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Abstract—K-nearest neighbor (KNN) is a lazy supervised learning 
algorithm, which depends on computing the similarity between the 
target and the closest neighbor(s). On the other hand, min-max 
normalization has been reported as a useful method for eliminating 
the impact of inconsistent ranges among attributes on the efficiency of 
some machine learning models. The impact of min-max normalization 
on the performance of KNN models is still not clear, and it needs more 
investigation. Therefore, this research examines the impacts of the 
min-max normalization method on the regression performance of 
KNN models utilizing eight different similarity measures, which are 
City block, Euclidean, Chebychev, Cosine, Correlation, Hamming, 
Jaccard, and Mahalanobis. Five benchmark datasets have been used 
to test the accuracy of the KNN models with the original dataset 
and the normalized dataset. Mean squared error (MSE) has been 
utilized as a performance indicator to compare the results. It’s been 
concluded that the impact of min-max normalization on the KNN 
models utilizing City block, Euclidean, Chebychev, Cosine, and 
Correlation depends on the nature of the dataset itself, therefore, 
testing models on both original and normalized datasets are 
recommended. The performance of KNN models utilizing Hamming, 
Jaccard, and Mahalanobis makes no difference by adopting min-max 
normalization because of their ratio nature, and dataset covariance 
involvement in the similarity calculations. Results showed that 
Mahalanobis outperformed the other seven similarity measures. This 
research is better than its peers in terms of reliability, and quality 
because it depended on testing different datasets from different 
application fields.

Index Terms—K-nearest neighbor, Min-max, Normalization, 
Similarity, Mahalanobis.

I. Introduction
The K-nearest neighbor (KNN) has been introduced as 
supervised learning for the First time by Fix and Hodges in 
1951 (Fix and Hodges, 1951). Then, it has been developed 
by Thomas Cover in 1967 (Cover and Hart, 1976). The 

algorithm is considered one of the oldest machine learning 
(ML) algorithms used for classification and regression. The 
algorithm depends on the similarity or the distance measures 
between the unknown samples and the closest items in the 
training set. In regression, the output of the KNN is a value 
that came from a previously observed output of the closest 
neighbor called target or from averaging the value of a group 
of neighbors’ target values.

The number of neighbors that may contribute to determining 
an accurate result for unknown result samples depends on the 
nature and the statistical properties of the dataset. There is 
no specific optimize the number of the neighbor that must be 
considered in the process of determining the results of KNN 
algorithm. Therefore, examining multiple tests with different 
numbers of neighbors are the only right process for setting 
this number. Another factor that also has an impact on the 
efficiency of the KNN is the type of the KNN itself. KNN 
comes in two types, equal weight KNN, and weighted KNN. 
With equal weight KNN, all participating neighbors will 
evenly contribute to computing the result on an equal base, 
whereas the contribution of the participated neighbors in the 
weighted based KNN is changing according to the weights 
assigned for each neighbor, and the value of each weight 
could be determined based on the neighbor’s distance from 
the target.

As mentioned before, the core of the KNN’s functionality 
depends on the similarity measurements. There are multiple 
similarity measuring methods (distance metrics) that used 
by KNN, such as City block, Euclidean, Chebychev, Cosine, 
Correlation, Hamming, Jaccard, and Mahalanobis (Cha, 
2007). The accuracy of some methods is very sensitive to any 
change in the distance scale, such as City block, Euclidean, 
and Chebychev, whereas other methods, such as Mahalanobis 
and Jaccard, do not depend on the scale of the input features, 
and the accuracy of the results does not change with the 
change of the scale. Therefore, examining the impact of the 
data scale on the KNN performance is another objective of 
this work.

Data scaling is one of the preprocessing steps that come 
before the training phase of any ML algorithm. The aim of the 
scaling step is to accelerate the training phase and to improve 
the efficiency of any proposed model. The scaling preprocess 
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is only working with numerical datasets. Although there are 
different data scaling (data normalization) techniques such as 
min-max normalization, z-score, soft-max, decimal scaling, 
max-abs scalar, and quantile transformer, this work focuses 
on the min-max normalization only.

Min-max data normalization method scales the data to 
specific ranges such as [0,1] or [−1,1] to eliminate the 
domination of some of the features over others in the 
ML techniques using similarity measurements like KNN. 
Assuming that features in a dataset may come with different 
ranges, the similarity measures assign more weight to features 
with larger ranges than those with small ranges. Therefore, 
min-max data normalization is used to equalize the weight 
of these features and make them have the same effect on the 
decision-making process.

