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Abstract—Data normalization can be useful in eliminating 
the effect of inconsistent ranges in some machine learning (ML) 
techniques and in speeding up the optimization process in others. 
Many studies apply different methods of data normalization with 
an aim to reduce or eliminate the impact of data variance on the 
accuracy rate of ML-based models. However, the significance of 
this impact aligning with the mathematical concept of the ML 
algorithms still needs more investigation and tests. To identify 
that, this work proposes an investigation methodology involving 
three different ML algorithms, which are support vector machine 
(SVM), artificial neural network (ANN), and Euclidean-based 
K-nearest neighbor (E-KNN). Throughout this work, five different 
datasets have been utilized, and each has been taken from different 
application fields with different statistical properties. Although there 
are many data normalization methods available, this work focuses 
on the min-max method, because it actively eliminates the effect of 
inconsistent ranges of the datasets. Moreover, other factors that are 
challenging the process of min-max normalization, such as including 
or excluding outliers or the least significant feature, have also been 
considered in this work. The finding of this work shows that each 
ML technique responds differently to the min-max normalization. 
The performance of SVM models has been improved, while no 
significant improvement happened to the performance of ANN 
models. It is been concluded that the performance of E-KNN models 
may improve or degrade with the min-max normalization, and it 
depends on the statistical properties of the dataset.

Index Terms—Min-max normalization, Support vector 
machine, Artificial neural network, Euclidean-based 
K-nearest neighbor, Mean squared error.

I. Introduction
Min-max data normalization is one of the data scaling 
methods that cast data in a specific range of [0,1] or [−1,1]. 
The main aim of such scaling is improving the performance of 

machine learning (ML) techniques. Min-max normalization is 
mainly used to speed up the convergence of some techniques 
utilizing gradient descent algorithm for convergence, like 
in artificial neural networks (ANN), and to eliminate the 
domination of some features over others in the techniques 
using distance measures like Euclidean K-nearest neighbor 
(E-KNN). Supposing that a dataset may contain different 
feature ranges, distance measures like Euclidean may assign 
more weight to features with larger ranges than those with 
small ranges. Therefore, min-max data normalization is 
used to equalize the weight of these features and make 
them have the same effect on the decision-making process. 
Nevertheless, there are still arguments among researchers 
about the exact impact of the min-max data normalization 
on the performance of supervised ML techniques, some of 
them look at normalization as a necessary step in machine 
learning process, while other see it as unnecessary step. 
The causes of this difference may include the quality of 
the datasets, the nature of the dataset, the application 
field, or to the machine learning technique itself and how 
it deals with the data. On the other hand, there are many 
different techniques of data normalization, they may respond 
differently to the different ML techniques. Min-max is one 
of the most used techniques with different ranged attribute 
datasets. It’s easy to implement and has an approved 
effects on the performance of the models. This study aims 
to reveal the ambiguity of the real effect of the min-max 
data normalization and more specifically to investigate 
its impacts on the regression performance of ML models. 
Therefore, the main questions that addressed by this work is 
why ML techniques show disparity responds to the min-max 
normalization method.

The rest of this article is structured as follows: Section 
2 presents the related works, whereas Section 3 is the 
methodology used in this research work consisting of six 
subsequent stages: Selecting and downloading the datasets, 
implementing min-max feature normalization, implementing 
ML techniques on the datasets, removing outliers, feature 
selection, and removing outliers with feature selection. 
Section 4 summarizes all the observed results, and Section 
5 discusses the observed results. Section 6 concludes this 
research work.
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II. Related Works
The majority of the works in the literature that have 

investigated the effect of the min-max data normalization 
reported a positive impact of the min-max normalization 
on the adopted ML techniques in their studies (Dadzie and 
Kwakye, 2021; Shahriyari, 2017), while some other studies 
determined that its usefulness varies from good to bad 
depending on the nature of the datasets and the ML model 
(Ambarwari, Adrian, and Herdiyeni, 2020) (Ahsan, et al., 
2021). On the other hand, very limited studies concluded 
the degradation of the ML model accuracy with the present 
of min-max normalization. However, no comprehensive 
interpretation about their achieved results has been mentioned 
in those studies (Singh, et al., 2015).

