 
the pitches) and then reconstructing (synthesizing) the speech 
clip. 

The proposed technique is implemented using MATLAB 
R2019a. A speech clip of about 10 s long will be used as an 
example case through the following steps of the methodology: 

A. Preprocessing on the Speech Signal
The first step is the enrollment of the human voice 

utterance. Some preprocessing steps are required and carried 
out such as converting the audio file to WAV format, one 
channel, and sampled with a sampling frequency (fs). For 
example, if the speech clip is with 10 s as assumed above 
and sampled with 48 kHz sampling rate then the total number 
of samples (N) is 480,000. 

Fig. 3. Main successive steps of extracting the Mel-frequency cepstral coefficients.
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B. Features Extraction
The frame width (fw) and the overlap length (ol) between 

the adjacent frames determine the number of frames, in 
which the speech signal could be segmented into. The fw is 
typically taken between 20 and 40 ms (30 ms is standard) 
which means 1440 samples per frame, and the default ol is 

taken
 

2

3
fw

 
(20 ms). The number of the segmented frames

 (F) can be calculated as following in equation (7):

 F T fw ol� �/ ( )  (7)

For tradition values of fw = 0.03 s then ol = 0.02 s, the 
number of created frames will be as in equation (8):

 100 F T=  (8)

Where T is the total time of the speech clip in seconds. 
Here, we can notice that the sampling rate fs does not affect 
the number of the obtained segmented frames.

For the selected example above, there are 1000 frames. 
The extraction steps of the MFCCs are applied to each frame. 
Then, 26 MFCCs will be returned per frame as explained in 
Section II. This leads that the total extracted features will be 
as 1000 × 26 matrix (26,000 features). Before the encoding 
step, the MFCCs features are rounded into two digits after 
the decimal point to simplify the quantization step. Equation 
(9) shows how to calculate the number of the extracted 
MFCCs features.

 100  FMFCCs T M=  (9)

Where MFCCs is total number of the Mel frequency 
coefficients features and MF is the number of the coefficients 
per frame. A single pitch frequency (fundamental frequency 
represented by a series of pulses) for each time segment 
(frame) of the speech is also computed by the Short-Term 
Fourier Transform. It is included as an extra component to 
the features vector.

C. Encoding of the Pitch and MFCCs Features
For normal human speech of about 55 dB loudness, it is 

found that the dynamic range of the extracted MFCCs is 

real values usually no more than 10. This range is found 
by testing many speech utterances for many persons and 
with different time lengths. A specific lookup table (LUT) 
is created to encode the all-possible values of the features 
using 10-binary digits analog to digital conversion process 
with 1024 quantization levels and a resolution equal 
to 0.01. This means the minimum value takes the code 
(0000000000) and the maximum value has a code of full 
ones (1111111111). Table I shows a part of the LUT. By 
this LUT, all MFCCs features could be converted into 
digital form during the embedding step inside the digital 
cover media. 

A single pitch frequency is inferred to each time frame of 
the speech signal. Because of the pitch frequency may take 
values up to about 4 kHz (human voice frequency band), 
then using 12 bits word in binary system to represent the 
pitch values. 

D. Cover Color Image Preparations
A digital color image is selected to be the cover media. 

First, the color image is decomposed into its three 
components (Red, Green, and Blue), each pixel is represented 
by three decimal values ranged (0–255) and then the decimal 
numbers are converted into 8-bit binary representation. 
Traditional image steganography methods attempt to hide 
their messages directly in areas of the LSBs of the spatial 
domain where human visual system does not perceive. On 
the other hand, various image stego-analysis schemes have 
been developed to detect the presence of any secret messages 
in the LSBs area of the cover image, and then it might be 
easy to discover the embedded data by estimation different 
scenarios.

