
http://dx.doi.org/10.14500/aro.11032 11

Machine Learning Algorithms for Detecting and
Analyzing Social Bots Using a Novel Dataset

Niyaz Jalal1 and Kayhan Z. Ghafoor1,2

1Department of Software and Informatics Engineering, College of Engineering, Salahaddin University-Erbil,
 Erbil 44001, Iraq

2Department of Computer Science, Knowledge University,
 Erbil 44001, Iraq

Abstract—Social media is internet-based technology and an
electronic form of communication that facilitates sharing of ideas,
documents, and personal information. Twitter is a microblogging
platform and is the most effective social service for posting
microblogs and likings, commenting, sharing, and communicating
with others. The problem we are shedding light on in this paper is
the misuse of bots on Twitter. The purpose of bots is to automate
specific repetitive tasks instead of human interaction. However, bots
are misused to influence people’s minds by spreading rumors and
conspiracy related to controversial topics. In this paper, we initiate a
new benchmark created on a 1.5M Twitter profile. We train different
supervised machine learning on our benchmark to detect bots on
Twitter. In addition to increasing benchmark scalability, various
autofeature selections are utilized to identify the most influential
features and remove the less influential ones. Furthermore, over-/
under-sampling is applied to reduce the imbalance effect on the
benchmark. Finally, our benchmark compared with other state-
of-the-art benchmarks and achieved a 6% higher area under the
curve than other datasets in the case of generalization, improving
the model performance by at least 2% by applying over-/under-
sampling.

Index Terms—Machine learning, Misinformation
detection, Twitter bot detection, Twitter profile metadata.

I. Introduction
In the past decade, the influence of social media has increased
rapidly; this growth will be more tangible in the upcoming
years. One of the famous social platforms is Twitter; millions
of people, including influential figures, have Twitter accounts
to interact with their audiences. Besides the advantages,
Twitter is used to exploit and delude others in many events,
such as the COVID-19 outbreak, the Russian invasion of
Ukraine, and the USA presidential elections in 2016 and

2020, by spreading falsified conspiracies and manipulating
public opinion (Khanday, Khan and Rabani, 2021; Shevtsov,
et al., 2021).

These actions are usually performed by automated
programs, so-called bots. Broadly speaking, bots aim to ease
automation processes such as sending a friendly message or
giving some instruction on social media. Yet, the automation
capability of bots is unfavorably used for spreading spam,
fake news, and hate speech (Davis, et al., 2016).

A botmaster manages social bot accounts, which controls
many social bots to influence public opinion toward a specific
ideology or purpose by spreading low credible information
(Ferrara, et al., 2016). The social bot impact is so significant
that some reports indicate that 9–15% of the active accounts
on Twitter are social bots (Varol, et al., 2017). In some cases,
the fake news reached 100K users, and false information had
70% more retweets than trustworthy news (Hanouna, et al.,
2019; Orabi, et al., 2020a).

In this paper, the machine learning framework is proposed
based on a novel dataset. We collected more than 1.5M
Twitter accounts during the US presidential election in
3 months. Our dataset only includes the metadata (profile)
features that contain a small number of features. The benefits
of using profile features are increasing the model’s scalability
and decreasing training time. The main goal of this paper is
to create a benchmark suitable for real-time bot detection by
increasing the number of samples and reducing the number
of features. At the same time, dataset generalization has
increased by 6% average AUC compared to other datasets
in this research area. Finally, we can conclude our main
distribution as follows:
1. We collected 1.5 million users and created up-to-date 100K

datasets; to the best of our knowledge, it is the biggest only
metadata dataset.

2. We increase generalization, and our dataset achieves a 6%
higher average accuracy among all datasets in the research
area.