There is a disagreement exists in the literature on the 
impact of min-max data normalization on the regression 
performance of KNN models with different similarity 
measures. There is also an ambiguity about how different 
types of KNN with different similarity measurements may 
respond to the min-max data normalization. The aim of this 
research is to study the combined effect of min-max data 
normalization with these eight similarity measurements on 
the regression performance of KNN.

The rest of this article is structured as follows: Section 
2 explains the related works to this study. Section 3 is the 
methodology of this research work consisting of three stages: 
Adopting suitable datasets from the University of California 
Irvine (UCI) website, implementing min-max feature 
normalization, range [0,1], and applying and validating KNN 
on both the original and the normalized datasets. Section 4 
summarizes all the observed results, and Section 5 discusses 
the observed results. Finally, Section 6 concludes this 
research work.

II. Related Works
Research works reported different results about the real 

impact of min-max data normalization on the performance of 
the KNN models. This disparity in the results is clearly seen 
in many articles and publications. Some studies recorded 
very little impact (Ambarwari, Adrian and Herdiyeni, 
2020; Dadzie and Kwakye, 2021), whereas others showed 
a significant increase in the accuracy of the models (Ahsan, 
et al., 2021; Rajeswari and Thangavel, 2020). Although all 
mentioned articles utilized the Euclidean KNN, none of 
them justified the reasons behind this disproportion of the 
results.

In general, most of the research works that investigated 
the impact of data normalization were used benchmark 
datasets, such as the datasets of the repository dataset of 
the UCI (Ahsan, et al., 2021; Pires, et al., 2020; Bhardwaj, 
Mishra and Desikan, 2018; Dadzie and Kwakye, 2021; 
Jayalakshmi and Santhakumaran, 2011; Shorman, et al., 
2018). This is because the research goal in those works 
was to determine the effects of the min-max scaling without 
considering the nature of the dataset application. In this 

work, five benchmark datasets from the UCI repository have 
been adopted.

The common comparison performance measure for regression 
models is the mean squared error (MSE) (Rajeswari and 
Thangavel, 2020; Singh, Verma and Thoke, 2015; Jayalakshmi 
and Santhakumaran, 2011; Shorman, et al., 2018; Bhardwaj, 
Mishra and Desikan, 2018). In addition to that, methods such as 
root mean square error (RMSE) (Prasetyo, et al., 2020) and the 
coefficient of determination (R2) (Aksu, Güzeller and Eser, 
2019) can be used as well. However, this work utilizes the 
MSE method as a performance indicator. The mathematical 
expressions of the eight different similarity measurements 
used in this research are shown in Table I.

From the above literature review, it becomes clear that 
there is no strong vision available on the effects of min-max 
normalization on the performance of the different types of 
KNN algorithm. In other words, there is no clear answer to 
this question “What is/are the condition(s) that makes the 
performance of the KNN responds positively or negatively 
to a data scaling method (min-max normalized)?” To the best 
of our knowledge, there is no comprehensive study that can 
answer this question clearly. Therefore, the aim of this work 
is to answer the mentioned question clearly and precisely.

Table I
Similarity Measurements Used with KNN Model
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inverse 
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x and y are two different records (vectors) that have the same number of attributes n, and 
sim (x, y) is the similarity measure between them. xi and yi are feature values belonging to 
the record x and y

Euclidean

Cosine

Chebychev sim (x, y)=maxi {|xi–yi|}
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III. Methodology
The main aim of this work is to test the efficiency of the 

KNN algorithm against the min-max data normalization 
method. To achieve that, KNN has been operated using 
eight different similarity measurement methods (City block, 
Euclidean, Chebychev, Cosine, Correlation, Hamming, 
Jaccard, and Mahalanobis). Through each operation, five 
benchmark datasets have been fed separately to a regression-
based KNN algorithm. For every benchmarked dataset, the 
accuracy of the KNN will be examined against the scaled and 
non-scaled datasets. The methodology can be summarized as 
follows:
•	 Step 1: Adopting suitable datasets from the UCI website,
•	 Step 2: Implementing min-max feature normalization, range 

[0,1],
•	 Step 3: Applying and validating KNN on both the original 

and the normalized datasets.
•	 Step 4: Comparing results and making conclusions.

Fig. 1 explains the methodology of the research work.