Therefore, the current research will hide the secret speech 
message represented by its features (MFCCs and pitches) 
within the higher significant bits (HSBs) and using the 
LSBs only to indicate the necessary information required 
to recover where the embedded messages. Actually, hiding 

TABLE I
The Lookup Table of MFCCs Coding

Sequence MFCCs Code (using 10 Binary Digits)
1 0 0100101100
2 0 0100101100
3 0 0100101100
4 0 0100101100
5 0 0100101100
6 0 0100101100
7 0.19 0100111111
8 0.58 0101100110
9 −0.05 0100100111
10 −0.12 0100100000
11 0.56 0101100100
12 2.71 1000111011

25999 0.12 0100111000
26000 0.19 0100111111
MFCCs: Mel-frequency cepstral coefficientsFig. 4. Mel frequency filter-bank (Oliveira, Cerqueira and Filho, 2018).
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the secrete data within the HSBs will not increase the 
capacity of the cover image, but it improves the security of 
the steganography process. The information hidden in the 
LSBs is meaningless and useless if it falls into the hands of 
unauthorized persons. Only the target person has the key of 
how to use this information inserted in the LSBs to cover up 
the secret data from the HSBs.

Before the hiding process, a virtual spatial framing of the 
cover image should be done. Each of the three components 
of the cover digital image is divided into equally square 

frames (10 × 10 pixels’ sub images). After that, each frame 
is reshaped to be 1 × 100 vector. Each decimal pixel value 
in the frame is converted to its 8-bit binary representation. 
Then, a new digital array form is created with dimensions 8 
× 100 that can be named binary frame panel (BFP), as shown 
in Fig. 5. 

E. Secrete Data Hiding
The hiding process used in this research made 

modifications to the method presented by Abdulraman, 

Fig. 5. Cover color image preparations and binary frame panel creation.
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et al. (2019). These modifications help to increase the 
hiding capacity and reducing the number of unused bits. 
The hiding steps begin in the red array component of 
the color image by taking the first MFCC feature (10-bit 
word) and make searching inside the first BFP rows. The 
searching starts from the 1st row of the BFP up to the 7th 
row and leaving the 8th row (LSBs row) for indication. The 
searching tries to find any match between the ten-bit of the 
first MFCC feature and any 10-bit combination in this row. 
If the searching process does not find the similar word in 
first 10 bits, it will continue the searching by shifting one 
bit to the right to compare with a next 10-bit combination 
and so on until the end of the whole BFP. For the result 
of searching, there are two possibilities, either can find an 
exact similar 10-bit combination or cannot find any match 
in that BFP. 

The LSB row (last row) of each BFP is virtually divided 
into nine indication segments. Each one consists of 11 bits 
that means 99 bits are used for the indication and leaving 
the last bit unused. Each segment is dedicated to indicate 
information about one MFCC feature where the exact 
match is found. This leads to ability of hiding at most 

nine successive MFCCs features per BFP. In case an exact 
matching is found, then logic 1 is assigned to first bit of the 
first segment, this bit is named the matching bit. The next 
three bits represent the row number (in binary), where the 
exact similar 10-bit combination is located. The last seven 
bits are used to record the column number (in binary) in the 
BFP where the exact 10-bit combination starts from. Fig. 6a 
shows the matching case.

If no exact word is found, then logic 0 is assigned to the 
matching bit of the first indication segment. Fig. 6c shows 
all the nine indication segments per one BFP. Now, the 10-
bit MFCC themselves are directly copied into the rest ten 
locations of the segment. These steps are repeated for all other 
MFCCs feature and so on. Fig. 6b shows the no matching 
case. This procedure continues to hide at most nine successive 
MFCCs features per BFP. At the end of hiding 26 MFCCs 
(features of 1-time frame of the speech signal) using three 
BFPs, nine features in both 1st and 2nd BFPs, respectively, 
and the rest eight features in the 3rd BFP. The last 12 bits of 
the third BFP remains and it is dedicated to insert the pitch 
frequency binary value of that time frame represented by 12-
bits binary number. The same steps are carried out to hide 

Fig. 6. The indication segment details (a) in case of full matching is found (b) in case of no matching is found (c) indication segments per binary frame 
panel.

a

b

c
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all the extracted features using the three image arrays. Last 
information has to be embedded which is the speech signal 
time period in seconds (T) that is represented by 12-bit that 
helps in the recovery side to know the number of embedded 
MFCCs. The proposed method suggests inserting this data in 
the last 12 bits of LSB row in the last BFP of the blue array. 
Fig. 6 shows the indication segment details. Fig. 7 shows the 
over view of the proposed methodology.