In this work, we used most datasets from the most 
recognized and benchmarked dataset repository available 
online which is the University of California Irvine (UCI) 
Repository Dataset. We found that most of the researcher 
works in this area using datasets from the same repository 
(Ahsan, et al., 2021; Bhardwaj, Mishra, and Desikan, 
2018; Dadzie and Kwakye, 2021; Jayalakshmi and 
Santhakumaran, 2011; Pires, et al., 2020; Shorman, et 
al., 2018). The research direction is progressed toward 
determining the effects of the min-max scaling regardless 
of the nature of the dataset application. Therefore, in this 
work, five different benchmarked datasets from the UCI 
repository have been adopted as well having different 
number of records and features. Because this work focuses 
on three ML techniques, which are SVM, ANN, and 
E-KNN, reviewing some relevant works on ML techniques, 
in general, and on these three techniques, more specifically, 
are needed.

One of the most common ML techniques is SVM. Many 
research works showed that SVM has more sensitive responds 
than ANN and E-KNN toward the normalization techniques. 
Results in many SVM-based works showed the usefulness 
of using min-max normalization with SVM (Dadzie and 
Kwakye, 2021; Shahriyari, 2017; Ambarwari, Adrian, and 
Herdiyeni, 2020). Despite that, there are still some studies 
proved that normalization has no effect or has very little 
effect on the accuracy rate of the SVM-based models (Singh, 
et al., 2015). Moreover, there are studies (Ahsan, et al., 2021) 
proved the degradation of the performance of the SVM-based 
models while attached to min-max normalization method.

On the other hand, research works commented differently 
on the suitability of using min-max method with ANN. Some 
works showed the negative effect of min-max normalization 
(Singh, et al., 2015), whereas others concluded that no 
significant performance improvements were observed 
(Jayalakshmi and Santhakumaran, 2011). No improvements 
were also observed for higher-order neural networks 
(Prasetyo, Setiawan, and Adji, 2020) and deep learning 
algorithms (Pires et al., 2020), while other research works 
reported an obvious improvement in the accuracy of the 
models (Ambarwari, Adrian, and Herdiyeni 2020).

The ambiguity is not only existed with ANN-based works, 
the uncertainty about the suitability of the min-max method 

and its impact on the accuracy of ML-based models also 
found in E-KNN-based works that used for classification or 
clustering. Some studies observed that attaching min-max 
with E-KNN technique will improve the accuracy rate within 
a very small range (Ambarwari, Adrian, and Herdiyeni 2020; 
Dadzie and Kwakye, 2021), however, other studies showed a 
significant improvement in the accuracy rate of the E-KNN-
based models (Ahsan, et al., 2021; Rajeswari and Thangavel, 
2020). There other research works stating the min-max 
normalization impact on the performance of E-KNN depends 
on the nature of the dataset, it may enhance or degrade the 
performance of E-KNN models (Muhammad Ali, 2022).

It becomes clear from reviewing the above relevant works 
that there is non-clear vision about the situation where the 
min-max normalization could be utilized with ML techniques 
for accuracy improvement. In other words, the question 
about the condition(s) or the circumstance(s) that make the 
min-max normalization responds a positive or negative effect 
on the performance of supervised learning models, needs be 
answered. To the best of our knowledge, we could not find a 
comprehensive study that tackles this problem.

Whereas the focus of this study is on evaluating the 
impact of the min-max normalization on the performance of 
some adopted regression models; it is necessary to review the 
validation measurements that have been used in the previous 
works. For regression models, the mean squared error (MSE) 
is the widely adopted performance measurement (Rajeswari 
and Thangavel, 2020; Singh, et al., 2015; Jayalakshmi and 
Santhakumaran, 2011; Shorman, et al., 2018; Bhardwaj, 
Mishra, and Desikan 2018). Moreover, the root mean square 
error (RMSE) (Prasetyo, Setiawan, and Adji, 2020), the 
coefficient of determination (R2) (Aksu, Güzeller, and Eser, 
2019), and mean absolute error (MAE) were also used as 
performance measurements. On the other hand, the fitting 
time is an important performance measurement which is the 
time needed to fit the models (Shahriyari, 2017). The number 
of steps for convergence or number of iterations, epochs, and 
the complexity level of the model are other measures that 
could be used as performance measure. In this research work, 
performance measurement depends on the MSE.