A. Step 1: The UCI Datasets
Five different benchmark datasets were downloaded from 

the ML repository website of the UCI (Dua and Graff, 2019). 
The reason behind selecting these datasets is the existing 
variation in the ranges of records among all attributes. Some 
of the datasets have big differences in their ranges like in 
the airfoil self-noise dataset (Table II) or very similar ranges 
like in power plant dataset (Table III). Such a variation is 

expected to have a role in explaining the impact of min-
max normalization on the regression performance of the 
KNN algorithm with different similarity measurements. 
The datasets belong to the real applications of physics, life 
sciences, engineering, and business (Table IV). The dataset’s 
statistical properties are shown in Tables II, III, V-VII.

B. Step 2: Implementing Min-max Feature Normalization, 
Range [0,1]

As shown in Equation (1), a normalized data sample 
x’ could be obtained from the original data sample x. For 
an attribute, it is mostly dependent on instances with the 
maximum and minimum values in the same attribute. In this 
normalization method, the original data sample component 
values will be transformed to [0,1] range.

x x oldMin
oldMax oldMin

newMax newMin newMin' [( )*( )]�
�

�
� �  (1)

Where x’ is the normalized data sample, x is the original 
data sample, oldMin is the minimum data among any attribute 
of the original dataset, oldMax is the maximum data among 
any attribute of the original dataset, newMin is the minimum 
of the normalized dataset, and newMax is the maximum of 
the normalized dataset.

C. Step 3: Applying and Validating KNN on the Datasets
In this work, eight similarity measurements (City block, 

Euclidean, Chebychev, Cosine, Correlation, Hamming, 
Jaccard, and Mahalanobis) were adopted with the KNN 
algorithm as a regression method. For each similarity 
measure, 100 tests were conducted on the both of the 
original and the normalized datasets, with a total number of 
1600 tests. The target of applying all tests is to determine 
the impact of min-max data normalization on the regression 
performance of KNN by comparing the MSE results observed 
from the original dataset and the normalized versions. The 
reason for adopting the eight different similarity measures of 
KNN is their diversity in dealing with the datasets and their 
different methodology in determining the nearest neighbors. 
In all the tests, MSE is computed as a performance measure 
and 10-fold as a validation technique.

Two types of KNN models were adopted, equal weight KNN 
and weighted KNN. For each of the type, until 10 neighbors 
were considered. The tests were adopted on the five datasets for 
both original and the normalized data. The total number of tests 
was 1600 tests, as follows: Eight similarity measures, two types 
of models (weighted and equal weight), until 10 neighbors, 
two cases raw data and normalized data, for each of the five 
datasets. The total is (8 × 2 × 10 × 2 × 5 = 1600 tests).

Fig. 1. The methodology of the research work.

Table II
Statistical Properties of the Airfoil Self-noise Dataset (Brooks, Pope 

and Marcolini, 1989)

Feature Max. value Min. value Range Mean Standard 
deviation

F1 20,000 200 19,800 2886.380572 3152.573137
F2 22.2 0 22.2 6.782302063 5.918128125
F3 0.3048 0.0254 0.2794 0.136548237 0.093540728
F4 71.3 31.7 39.6 50.86074518 15.5727844
F5 0.0584113 0.000400682 0.058010618 0.01113988 0.013150234
Target 140.987 103.38 37.607 124.8359428 6.898656622

Table III
Statistical Properties of the Combined Cycle Power Plant Dataset 

(Tüfekci, 2014)

Feature Max. value Min. value Range Mean Standard deviation
F1 37.11 1.81 35.3 19.65123119 7.45247323
F2 81.56 25.36 56.2 54.30580372 12.707893
F3 1033.3 992.89 40.41 1013.259078 5.938783706
F4 100.16 25.56 74.6 73.30897784 14.60026876
Target 495.76 420.26 75.5 454.3650094 17.066995
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Because our focus in this research work is on variance 
in the results happening by adopting different similarity 
measures, therefore, the effect of number of the neighbors 
(k) did not get too much attention. Instead, the minimum 
MSE among all of the adopted experiments in each of the 
similarity measures is observed to be used for the comparison 
purposes. Determining the effect of number of neighbors 
(k) on the performance of the KNN is not in the scope of 

this research. It is noticed that each one of the datasets is 
responded differently to the increase in the number of 
neighbors until 10 neighbors, this is because the variance in 
the nature of the datasets and their statistical properties.

IV. Results
As mentioned previously, the performance indicator that 

utilized by this work for checking the efficiency of the 
proposed KNN is MSE. Throughout the experimental tests, 
eight models of KNN have been tested each model uses a 
specific type of similarity measurements. Each model of 
KNN has been trained and tested with five benchmarked 
datasets. For each dataset, the efficiency of the proposed 
KNN was computed in two situations; when the KNN is 
trained with the original dataset, and second, when the KNN 
is trained with normalized dataset. All testes were passed 
through MSE checking. As a result, the overall tests that 
have been conducted by this work are 1600 tests.