3. We improve the model performance by at least 2% by
introducing over-/under-sampling algorithms with our
dataset.

4. We interpret the prediction of our machine learning models
with the help of Shapley Additive Explanations (SHAP)

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

ARO-The Scientific Journal of Koya University
Vol. X, No. 2 (2022), Article ID: ARO.11032. 11 pages
DOI: 10.14500/aro.11032
Received: 15 July 2022; Accepted: 15 August 2022
Regular research paper: Published: 10 September 2022
Corresponding author’s email: niyaz.jalal@su.edu.krd
Copyright © 2022 Niyaz Jalal and Kayhan Z. Ghafoor. This is
an open access article distributed under the Creative Commons
Attribution License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

12 http://dx.doi.org/10.14500/aro.11032

II. Related Work
Different types of bots target various audiences; for

example, spam bots for spreading spam, fake follower for
increasing followers of a particular account, COVID, or
political bots for spreading conspiracy. Alom, Carminati and
Ferrari (2018) and Shukla, Jagtap and Patil (2021) tried to
detect spam bots on Twitter platform. Alom, Carminati and
Ferrari (2018) have used metadata and graph-based features
from the 42K dataset collected by a Social Honeypot. They
used different ML models; the random forest (RF) achieved
the best result compared to other models. Furthermore,
Shukla, Jagtap and Patil (2021) have used a public dataset
with 38K users and 19 features with different Ensemble
models, feature engineering, feature encoding, and feature
selection. The Ensemble model with ANN, RF, and AB
achieved the best result and also best ensemble model
outperformed other individual models by attaining 93% AUC.

Feng, et al. (2021); Khanday, Khan and Rabani, (2021);
and Shevtsov, et al. (2021) focused on detecting bots that
spread rumors. Khanday, Khan and Rabani (2021) have
used Tweeter API to collect tweets related to the COVID19
outbreak. Different ML applied to detect bots that spread
COVID rumors. The decision tree (DT) gave the best result
with a 99% F1 score; the result showed that tweets generated
by bots have a greater length than regular tweets. Shevtsov,
et al. (2021) have collected tweets related to the 2020 US
presidential election to detect political bots. The data were
collected over 2 months with a total of 15.6M tweets and
3.2M users. Furthermore, Bot Sentinel and Botometer were
used to label the dataset. Different ML, feature engineering,
feature selection, and under-/over-sampling applied to the
dataset; as a result, XGBoost achieved 92% as the best F1
score. Feng, et al. (2021) have collected tweets related to
different hashtags with 34M tweets and 8M users to create
a dataset with a variety of bots in it (called TwiBot-20).
The dataset trained with the previous works models, the
result shows the model accuracy declined with TwiBot-20.
They blamed the absence of user diversity, limited user
information, and data scarcity for this decline.

On the other hand, Yang, et al. (2019) and Hayawi, et al.
(2022) tried to increase model scalability and reduce training
time by only using metadata to train a model. Yang, et al.
(2019) have focused on enhancing the generalization of
detection models. They used 14 public datasets for training
the models; in some cases, two or more datasets have
combined. They manually selected 20 features from datasets,
then used the RF for training. The RF trained with the entire
dataset and then tested with other datasets. As a result of
this approach, the generalization between the datasets is very
low. In the second experiment, they selected seven datasets
for training, and all possible combinations between them
were trained (247 combinations) and tested the model with
the remaining datasets using the RF classifier. This approach
improved the generalization between datasets. Hayawi, et al.
(2022) have used public only metadata datasets to train deep
neural networks. Furthermore, text features have transformed
with long short-term memory (LSTM) and GLoVE. The

same practice as Yang, et al., 2019, was followed: Training
the model on one dataset and evaluating it with other
datasets. The final results show improvement in the model
generalization.

Kudugunta and Ferrara (2018), Rodríguez-Ruiz, et al.
(2020), and Martin-Gutierrez, et al. (2021) introduced new
detection models for detecting bots on Twitter. Kudugunta
and Ferrara (2018) have used a neural network with
LSTM and GloVE to detect bots. A total of 16 features
from metadata and tweet content from the public dataset
had used to train the model. Furthermore, the over-/under-
sampling technique used to balance the dataset. The result
is 96% AUC for a single tweet account and 99% AUC for
account level. Martin-Gutierrez, et al. (2021) have focused
on detecting multilingual bots using a deep learning model.
The BERT, Flair, and RoBERT models were used separately
to transform text-based features into a numeric vector. The
model was trained with a 60K public dataset and achieved a
77% F1 score. Rodríguez-Ruiz, et al. (2020) have used a one-
class classification. This classification algorithm determines
whether the data belong to this class or not, which usually
uses imbalanced data. They trained public datasets with
binary and one-class classification models with different
algorithms. The results indicate that one-class classification
achieved a better result than binary classification.