Beside the mathematical process of ML techniques, data 
characteristics are another problem that challenging the 
performance of min-max method for accuracy impairment. 
These challenges are “outliers,” “noise amplification,” and 
“out of range data.” The min-max normalization preserves 
the real relations among instances of the same feature, which 
makes it very sensitive to “outliers.” Having anomalies in 
any feature forces the data to aggregate in a small range 
between 0 and 1, and leaves a wide range empty, this makes 
anomalies study a necessary step before implementing min-
max normalization (Kappal, 2019). Moreover, the min-max 
eliminates the real differences among different features, this 
is called noise amplification, which is the enlargement of the 
small effect attributes and making them equal to the big effect 
attributes, which leads to a decrease in the accuracy of the 
models (Pires, et al., 2020). This challenge could be solved 
by removing the features with little significance among the 
input features of the models.
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In this work, an outlier study and feature selection study 
were implemented on the original dataset. There are many 
methodologies available for outlier removing, we utilized 
interquartile range method. Literatures utilized different 
feature selection methods (Sattari, et al., 2021); this work 
used Pearson correlation method. Therefore, four different 
pairwise result sets are adopted: The pairwise result achieved 
using the original dataset, the pairwise result of the outlier 
clean dataset, the pairwise result after removing the least 
significant feature, and finally, the pairwise result set after 
implementing both outlier and features selection on the 
original dataset.

The scaling process of the min-max normalization depends 
on the features’ minimum and maximum values, therefore, 
an “out of range” problem arises when the trained model is 
receiving a data instance outside the feature bounds, which 
leads to wrong predictions. The “out of range” challenge 
mostly happens with time series datasets. Studies suggested 
many solutions in this regard (Ogasawara, et al., 2010), 
widening the range between minimum and maximum values 
by a specific ratio of 20% is one of the suggested solutions. 
This free space above the max and below the min works as 
spare space in case such data appeared, but the time series 
data are beyond the scope of this article.

From the above literature review, we can conclude that 
there is a clear disagreement among researchers about the 
impacts of min-max data normalization on the regression 
performance of the ML models. Utilizing data normalization 
always enhances the performance of the ML model. In 
our opinion, this question needs more investigating before 
answering it. This research aims to reveal the ambiguity 
of the impact of the min-max data normalization on the 
regression performance of three ML algorithms SVM, ANN, 
and E-KNN by testing five different datasets and comparing 
the results with and without data normalization.

III. Methodology
In this research, three different ML techniques have been 

tested on five benchmark datasets to investigate the impact of 
min-max data normalization on the regression performance of 
these ML techniques. The methodology can be summarized 
as follows, Fig. 1.
Step 1: Adopting suitable datasets from the UCI website,
Step 2:  Implementing min-max feature normalization, range 

[0,1],
Step 3:  Applying and validating ML techniques on both original 

and the normalized datasets,
Step 4:  Comparing the MSE results of the both cases to show the 

impact of min-max on the performance of the models,
Step 5:  Implementing anomaly detection and removing outliers to 

the original datasets and then repeating Steps 2, 3, and 4,
Step 6:  Implementing feature selection to the original datasets 

and then repeating Steps 2, 3, and 4
Step 7:  Implementing anomaly detection and feature selection 

together to the original datasets and then repeating Steps 
2, 3, and 4.

A. The UCI datasets
Five different benchmark datasets were downloaded from 

the machine learning repository website of the University of 
California Irvine (UCI) (Dheeru and Graff, 2019). The reason 
behind selecting these datasets is the existing variation in the 
ranges of records among all attributes. Some of the datasets 
have big differences in their ranges like in the Airfoil Self-
Noise Dataset (Table I) or very similar ranges like in 
power plant dataset (Table II). Such a variation is expected 
to have an impact on the regression performance of ML 
algorithms, and consequently, the impact of the min-max 
scaling method will appear more, which is the main target 
that this work aimed to investigate. The datasets belong to 
the real applications of physics, life sciences, engineering, 
and business, Table III. The dataset’s statistical properties are 
shown in Tables I,II,IV-VI.

B. Implementing min-max feature normalization, range [0,1].
As shown in Equation (1), a normalized data sample 'x  

could be obtained from the original data sample x . For 
an attribute, it is mostly dependent on instances with the 
maximum and minimum values in the same attribute. In this 
normalization method, the original data sample component 
values will be transformed to the range of [0,1].

  oldMin' [ ( )*(newMax  newMin) ] newMin 
oldMax  oldMin

xx −
= − +

−  
(1)

Where:
'x  is the normalized data sample,

x  is the original data sample,
oldMin is the minimum data among any attribute of the 
original dataset,
oldMax is the maximum data among any attribute of the 
original dataset,
newMin is the minimum of the normalized dataset, and
newMax is the maximum of the normalized dataset.