It is worth noting the following points:
•	 In one row, it can hide more than one feature word, and on 

the other hand, it may not be possible to find any match 
within it. In one row, there are 91 possibilities of 10-bit 
combinations and then 637 possibilities per BFP.

•	 The same 10-bit combination in a BFP can be reused for 
hiding more than one feature word.

•	 Preserve the sequence of the MFCCs features during the 
embedding process is essential.

•	 The selected cover image should be able to accommodate 
all MFCCs features and the pitches. Each three BFPs can 
provide indication for 1-time frame features (26 MFCCs + 
1 Pitch). For the suggested example above, there are 1000 
segmented time frames that need 3000 virtual BFPs in the 
cover image. Because of using a color image (three arrays), 
then 1000 BFPs are required per a component array. The 
square image frame has 100-pixel resolution NP (10 × 10), 
then it needs a cover color image with a pixel’s resolution 
no <100,000. In general, the color image resolution can be 
determined by the suggested formula in equation (10):

 

3  
3 ( )

P
req

T NRES
fw ol

≥
−

 (10)

Where, RESreq is the minimum required resolution of the 
cover image (number of pixels in an image = height pixels 
X width pixels), T is the duration of the speech signal (s), 
NP is the number of pixels per square image frame, fw is the 
time frame width (s), and ol is the overlap length (s) between 
adjacent time frames. 

The users usually deal with the utterance period (T) 
in seconds and the cover color image resolution, then, 
using the tradition values such as NP = 100, fw = 0.03 s, 
and ol = 0.02 s, then the minimum required resolution is 
TRESreq ≥10,000 Tand the maximum speech duration Tmax 
can be hidden in a specific color image with resolution 
(RES) can be calculated as:

 10000max
REST ≤  (11)

Increasing the image resolution with about 10% could 
be suggested and encouraged to enhance and ensure the 
accommodation capacity. Here in MFCCs_based proposed 
technique, both the minimum required resolution and Tmax do 
not depend on the sampling frequency.

For direct speech samples embedding technique, (direct_
based) the minimum required resolution (RESreq) to hide a 
specific speech signal with duration time t can be calculated 
as in equation (12).

 
10

3
s

req
T FRES × ×

≥  (12)

Or the maximum duration (Tmax) of a speech clip can be 
embedded in a specific color image as in equation (13).

 

3 
10 max

s

REST
F

≤
 

(13)

In the direct_based technique, both the minimum required 
resolution and Tmax depend on the sampling frequency value.Fig. 7. Over view of the proposed methodology.
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Concerning to the accommodation bit capacity, in the 
tradition direct_based steganography, when all the samples 
of the speech signal are required to be embedded directly 
behind the cover media. At least, if each sample is digitized 
by 10-bit and using sampling frequency fs, this leads the total 
number of bits (Nbit) in the digitized speech (Nbit) is as in 
equation (14):
 10   Nbit T fs=  (14)

Where 10 means ten bits per sample. For example, If fs is 
taken as 48 kHz, then Nbit = 480000 T.

For the introduced method, Nbit can be calculated through 
equation (15):

 [ ]100  11 [100 12]Nbit T MCF T= × × + ×  (15)

Where, MCF is the number of the Mel Coefficients per 
time Frame, 100T is the total number of the segmented time 
frames as in equation (8), 11 means the Nbits required per 
MFCC, and 12 is the Nbits to represent the pitch value of 
each frame.