Finally, this paper aims to create a benchmark suitable for
real-time bot detection by increasing the number of samples
using labeling API to make the labeling process faster and
having more labeled data, decreasing the number of features
by selecting the most influential features, and ignoring
the less influential ones. Furthermore, oversampling and
undersampling are used to overcome the over=/under-fitting
problem.

III. Models
A. Machine Learning Models
Different machine learning algorithms have used to train

the proposal dataset: Adaboost Classifier (AB), Bagging
Classifier (BC), DT, Extra Tree Classifier (ET), Gaussian
Naive Bayes (GN), K-nearest neighbor (KNN), logistic
regression (LR), random forest (RF), support vector machines
(SVM), and eXtreme Gradient Boosting (XGBoost).
However, RF and ET have tested separately with 100 and
500 trees, and KNN with three and five neighbors. Except
for XGBoost, the sklearn Python package was used for all
models. Furthermore, 5-fold cross-validation with random
shuffling splits the dataset into five parts; the training and
validation occur in four portions, and the last portion tests the
model performance. Accuracy, precision, recall, F1 score, and
AUC (Huang and Ling, 2005) were used to evaluate model
performance. (Fig. 1 shows the steps for the experiment).

B. Feature Selection Models
Feature selection is an essential part of any machine

learning algorithm. Feature selection has many advantages,
for example, removing irrelevant data and reducing data

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11032 13

dimensions, increasing model performances, reducing
overfitting and underfitting, and speeding up training time
(Shevtsov, et al., 2021).

There are two types of feature selection, manual selection
and automatic selection. In our work, we perform both types
of feature selections. Two types of features were excluded
from original user metadata by manual selection. The first
group features have different values for each Twitter account.
The second group is the features with almost the same values
for all Twitter accounts.

On the other hand, autoselection models use statistics
correlation, ML algorithm, permutation importance, and
coefficient scores to find the relationship between features;
when features are more correlated, a higher score will assign
to the candidate feature. In our work, we used recursive
feature elimination (RFE) (Granitto, et al., 2006), univariate
feature selection (UFS) (Jović, Brkić and Bogunović, 2015),
and feature importance (FSI) (Altmann, et al., 2010). All
three techniques are implemented in the sklearn Python
package.

Our work used: RFE-DT, FSI-RF, FSI-XGboost, ANOVA
F-value (Shaw and Mitchell-Olds, 1993), and information
gain (Peng, Long and Ding, 2005); we tried to extract 10, 15,
and 20 separately using each of the mentioned algorithms.

C. Over-/Under-Sampling Models
When one class has majority samples and others have a

minority, oversampling and undersampling are usually used
for balancing a dataset. There are a variety of techniques for

balancing a dataset; in case of oversampling, the number of
minority classes will increase, but under sampling reduces
the sample numbers of majority classes (Shevtsov, et al.,
2021).

Moreover, some techniques combine both over-/under-
sampling. The synthetic minority oversampling technique
(SMOTE) (Wang, et al., 2006) is the most popular technique
to increase the number of minority classes. SMOTE uses
KNN to generate N number of synthetic samples for each
sample in the minority class. Furthermore, there are other
modified versions of SMOTE, such as ADASYN, Borderline-
SMOTE, and SVM-SMOTE.

On the other hand, edited nearest neighbor (ENN) (Wilson,
1972) is an undersampling algorithm that utilizes KNN to
eliminate samples close to the boundary or misclassified.
Tomek Links (Elhassan and Aljurf, 2016) is another
undersampling model created based on condensed nearest
neighbors (CNNs). The CNNs randomly chose samples to
eliminate from the majority class, but in the case of Tomek
Links, the KNN was used to find those samples with the
lowest distance from the minority class, then remove them.

In our experiments, mentioned algorithms are applied
individually to the dataset, and the results show little or
no improvement in the model’s performance. As a second
experiment, both under-/over-sampling algorithms are
combined; first, SMOTE and Tomek links are combined
(SMOTETomek), then SMOTE and edited nearest neighbor
are combined (SMOTEENN). Applying both under-/over-
sampling algorithms to our datasets accelerate the model

Fig. 1. The proposed experiments to detect the best model approaches.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

14 http://dx.doi.org/10.14500/aro.11032

performance. We discuss their results in the performance
evaluation section.