Adopting five suitable datasets from the UCI website

Using the
raw datasets
without any

changes

Implementing
outlier removal

by Inter Quartile
(I.Q.) method

Implementing
feature selection

(Pearson
Correlation)

method

Implementing
both

the outlier
removal and

feature
selection

Implementing the min-max normalization [0,1] on the datasets 

Applying and validating three ML algorithms (SVM, ANN, and E-KNN) on
both the original and the normalized datasets

Comparing the MSE results of the both cases to show the impact of min-max
on the performance of the models

Fig. 1. The methodology of the research work.
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Table I
Statistical Properties of the Airfoil Self-Noise Dataset (Brooks, Pope, and Marcolini, 1989)

Feature Maximum value Minimum value Range Mean Variance SD
F1 20,000 200 19800 2886.380572 9,938,717.384 3152.573137
F2 22.2 0 22.2 6.782302063 35.0242405 5.918128125
F3 0.3048 0.0254 0.2794 0.136548237 0.008749868 0.093540728
F4 71.3 31.7 39.6 50.86074518 242.5116138 15.5727844
F5 0.0584113 0.000400682 0.058010618 0.01113988 0.000172929 0.013150234
Target 140.987 103.38 37.607 124.8359428 47.59146318 6.898656622
SD: Standard deviation

Table II
Statistical Properties of the Combined Cycle Power Plant Dataset (Tüfekci, 2014)

Feature Maximum value Minimum value Range Mean Variance SD
F1 37.11 1.81 35.3 19.65123119 55.53935724 7.45247323
F2 81.56 25.36 56.2 54.30580372 161.4905445 12.707893
F3 1033.3 992.89 40.41 1013.259078 35.2691519 5.938783706
F4 100.16 25.56 74.6 73.30897784 213.1678478 14.60026876
Target 495.76 420.26 75.5 454.3650094 291.2823183 17.066995
SD: Standard deviation

Table III
Datasets Properties

Dataset Number of features Type of features Number of 
instances

Supervised 
learning

Application

Airfoil Self-Noise Dataset (Brooks, Pope, and Marcolini, 1989) 5 Real 1503 Regression Physics
Physicochemical Properties of Protein Tertiary Structure Dataset 
(Rana, 2013)

9 Real 9146 instances 
included

Regression Life sciences

Combined Cycle Power Plant Dataset (Tüfekci, 2014) 4 Real 9568 Regression Energy
Concrete Compressive Strength Dataset (Yeh, 1998) 8 Real 1030 Regression Civil 

engineering
Real Estate Valuation Dataset (Yeh and Hsu, 2018) 6 Integer and Real 414 Regression Business

Table IV
Statistical Properties of the Physicochemical Properties of Protein Tertiary Structure Dataset (Rana, 2013)

Feature Maximum value Minimum value Range Mean Variance SD
F1 32,240.2 2783.15 29,457.05 9873.68162 16,094,604.52 4011.808135
F2 11,787.1 403.5 11,383.6 3016.435929 2,102,621.452 1450.041879
F3 0.56848 0.09362 0.47486 0.302155567 0.003941913 0.062784658
F4 343.239 10.6891 332.5499 103.4039974 3018.359088 54.9395949
F5 4,467,324.7 374,315.5155 4,093,009.223 1,369,092.965 311,794,123,479.2 558,385.2823
F6 470.897 33.6462 437.2508 145.5447009 4803.146285 69.30473494
F7 83,153.57 1108.9 82,044.67 3987.14593 3,536,332.356 1880.513854
F8 337 0 337 70.04286027 3192.870115 56.50548747
F9 47.4559 15.5049 31.951 34.48790348 35.17094729 5.930509868
Target 20.981 0 20.981 7.833154384 37.46611427 6.120956974
SD: Standard deviation

Table V
Statistical Properties of the Concrete Compressive Strength Dataset (Yeh, 1998)