The suggested value of MCF is 26, and then equation (15) 
will be as in equation (16):

 30000 Nbit T≅  (16)

By a rational comparison between the Nbit in these two 
cases above, the required Nbits to represent the speech clip is 
reduced to about 6–7%. In other words, the accommodation 
capacity of the cover image could be increased by about 16 
times.

For the assumed example of 10 s utterance duration 
which is sampled by fs (48 kHz). This means 4,800,000 bits 
have to be embedded inside the cover image if a tradition 
steganography is achieved. By the proposed method, 300,000 
bits are required to represent this 10 s speech. By simple 
rational comparison, it is clear that the reduction ratio of the 
required bits is about 6.25%. In other words, if a color cover 
image can hide 10 s speech signal (as maximum capacity), 
then by the proposed method, 160 s can be embedded in the 
same image size.

F. Recovering of the Secrete Data
In the receiver side, the authorized person should have 

the technique how to deal with information inserted in the 
LSBs rows in the BFPs of the received stego-image. In the 
recovering side, the technique implements, the same steps 
of image decomposition into its three components (RGB), 
virtual division into (10 × 10) frames, and creating the (8 × 
100) BFPs. The recovering stage starts by checking all the 
indication segments in the rows of the BFPs sequentially one 
by one. Each segment provides the enough information to 
recover a specified feature. 

If the matching bit of the segment is logic 1 (exact 
matching existing), then the next three bits gives the 
number of the row in the HSBs of the BFP that under 
process. The rest seven bits means the column number 
in BFP that the required 10-bit combination starts from. 

Now, the 10-bit combination location is discovered and its 
contents copied into the MFCCs recovery matrix. If the 
matching bit of the segment is logic 0 (no exact matching 
was found), then the next 10 bits represent the feature 
word itself directly. They are also directly copied into the 
recovery matrix. These steps are sequentially implemented 
for the successive BFPs to keep the order of the MFCCs. 
Last 12 bits of the third BFP represent the pitch frequency 
value associated to the recovered MFCCs features. The 
previous steps in the recovering stage are repeated for 
the whole BFPs sequentially to recover all the embedded 
features (MFCCs and their associated pitch frequencies). 
At the end of the recovering process, all recovered MFCCs 
features are stored in a specific matrix called (MFCCs 
recovery matrix). This matrix is a set of MFCCs column 
vectors; each column vector represents the features of 
1-time frame. All recovered pitch frequencies are kept in 
another vector called (recovery pitch vector). The MFCCs 
and their related pitches are converted back to the decimal 
values. The conversion of the MFCCs is done using the 
same specific LUT in Table I that has to be provided to the 
recovering side. 

G. Magnitude Spectrum Recovering
The recovered MFCCs features are used to re-build the 

vocal tract filter. This is achieved by reversing the MFCCs 
back to a smoothed magnitude spectrum using an IDCT and 
anti-Log (exponential) operation. The required excitation 
signal is generated from the series of the recovered pitch 
pulses. This enables the location of the spectral peaks 
(main formants) in the speech model to be determined. The 
amplitudes of the peaks were determined from the smoothed 
spectral.

As shown in Fig. 3, the process by which the MFCCs 
features are extracted from a speech signal has a number of 
invertible steps. It is possible to make certain approximations 
to the information that has been discarded to allow an inverse 
to be calculated (as the phase c/cs is lost). 

The first stage of inverting the MFCCs vector into a 
magnitude spectral representation needs a logarithmic 
filter-bank vector. An inverse DCT to be computed as in 
equation (17):

 
( ) ( ) ( )1

0

2 1
log  

2
K

v vn

k n
C k c n cos

K
π−

=

 +
=  

 
∑  (17)

Where K is the number of the Mel filter-bank channels (in 
this work, is 26).