IV. Datasets
A. Data Collection
The lack of datasets is a barrier to social bot detection

(Adewole, et al., 2017). Collecting data from social platforms
are prohibited by most influential social media platforms;
Twitter is one of a few platforms allowing collecting public
data by providing API (Orabi, et al., 2020b). We collected
data from Twitter using Twitter API, retrieving tweets related
to the USA 2020 presidential election topics. The data
collection process started 3 months before the election day
(in July 28, 2020) and ended 16 days (November 19, 2020)
after the election day. This topic is selected because it is a
controversial topic on Twitter and makes all types of bot
involvement very high. As shown in Table I, 19 hashtags
used to collect data, and a total of 1.5M unique Twitter
accounts were collected.

B. Profile Features
The retrieved data from Twitter API contain more than

1000 features, mainly divided into four categories, profile
feature (user metadata), context feature, time-based feature,
and interaction features (Yang, et al., 2019). All categories
have been used to detect bots on Twitter platforms (Orabi,
et al., 2020b). Still, in our work, we only focus on the profile
feature, a small object containing all critical information
related to an account. The advantage of using profile features
is reducing training time without affecting model performance.
The user profile object contains 44 features in total, such as
name, description, picture’s URL, colors, statistical, Boolean
flags, language related, and other parameters. We divided the
profile features into three groups: Newly derived, dropped,
and direct used features. In the next sections, we describe
each of them. It is also worth mentioning that the latest
version of Twitter API removes some features from user
profile object, but they are not essential features; the feature
selection process eliminated them.

C. Dropped Features
The values of properties from profile features are different;

some properties have different (unique) values for each
account, and others are totally similar (include none values).
In those cases, properties do not give any meaningful

information to distinguish between humans and bots. After
analyzing each property, the result shows that 23 features
represent ineffective data, meaning either their values are
different for each account or they have one or two unique
values for all accounts regardless of account type (bot or
human). id_str, translator_type, time_zone, contributors_
enabled, following, profile_text_color, profile_background_
color, profile_sidebar_border_color, profile_link_color,
profile_sidebar_fill_color, lang, withheld_in_countries, is_
translator, utc_offset, notifications, id, follow_request_sent,
is_translation_enabled, protected, profile_background_image_
url_https, profile_background_image_url, profile_image_url,
and profile_image_url_https features are eliminated from our
datasets.

D. Direct used Features
The majority of the previous works have used a set of

features and they have proven their effectiveness (Yang,
et al., 2019; Martin-Gutierrez, et al., 2021). Those features
are either numeric or binary features. The numeric features
obtain essential statistical information such as the number
of followers. The binary features give the basic account
information, for example, is account verified or not.
Followers_count, friends_count, listed_count, statuses_count,
favourites_count, has_extended_profile, default_profile,
geo_enabled, and verified are some features that exist in a
majority of previous works. Furthermore, we add default_
profile_image, profile_use_background_image, and profile_
background_tile features to our dataset by converting the
Boolean values (true/false) into numerical representation
(1/0) (Equation 6). Table II shows features: Name, types,
and description. In our work, all features mentioned in this
section are used directly without performing any feature
engineering; simultaneously, we use the numeric feature to
create new features.

E. New Derived Features
Derived features are created by performing a mathematical

or logical operation on one or more original features. We
made 21 new features based on calculating other features.
The previous works proved that the extracted features
include valuable information for the detection process
(Hayawi, et al., 2022). We create three new feature sets for
statistical, text, and binary features. In the case of statistical
features, the features are divided by an account age (the
account creation date minus the last tweet date in our
dataset). Furthermore, we find the ratio between followers
and friends. The second set is text features; the metadata
object contains name, screen_name, and description as a
text feature. We calculate the text length for name, screen_
name, and description (Equation 1); the number of digits
(Equation 2), frequency (Equation 5 when numerator is the
n-g (Brown, et al., n.d.), and the denominator is the total
unique characters.), and entropy (shows in Equation 3
when numerator is Shannon entropy (Shannon and Weaver,
1949) and denominator is feature length) for name and
screen_name; similarity between name and screen_name

Table I
List of Hashtags That Used for Collecting Data

Hashtag
#democrat #politics #america
#mikepence #vote #guncontrol
#election #bluewave #getoutthevote
#republican #gop #president
#racistinchief #joebiden #trump
#biden #trumpvoters #donaldtrump

#racistpresident

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11032 15

(shows in Equation 4 when numerator is the number of
matches, and the denominator is the length of both texts).