Feature Maximum value Minimum value Range Mean Variance SD
F1 540 102 438 281.1656311 10,921.74265 104.5071416
F2 359.4 0 359.4 73.89548544 7444.083725 86.27910364
F3 200.1 0 200.1 54.18713592 4095.548093 63.99646938
F4 247 121.75 125.25 181.5663592 456.0602447 21.35556707
F5 32.2 0 32.2 6.20311165 35.6826025 5.973491651
F6 1145 801 344 972.9185922 6045.656228 77.75381809
F7 992.6 594 398.6 773.5788835 6428.099159 80.1754274
F8 365 1 364 45.66213592 3990.437729 63.16991158
Target 82.599225 2.331807832 80.26741697 35.81783583 279.0797167 16.70567917
SD: Standard deviation
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C. Applying and validating ML techniques on the datasets
In this work, SVM, ANN, and E-KNN were adopted as 

regression methods. The target of applying all tests was to 
determine the impact of min-max data normalization on 
the regression performance of these techniques through 
implementing the technique on the original dataset and the 
normalized version individually then comparing their results. 
The reason for adopting SVM, ANN, and E-KNN techniques 
is the diversity of their nature. SVM utilizes Lagrange 
optimizer and tries to maximize the margins using different 
kernel functions whereas ANN utilizes a gradient descent 
algorithm as an optimization technique to minimize errors 
and to reach the goals faster. On the other hand, E-KNN 
utilizes Euclidean distance to determine the distance between 
the tested samples with the neighbors, where this distance 
is affected by the range of the values of the features. In 
all the tests, mean squared error (MSE) is computed as a 
performance measure and 10-fold as a validation technique.

For testing the SVM on all of the different datasets, four 
different kernel functions were considered (linear, Gaussian, 
radial base, and polynomial) on both the original and the 
normalized datasets. The MSE of the test set has been used 
for comparison purposes. The tests were designed such that 
the code runs on both the original datasets and the normalized 
dataset with the same parameters to determine the impact of 
the min-max normalization in MSE. The minimum MSE of 
the four tests was considered for comparison purposes with 
other techniques.

For each one of the datasets, 50 different models of ANN 
were tested. These models include either one or two hidden 
layers, with a different number of nodes in each hidden layer 
ranging between 3 and 100 nodes. In addition, different 
transfer functions were used in the hidden layers (sigmoid, 
tanh, and ReLU). The same model with the same parameters 
has been applied on both datasets (the original dataset and 
the normalized dataset), where the minimum MSE of the 
50 tests was considered for comparison purposes with other 
techniques. It is known that ANN model results vary from 
one run to another, therefore, each one of the 50 different 
models is tested 10 times and the average is presented as 
the MSE result of the model within an acceptable standard 
deviation range. This is despite that each test of the 10 tests 
was validated by 10-fold validation.

A group of 33 models that used E-KNN (23 weighted-
neighbor models and 10 traditional E-KNN models) was tested 
on the five datasets. The weighted group consisted of different 

models having five neighbors with different contribution 
weights ranging from 5% to 100%. The best weighted E-KNN 
model for all the datasets was 50%, 20%, 15%, 10%, and 5% 
from the closest neighbor to the farthest neighbor accordingly. 
The second group consisted of different E-KNN models 
considering up to 10 neighbors with equal contribution weights. 
The tests were implemented on both datasets, the original 
and the normalized. Minimum MSE among all the adopted 
experiments is observed to be used for comparison purposes.

D. Implementing anomaly detection and removing outliers
An outlier detection is conducted on the adopted five 

datasets by implementing two different methods, mean-
standard deviation, and the interquartile method. The first 
method is considering the data lay outside the range (mean 
± 3 × standard deviation) as an anomaly, and the second 
method is considering the data lay outside the range (Q1 - 3 
× IQ, Q3 + 3 × IQ) as an anomaly, (Table VII).

In this research work, the wider range is considered for 
anomaly detection to decrease the number of anomalies, 
which is the interquartile method. Any data laid outside the 
wider range had been removed from the datasets. The same 
previous ML techniques were simply repeated, and the results 
were observed for comparison purposes.

E. Implementing feature selection
To determine the least significant feature among the 

features of each of the five datasets, this research adopts 
Pearson correlation. The correlation values are ranging 
between −1 and 1, the least significant feature has the 
correlation value between the feature and the target closer to 
zero (Table VIII).

F. Implementing anomaly detection and feature selection together
In this step, the combined effect of feature selection 

and outlier removal is investigated by implementing both 
procedures in the previous steps and then repeating the same 
above procedure. This step shows the impact of anomaly 
removal and the least significant feature removal together.

IV. Results
The minimum MSE results using different machine 

learning techniques on the five datasets are shown in 
Table IX and Fig. 2.