The minimum MSE results of KNN models using different 
similarity measurements on the five datasets are shown 
in Table VIII, Figs. 2-6. Each number of the MSE results 
shown in the Table VIII is the minimum of 20 tests, in other 
words, 10 tests including until 10 neighbors, and this done 
for the two cases weighted and equal weight (10 × 2 = 20). 
Minimum MSE means the best result among all the 20 tests.

V. Discussion
The MSE results that obtained from five types of the KNN 

(City block, Euclidean, Chebychev, Cosine, and Correlation) 
that trained and tested with two datasets (airfoil self-noise 
and physicochemical) showed a significant improvement in 
the KNN’s efficiency, look at Figs. 2 and 3. However, no 
significant improvement obtained when the same type of 
KNN is trained with power plant dataset, Fig. 4. On the other 
side, the efficiency of the mentioned type of the KNN has 
been degraded significantly when the KNN trained and tested 
with concrete strength and house valuation datasets, Figs. 5 
and 6. It is clearly observed that performances of three 
types of the KNN (Hamming, Jaccard, and Mahalanobis) 
have not been changed. The disparity behavior of the KNN 
types against scaling and normalizing the training dataset is 
going back to the mathematical process or concept that each 
similarity measurement method has following whereas they 
do data processing. The five similarity measures (City block, 
Euclidean, Chebychev, Cosine, and Correlation) are sensitive 

Table IV
Datasets Properties

Dataset Number of features Type of features Number of instances Supervised learning Application
Airfoil self-noise dataset (Brooks, Pope and Marcolini, 1989) 5 Real 1503 Regression Physics
Physicochemical properties of protein tertiary structure dataset 
(Rana, 2013)

9 Real 9146 Regression Life sciences

Combined cycle power plant dataset (Tüfekci, 2014) 4 Real 9568 Regression Energy
Concrete compressive strength dataset (Yeh, 1998) 8 Real 1030 Regression Civil engineering
Real estate valuation dataset (Yeh and Hsu 2018) 6 Real 414 Regression Business

Table V
Statistical Properties of the Physicochemical Properties of Protein 

Tertiary Structure Dataset (Rana, 2013)

Feature Max. value Min. value Range Mean Standard 
deviation

F1 32,240.2 2783.15 29,457.05 9873.68162 4011.808135
F2 11,787.1 403.5 11,383.6 3016.435929 1450.041879
F3 0.56848 0.09362 0.47486 0.302155567 0.062784658
F4 343.239 10.6891 332.5499 103.4039974 54.9395949
F5 4,467,324.7 374,315.5155 4,093,009.223 1,369,092.965 558385.2823
F6 470.897 33.6462 437.2508 145.5447009 69.30473494
F7 83,153.57 1108.9 82,044.67 3987.14593 1880.513854
F8 337 0 337 70.04286027 56.50548747
F9 47.4559 15.5049 31.951 34.48790348 5.930509868
Target 20.981 0 20.981 7.833154384 6.120956974

Table VI
Statistical Properties of the Concrete Compressive Strength Dataset 

(Yeh, 1998)

FeatureMax. value Min. value Range Mean Standard deviation
F1 540 102 438 281.1656311 104.5071416
F2 359.4 0 359.4 73.89548544 86.27910364
F3 200.1 0 200.1 54.18713592 63.99646938
F4 247 121.75 125.25 181.5663592 21.35556707
F5 32.2 0 32.2 6.20311165 5.973491651
F6 1145 801 344 972.9185922 77.75381809
F7 992.6 594 398.6 773.5788835 80.1754274
F8 365 1 364 45.66213592 63.16991158
Target 82.599225 2.33180783280.2674169735.81783583 16.70567917

Table VII
Statistical Properties of the Real Estate Vluation Dataset  

(Yeh and Hsu, 2018)

Feature Max. value Min. value Range Mean Standard deviation
F1 2013.5833 2012.666667 0.9166666 2013.148953 0.281995327
F2 43.8 0 43.8 17.71256039 11.39248453
F3 6488.021 23.38284 6464.63816 1083.885689 1262.109595
F4 10 0 10 4.094202899 2.945561806
F5 25.01459 24.93207 0.08252 24.96903007 0.012410197
F6 121.56627 121.47353 0.09274 121.5333611 0.015347183
Target 117.5 7.6 109.9 37.98019324 13.6064877
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to the differences exist in the feature ranges, whereas the other 
three measurements (Hamming, Jaccard, and Mahalanobis) 
are not sensitive for difference in feature ranges. Hamming 
and Jaccard are ratio-based similarity measures that cannot 
be affected by min-max normalization; therefore, their 
results remained unchanged in all the five datasets, Figs. 2-6. 
Mahalanobis similarity measurement involves the covariance 
of the training dataset in the calculations of similarity, which 
eliminates the effect of min-max normalization.