Equation (17) gives a smoothed of the logarithmic filter-
bank vector. The log operation can be reversed, by the using 
of the exponential operation, and gets the Mel-filter-bank 
vector. Again, by a short notation, the recovering of the vocal 
tract frequency response can be in the reverse direction of 
equation (6) and as in equation (18) below:

 PSD Mel IDCT cv � � � �1
10[ ]  (18)
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Fig. 8. Two randomly selected recovered magnitude spectrum versus original one.

Where PSD  referese to the recovered PSD (estimated magnitude 
spectrum).

Fig. 8 shows two random recovered magnitude spectrums 
in red line versus original one in blue line.

The area under the triangular filters is used in the Mel-
filter-bank analysis increases at the upper frequencies. The 
effect of this is to impose a high frequency deviation on the 
resulting Mel-filter-bank channels which make distortion in 
the generated magnitude spectrum. This deviation can be 
canceled in the frequency domain by scaling the Mel-filter-
bank outputs, by the area of the corresponding triangular 
Mel-filter. 

H. Vocal Tract Recovering
The vocal tract filter coefficients can be computed using 

Wiener-Khintchine theorem (Kleijn and Paliwal, 1995) that 
relates the autocorrelation coefficients to the PSD using 
IFF. The excitation signal is easily reconstructed using a 
series of the recovered pitch pulses. A suitable value for 
gain can be added from the log energy element of the 
feature vector. The steps of vocal tract recovering are 
shown in Fig. 9. 

I. Speech Reconstruction
The recovered vocal tract and the pitch-based excitation 

signal are merged to reconstruct the speech signal using 
equation (1). The over view of speech reconstruction is 
shown in Fig. 10.

IV. Results and Evaluation
The evaluation of the proposed method has two lines. 

The first one is to evaluate the process of hiding the secret 
information represented by human speech clip and its 
impact on the host image quality. This includes the extent 

of awareness of the unauthorized person of the possibility 
of data hidden or not. The results show the relationship of 
the image size with the length of the hidden speech clip and 
the amount of the hidden data. The second line deals with 
the reconstructed voice quality using the recovered features 
detected in the received stego-image.

As mentioned before, the direct embedding of the speech 
samples is a tradition method of steganography (direct_
based). In this case, each sample should be converted to 
digital form so the size of the digitized speech clip depends 
on the time length T and on the digitization characteristics 
(sampling rate fs and Nbits per sample). The minimum 
required resolution of the host image should follow the 
threshold value mentioned in equation (12) to hide a specific 
length of speech. In the same time, the maximum length of 
the speech has to satisfy equation (13) in case of using a 
specific cover image that has a limited hiding capacity.

Testing the image quality after the steganography is done 
by both eyes vision tests and by measuring the value of the 
peak signal to noise ratio (PSNR). The signal in this case is 
the original host image, and the noise is the bits introduced 
through the embedding steps. PSNR is an approximation 
to human perception of image quality. First, the PSNR is 
measured for the direct_based method. A color host image 
with 0.62 Mb resolution (720 × 900) is chosen to hide 
a speech clip. According to equation (13), the maximum 
loading of this image is about 16 s speech signal duration if 
the sampling frequency equal 12 kHz. 

To test other standard sampling frequency values (24 kHz 
and 48 kHz), another larger image is required. Therefore, 
a color image with 2.3 MB resolution (1080 × 2240) is 
selected. Fig. 11a shows the PSNR for different partial and 
full loadings of speech duration time (25%, 50%, 75%, and 
100%). As clear from the figure, the sampling frequency in 
direct embedding method has a great effect on the selected 
cover image size and on the time length of the speech that 
to be inserted in the host image. Doubling the sampling rate 
leads necessarily to reduce the speech time to the half or 
duplicating the image size. However, the most noticeable 
thing in Fig. 11a is for one ratio of speech loading, the 
PSNR values are almost equal regardless to the sampling 
frequency.