Table VI
Statistical Properties of the Real Estate Valuation Dataset (Yeh and Hsu, 2018)

Feature Maximum value Minimum value Range Mean Variance SD
F1 2013.5833 2012.666667 0.9166666 2013.148953 0.079521365 0.281995327
F2 43.8 0 43.8 17.71256039 129.7887038 11.39248453
F3 6488.021 23.38284 6464.63816 1083.885689 1,592,920.631 1262.109595
F4 10 0 10 4.094202899 8.676334351 2.945561806
F5 25.01459 24.93207 0.08252 24.96903007 0.000154013 0.012410197
F6 121.56627 121.47353 0.09274 121.5333611 0.000235536 0.015347183
Target 117.5 7.6 109.9 37.98019324 185.1365075 13.6064877
SD: Standard deviation
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After removing the outliers from the datasets, the MSE 
values changed in some of the datasets as one can observe in 
Table X and Fig. 3.

The same techniques with the same parameters were 
repeated after removing the least significant feature among 
all other features of each dataset. The results are shown in 
Table XI and Fig. 4.

Again, and after removing both the outliers and the 
least significant feature, the same techniques with the same 
parameters were repeated in Table XII and Fig. 5.

V. Discussion
The MSE values in the four (Tables IX-XII) are the 

minimum MSE observed after implementing a large number 
of various models and structures validated by 10-fold 
validation. For SVM, each number is the minimum of four 
models with different kernels (linear, Gaussian, radial base, 
and polynomial), which are applied to the original and the 
normalized data separately resulting in 8 models per case and 
32 models for all of the cases for each dataset, 160 models 
for all the five datasets. Whereas for ANN, the parameters 
are the number of hidden layers (up to two layers), the 
number of nodes in each layer (up to 100 nodes), and the 
type of activation function (sigmoid, tanh-hyperbola, and 
ReLU). Totally, 50 models were applied to the original and 
the normalized data separately, resulting in 100 models for 
each case, and a total of 400 models per each one of the five 
datasets, 2000 ANN models were tested as a grand total. 
Finally, regarding the E-KNN pair 66 models were tested, the 
total is 264 for each pair for each dataset, the grand total is 
1320 models which were tested.

For the SVM, it is clear that the adopted min-max 
normalization shows a positive impact on the results observed 
from all the datasets. There are differences in the ratio of the 
improvement, but we can see clearly that all the datasets 
responded positively to the min-max normalization with 
SVM (Table IX). This improvement in the results is reported 
in the literature as well (Ambarwari, Adrian, and Herdiyeni 
2020; Dadzie and Kwakye, 2021; Shahriyari, 2017). The 
reason is due to the fact that the SVM does not have any tool 
to weigh one dimension versus other(s), but rather it focuses 
on optimizing the line, plane, or the hyperplane that separates 
the classes.

The results for ANN are not similar to the SVM, as there is 
no significant difference observed in comparing the pairwise 
results of the five datasets. The reason behind this is the 
existence of transfer functions (activation functions) in each 
hidden layer node of the neural network, where they may 

Table VII
Number of Outliers in the Adopted Datasets using (Mean ± 3x 
Standard Deviation) and (Q1 − 3 × IQ, Q3 + 3 × IQ) Methods

Dataset Number of outliers 
(mean ± 3 × SD)

Number of outliers  
(Q1 − 3 × IQ, Q3 + 3 × IQ)

Airfoil self-noise dataset 78 35
Physicochemical 
properties of protein 
tertiary structure dataset

806 213

Combined cycle power 
plant dataset

58 0

Concrete compressive 
strength dataset

49 33

Real estate valuation 
dataset

10 8

SD: Standard deviation

Table VIII
The Pearson Correlation Values for the Least Significant Features of 

the Adopted Datasets with the Target Feature

Dataset Least 
significant 

feature

Pearson correlation 
between the feature 

and the target
Airfoil self-noise dataset F4 0.1251
Physicochemical properties of protein 
tertiary structure dataset

F7 −0.0018

Combined cycle power plant dataset F4 0.3898
Concrete compressive strength dataset f3 −0.1058
Real estate valuation dataset F1 0.0875

Table IX
Minimum Values of the Mean Squared Error Results of the Different Machine Learning Models 

(Original vs. Minimum-Maximum Normalized Datasets)

Serial 
number

Machine learning 
technique

Airfoil self-noise 
dataset

Physicochemical dataset Power plant dataset Concrete strength 
dataset

Real estate valuation dataset

Original Normalization Original Normalization Original Normalization Original Normalization Original Normalization
1 SVM 48 14 37 25 21 17 118 45 101 60
2 ANN 3 3 21 21 15 15 28 29 63 63
3 E-KNN 35 4 38 18 15 13 60 65 64 70
SVM: Support vector machine, ANN: Artificial neural network, E-KNN: Euclidean-based K-nearest neighbor