It is noticeable that the impact of the min-max 
normalization for the five similarity measures (City block, 
Euclidean, Chebychev, Cosine, and Correlation) is not always 
positive, it depends on the nature of the dataset and the 
differences in the range of the features. An improvement in 
the results of airfoil self-noise and psychochemical datasets 
is observed, no significant impact on the results of power 
plant dataset is observed, and a degradation impact on the 
results of concrete strength and house valuation datasets is 
observed. This proves that these measurements are sensitive 
to the nature of the dataset, more precisely to the differences 
in the feature ranges. In addition, when the dataset has a 
homogeneous feature range, it will not be affected by any of 
the similarity measurements like in the power plant dataset, 
Tables III, VIII, and Fig. 4. This is also another proof that 
distance-based metrics of KNN are very sensitive to the 
differences in the feature ranges.

KNN with Mahalanobis measure provided best results 
among all the five datasets that have been tested in this 
research work. Same results observed for the original and the 
normalized datasets (Table VIII), also, Figs. 2-6.

Comparing the results observed in this research work 
with the results collected from literatures showed that this 

Fig. 2. Minimum MSE values of the KNN models with airfoil self-noise 
dataset using different similarity measurements (original vs. normalized).

Fig. 4. Minimum MSE values of the KNN models with power plant 
dataset using different similarity measurements (original vs. normalized).

Fig. 3. Minimum MSE values of the KNN models with physicochemical 
dataset using different similarity measurements (original vs. normalized).

Fig. 6. Minimum MSE values of the KNN models with real 
estate valuation dataset using different similarity measurements 

(original vs. normalized).

Fig. 5. Minimum MSE values of the KNN models with concrete strength 
dataset using different similarity measurements (original vs. normalized).
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research work implemented a better research methodology 
and analysis, also, the results are more precise and accurate 
(Table IX). The previous literatures tested the KNN only 
with Euclidean distance method without considering other 
similarity measurements, whereas this research analyzed the 
KNN model results of each of the similarity measurements 
individually, without generalizing the results. Results 
showed that some of the KNN models could not respond to 
the min-max normalization. In some cases, a performance 
degradation recorded, which has not been mentioned in any 
of the previous studies. Furthermore, most of the previous 
literatures depended on testing only one dataset or in best 
cases depended on using different datasets of one application 
like in Rajeswari and Thangavel, 2020. This research 
work depended on five datasets belongs to five different 
real applications and different in the number of attributes. 
Therefore, the conclusions of this research are considered 
more reliable.

The KNN models utilizing Hamming, Jaccard, and 
Mahalanobis are not responsive to min-max data normalization 
but may respond positively with other normalization 
techniques which lay outside the scope of this research work 
such as z-score, soft-max, decimal-scaling, max-abs-scalar, 
robust scalar, and quantile transformer.

VI. Conclusion
It has been concluded from the experiments that min-
max normalization may cause performance degradation to 
the KNN models utilizing similarity measure (City block, 
Euclidean, Chebychev, Cosine, and Correlation). Therefore, 
testing datasets with and without min-max data normalization 
are recommended before considering their results. Attaching 

min-max with KNN models utilizing (Hamming, Jaccard, 
and Mahalanobis) is not recommended, because it has no 
effect on the performance of these models.

The possible degradation impact of using min-max data 
normalization on the KNN models utilizing similarity 
measurements (City block, Euclidean, Chebychev, Cosine, 
and Correlation) return to eliminating the natural domination 
of one of the attributes by the min-max normalization, 
and this leads to performance degradation like in the two 
datasets; concrete strength and house valuation. Therefore, it 
is better to test the KNN model with both the original dataset 
and the normalized dataset before deciding if the min-max 
data normalization is useful or not.

It makes no sense to use min-max normalization with 
KNN models utilizing (Hamming, Jaccard, and Mahalanobis), 
because they use the common variance of the dataset in the 
similarity calculations.

Furthermore, it is not necessary to use min-max data 
normalization with homogeneous datasets whatever the 
similarity measurement is, like with power plant dataset.
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