Fig. 9. The steps of vocal tract recovering.
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Concerning to the evaluation for the proposed method of 
hiding the secret data using the MFCCs features (MFCCs_
based) rather than all clip samples. The same color host 

image is chosen again that has size 2.3 Mb (720 × 900). 
For this case and according to equation (11), a speech of 
about 64 s can be full loading this image, that is, 4 times 
more than if the direct way to hide the samples is used. 
Fig. 11b shows the PSNR for different partial and full 
loading (25%, 50%, 75%, and 100%) using three normally 
used sampling rates (12 kHz, 24 kHz, and 48 kHz). The 
same observation appears in which the PSNR values for 
one speech-loading ratio are almost equal regardless to the 
used sampling rate.

Fig. 12 shows the original host image and the stego-image 
of full capacity speech loading using the proposed technique 
(MFCCs_based). It is clear that no major vision effects are 
appearing in the stego-image compared with original one.

Relating to the Nbits represents the all secret data that are 
used in the hiding process. Nbits has effects on the stego-

Fig. 11. (a) Peak signal to noise ratio (PSNR) for the direct based method 
of hiding. The legend includes the sampling frequency, max speech 

duration, and host color image resolution in Mb, respectively. (b) PSNR 
for the Mel-frequency cepstral coefficients based on proposed method of 

hiding for three standard values of sampling frequency.

ba

Fig. 10. Over view of speech reconstruction. (a) The original speech signal, (b) both original speech signal (blue line) and the recovered speech signal 
(red line), (c) zoom in for both original signal (blue line) and the recovered signal (red line), (d) zoom in for original speech signal, (e) zoom in for 

recovered signal.

a b

c

d e
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TABLE II
Nbits Used in Both Direct and MFCCs Techniques

Speech time 
duration (s)

Nbits (Mb) (Direct_Based) Nbits (Mb) (MFCCs_Based)

fs 12 kHz fs 24 kHz fs 48 kHz Any fs
10 s 1.2 2.4 4.8 0.3
20 s 2.4 4.8 9.6 0.6
30 s 3.6 7.2 14.4 0.9
40 s 4.8 9.6 19.2 1.2
50 s 6 12 24 1.5
60 s 7.2 14.4 28.8 1.8
70 s 8.4 16.8 33.6 2.1
MFCCs: Mel-frequency cepstral coefficients, Nbits: Number of bits

1.
2 2.

4 3.
6 4.

8 6

7.
2 8.

4

2.
4

4.
8 7.

2 9.
6 12

14
.4 16

.8

4.
8

9.
6

14
.4

19
.2

24

28
.8

33
.6

0.
3 0.
6 0.
9 1.
2 1.
5 1.
8 2.
1

0

5

10

15

20

25

30

35

40

1 0  S 2 0  S 3 0  S 4 0  S 5 0  S 6 0  S 7 0  S

N
B

IT
S 

(M
EG

A
 B

IT
)

DURATION TIME OF THE SPEECH CLIP

fs 12 kHz (direct_based)

fs 24 kHz (direct_based)

fs 48 kHz (direct_based)

Any fs (MFCCs_based)

Fig. 13. Number of bits with respect to the speech duration time for different sampling rates.

hiding of all samples, and the MFCCs_based hiding. The 
results shown in Table II are got using equations (14) and 
(16). In the direct hiding technique, the Nbits very related 
to both of the value of the sampling frequency and on the 
speech duration time, whereas the proposed MFCCs_based 
hiding depends only on the duration and the sampling rate 
has no effect on the Nbits used in the hiding process. The 
Nbits also affect on the time required of the hiding and 
recovering processes. 

The reduction ratio in Nbits using the proposed MFCCs_
based is within (6.25%–25%).