Table X
Minimum Values of the Mean Squared Error Results of the Different Machine Learning Models (After Removing Outliers)

Serial 
number

Machine learning 
technique

Airfoil self-noise dataset Physicochemical dataset Power plant dataset Concrete strength 
dataset

Real estate valuation dataset

Original Normalization Original Normalization Original Normalization Original Normalization Original Normalization
1 SVM 45 13 37 25 21 17 89 34 97 60
2 ANN 3 2 20 20 15 15 31 31 63 66
3 E-KNN 34 4 38 18 15 13 61 52 66 70
SVM: Support vector machine, ANN: Artificial neural network, E-KNN: Euclidean-based K-nearest neighbor
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work like a normalization layer as well. The backpropagation 
procedure to adjust weights performs a denormalization 
process of the data; this is happening in each training cycle 
during the training session of the ANN models (Table IX).

For E-KNN, the results are different because the impact 
of min-max depends on the nature of the dataset itself. The 
MSE results of two of the datasets (Airfoil Self-Noise and 

Physicochemical) have been improved significantly, whereas 
no improvement happened to the power plant dataset 
after implementing the min-max data normalization, the 
reason could be because of the close ranges of the various 
dimensions in this dataset, while the MSE results of the two 
datasets concrete-strength and house-valuation datasets are 
degraded significantly. The reason behind the diversity of the 
effect of min-max data normalization on the MSE results of 
E-KNN returns to its dependence on the Euclidean distance 

Table XI
Minimum Values of the Mean Squared Error Results of the Different Machine Learning Models (After Removing the Least Significant Feature)

Serial 
number

Machine learning 
technique

Airfoil self-noise dataset Physicochemical dataset Power plant dataset Concrete strength dataset Real estate valuation dataset

Original Normalization Original Normalization Original Normalization Original Normalization Original Normalization
1 SVM 28 16 37 25 23 19 125 48 99 63
2 ANN 4 4 21 21 16 16 37 33 66 62
3 E-KNN 13 4 38 18 14 15 63 66 65 68
SVM: Support vector machine, ANN: Artificial neural network, E-KNN: Euclidean-based K-nearest neighbor

Table XII
Minimum Values of the Mean Squared Error Results of the Different Machine Learning Models 

(After Removing Outliers and Least Significant Feature)

Serial 
number

Machine learning 
technique

Airfoil self-noise dataset Physicochemical dataset Power plant dataset Concrete strength dataset Real estate valuation dataset

Original Normalization Original Normalization Original Normalization Original Normalization Original Normalization
1 SVM 25 15 37 25 22 19 95 40 96 63
2 ANN 4 4 21 20 16 16 35 35 63 64
3 E-KNN 12 5 38 19 14 15 64 52 64 66
SVM: Support vector machine, ANN: Artificial neural network, E-KNN: Euclidean-based K-nearest neighbor

Fig. 2. Minimum values of the mean squared error results of the different 
machine learning models (original vs. min-max normalized datasets).

Fig. 4. Minimum values of the mean squared error results of the different 
machine learning models (after removing the least significant feature).

Fig. 3. Minimum values of the mean squared error results of the different 
machine learning models (after outlier removal).

Fig. 5. Minimum values of the mean squared error results of the different 
machine learning models (after removing outliers and least significant 

feature).
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which will be affected significantly by the normalization 
process in a positive or a negative way (Table IX).

After implementing the anomaly detection process to the 
five datasets and removing all the outliers according to the 
procedures mentioned in the methodology section of this 
article (Table VII), generally, and similar to the previous 
experiments, SVM has been improved by implementing 
min-max normalization, no significant improvement was 
observed for ANN, whereas the E-KNN still depends on the 
nature of the datasets. The normalized data of the concrete-
strength dataset showed a little bit more positive response 
by implementing SVM and E-KNN to the anomaly clean 
datasets, whereas the ANN model remained stable. This is 
showing the computational power of ANN against anomalies, 
(Table X).

Furthermore, feature selection is implemented by removing 
the least significant feature among all the features of the 
dataset. A drawback of removing the least significant feature 
is not always significantly increasing the performance of 
the regression model, especially in the power plant dataset 
(Table VIII). In general, the pairwise comparisons of the 
results in Table XI show the same conclusions observed with 
the original datasets (with all features), SVM improvement, 
no significant change to the ANN, and E-KNN depending 
on the nature of the dataset. The normalized result of 
implementing E-KNN on the real estate dataset is improved 
slightly (Table XI).

The combined effect of implementing both the removal 
of anomalies and removal of the least significant feature is 
shown in Table XII. The results of the normalized dataset of 
implementing E-KNN to the concrete-strength and real estate 
datasets are improved (Table XII).

The results in Tables IX-XII showed that the E-KNN is 
sensitive to the nature of the data, therefore, it is better to 
check the performance of the E-KNN models with and 
without normalization, with and without outliers, with and 
without feature selection, and then to decide which one is 
the best, as there is no specific rule could be generalized for 
E-KNN.

The power plant dataset (Table II) is not impacted by 
the min-max normalization during this research, and it did 
not contain outliers. By an intensive look at the feature 
ranges, we can see that it has very similar feature ranges, 

the standard deviation of the ranges is 15, which is a very 
small value compared to other datasets. This type of dataset 
is called a homogeneous dataset, it cannot be impacted by 
min-max data normalization.

Comparing the results observed in this research work 
with the results collected from reviewed literature showed 
that this research work implemented a better research 
methodology and analysis, also, the results are more 
precise and accurate (Table XIII). Most of the previous 
literature depended on testing only one dataset or in the 
best cases depended on using different datasets of one 
application field. This research work depended on five 
datasets belonging to five different real applications with 
different numbers of attributes and different attribute 
ranges. Therefore, the conclusions of this research are 
considered more reliable.

Vi. Conclusion
The importance of implementing min-max data normalization 
mainly depends on the ML technique and the nature of the 
dataset. Experiments that are adopted in this work show that 
the min-max normalization is useful with SVM, whereas it 
makes no significant effect with ANN, which is because of 
the ANN’s ability during the training stage to perform the 
normalization implicitly by itself. The powerful computation 
nature of ANN eliminates the effect of the min-max data 
normalization because it implicitly includes activation 
functions that work like the normalization layer. Even it 
eliminates the effect of outliers and least significant feature as 
well. Therefore, it is not important if min-max normalization 
is used with ANN or not. Depending on the nature of the 
dataset, min-max data normalization with E-KNN may result 
in performance improvement or degradation.

KNN uses distance measurements for determining the 
closest neighbors. In this research, Euclidean-based KNN is 
tested only. It has been concluded that using min-max data 
normalization may have a bad impact on the performance of 
the E-KNN, because it may eliminate the natural domination 
relations among the attributes and the target which leads to 
performance degradation, this has happened with two datasets 
concrete-strength and house-valuation. Therefore, it is better 
to test the E-KNN model with both the original dataset and 

Table XIII
Comparing the Reliability of this Research with Other Previous Literatures

Serial 
number

Research work Performance of 
SVM model

Performance of ANN 
model

Performance of 
E-KNN model

Number of 
datasets used

Type of application 
of the datasets

1 This research work Improvement No significant 
improvement observed

Depends on the nature 
of the dataset

5 5

2 Dadzie and Kwakye 2021 Improvement N/A No significant change 1 1
3 Shahriyari 2017 Improvement Degradation N/A 1 1
4 Ambarwari, et al., 2020 Improvement Improvement No significant change 1 1
5 Ahsan, et al., 2021 Degradation N/A Improvement 1 1
6 Singh, et al., 2015 No significant 

change
Degradation N/A 1 1

7 Jayalakshmi and Santhakumaran, 2011 N/A No significant change N/A 1 1
8 Rajeswari and Thangavel, 2020 N/A N/A Improvement 5 1
SVM: Support vector machine, ANN: Artificial neural network, E-KNN: Euclidean-based K-nearest neighbor, N/A: Not available
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the normalized dataset before deciding if the min-max data 
normalization is useful or not.

E-KNN performance with min-max normalization may be 
improved by implementing outlier cleaning methods or by 
removing the least significant features, but this is not doing 
very well with SVM or ANN because of their powerful 
computation nature. No need to implement min-max data 
normalization to the homogeneous datasets whatever is the 
ML algorithm.

This research work has been compared to the literature in 
terms of the number of used datasets and their application 
fields. Unlike other works that adopt the use of a single 
dataset or datasets from one single application field, our 
research tried to be more reliable using five different datasets 
from five various application field.
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