The second line of the evaluation for the proposed 
technique is the rating of the quality for the reconstructed 
speech compared with the original one. Listening tests show 
that clear and very acceptable speech signals were produced. 
Fig. 8 shows both the recovered magnitude spectrum and that 
computed from the original speech signal for two random 
selected time frames. The magnitude spectrum estimated 
directly from the original frames is shown as the blue line 
whereas the magnitude spectrum got from the recovered 
MFCCs and pitches vectors is shown as the red line. The 
figures also show that the envelope of the magnitude 
spectrum has been reasonably well conserved. Some 
problems may appear where the magnitude spectrum gives 
formants merging into a single peak. 

The comparison is also done by measuring the correlation 
coefficient between the original speech signal and the 
reconstructed one. Fig. 14 shows the correlation coefficients 
versus different number of extracted MFCCs from the 
speech signal to be embedded inside the cover image. The 
high number of the MFCCs leads to higher Nbits and then 
needing bigger image size or less speech time duration 
besides increasing the time required for the process. The 
selected number of MFCCs equation (26) is the best choice 
that corresponds to the requirements of the process in terms 
of the amount of data, the accuracy of the results (gives a 
correlation coefficient 94.24%), and the time required for the 
execution of the steps. 

Table III presents a comparison between the proposed 
MFCCs based technique with some other existing models. 

image quality. Table II and Fig. 13 show the difference in the 
Nbits for both techniques of the data hiding, the direct_based 
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Fig. 14. The correlation coefficient with respect to the number of 
extracted Mel-frequency cepstral coefficients per speech frame.

TABLE III
Comparison between the Proposed MFCCs Based Technique with Some Other Existing Models

Method Used domain Host media Secrete data PSNR (dB)
(Nipanikar, Deepthi and Kulkarni, 2017) DWT Digital Gray Image Speech signal 47.6
(Saroj and Dewangan, 2018) Spatial and DCT Digital Color Image Audio signal -
(Sharma, 2015) 28 Spatial Digital Color Image Speech signal -
(Abdulraman, et al., 2019) Spatial Digital Gray Image Text 51.9
(Jamel, 2019) DWT Digital Gray Image Digital Gray Image 36.84
(Navas, Thampy and Sasikumar, 2008 ) Integer WT Digital Gray Image Patient’s records 44
(Al-Qershi and Khoo, 2011) DWT Digital Gray Image Patient’s records 41.25
Proposed MFCCs based technique Spatial and Cepstral Digital Color Image Speech signal 52.41
MFCCs: Mel-frequency cepstral coefficients, PSNR: Peak signal to noise ratio

V. Conclusion
This work presented a proposed technique of human speech 
signal hiding in a color cover digital image. The proposed 
technique introduces solutions for some challenges facing 
the steganography process, such as increasing the security of 
sending the secrete data, reducing the amount of the hidden 
data, and increasing the capacity of the host image. The 
presented method depends on sending the MFCCs features 
plus additional information relating the excitation signal and 
speech duration that should be inserted with the features. 
The speech reconstruction is possible from a stream of the 
recovered features using a model of speech production. 
Sending the speech features rather than the whole samples 
of the speech signal is the main reason to reduce the amount 
of the embedded data and can increase the security as well. 
The method used to hide the confidential data depends on 
including it in the host image at the higher significant levels 
and not as in the traditional methods do at the least significant 
levels. The most noticeable conclusion here that in the 
MFCCs_based steganography, the value of the sampling rate 
fs used in the speech digitization has no effect on the loading 
percentage inside the host image. Another conclusion, that for 
a specific speech-loading ratio, the PSNR is invariant with the 
change of the sampling frequency used. The possible MFCCs 
can be extracted from a speech signal which can be between 
12 and 40. Therefore, it is concluded that 26 MFCCs is an 
optimal choice that considers both the low data amount and 
acceptable speech reconstruction degree with about 94.24% 

correlated with the original speech. If high number of MFCCs 
is used, better-quality speech reconstruction is possible from 
the MFCCs despite the missing of phase information in 
MFCCs_based steganography but with more hidden data, 
lower PSNR, and longer time of processing. The amount 
of the hidden data depends only on the duration time of the 
speech signal not on the sampling rate as in the direct method. 
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