The last set includes features that either contains a value
or not (Equation 6); for example, the location feature is
either set or not (empty). In our work, we call those features
binary-derived features; we convert them to one if it has a
value; otherwise, we convert them to zero. Table II shows
statistically derived features (their names end with DS),
text-derived features (their names end with DT), and binary-
derived features (their names end with DB.)

F. Data Labeling
Data labeling is a process of giving actual labels to the

data; labeling is a mandatory step for supervised machine
learning (Derhab, et al., 2021). We use the data label for
comparing with predicted results by ML models to determine
how well the model performed. As mentioned earlier, the
total number of users in our dataset is more than 1.5M. Two
possible ways to know

 (), () 0
0,

≥
=

len
len feature len feature

Feature
None

_
 (), () 0

0,
≥

=

digit count
digit feature len feature

Feature
empty

() 21
* log ()

 ()
=

−
=
∑

k

i
entropy

p i p i
Feature

len feature

2
=similarity

MName
N

1
()

==
∑

k
ii

freq

C b
Feature

K

1, ()
()

0, ()
= =

= = =
convert

x Trueor x Vaueexist
Feature x

x Falseor x Valuenot exist

the actual data labels are manually checking or using
previously trained models. In our case, manual checking
is impossible due to dataset size; therefore, we choose
Botometer API to classify our dataset. The Botometer has
two versions: BotometerLite, which only uses metadata to
classify; Botometer-V4, which predicts based on more than
1000 features, including tweets, metadata, and other features.
In our case, we use BotometerLite because it follows the same
strategy as our work by only focusing on metadata features
for labeling data. The BotometerLite allows 20K samples
to be labeled every day. In our case, it took around 75 days
to classify 1.5M samples. The BotometerLite score sample
is between 0 and 1. In our case, the API could not classify
approximately 16.9% of our data, and 83.1% remaining
samples are classified, as shown in Table III. To create our
dataset, we classify any account score equal to or greater
than 0.6 as bot accounts, so 42K accounts are classified as

Table II
List of Features used in this Paper with Their data Type and Short

Description

Feature type Description
listed_count Numerical Public lists that use

members of
statuses_count Numerical Total number of tweets

and retweet
friends_count Numerical Number of users the

account following
favorites_count Numerical Total number of tweets

liked by an account
followers_count Numerical Number of users

following this account
default_profile Binary If profile is set
has_extended_profile Binary If profile is extend is true

otherwise false
geo_enabled Binary Twitter has access to

profile location
verified Binary If profile is verified
profile_background_tile Binary If profile is tiled is true

otherwise false
profile_use_background_image Binary If profile has background

image
default_profile_image Binary If profile image is default
profile_has_banner_url (DB) Binary If profile has banner URL
has_entities (DB) Binary If entities is set is true

otherwise false
has_location (DB) Binary If location is set is true

otherwise false
has_url (DB) Binary If URL is set is true

otherwise false
account_age (DB) Numerical last_tweet_date - account_

created_date
name_length (DT) Numerical Length of name feature
screen_name_length (DT) Numerical Length of screen_name

feature
description_length (DT) Numerical Length of description

feature
num_digits_in_name (DT) Numerical Number of digit in name

feature
num_digits_in_screen_name (DT) Numerical Number of digit in

screen_name feature
name_entropy (DT) Numerical Entropy of name feature
screen_name_entropy (DT) Numerical Entropy of screen_name

feature
screen_name_freq (DT) Numerical Mean bigram frequency

for screen name
name_freq (DT) Numerical Mean bigram frequency

for name
name_similarity (DT) Numerical Similarity between

screen_name and name
tweet_freq (DS) Numerical Statuses_count/account_age
followers_growth_rate (DS) Numerical followers_count/account_

age
favourites_growth_rate (DS) Numerical favourites_count/account_

age
listed_growth_rate (DS) Numerical listed_count/account_age
friends_growth_rate (DS) Numerical friends_count/account_

age
followers_friends_ratio (DS) Numerical followers_count/friends_

count
DB: Binary derived, DS: Statistically derived, DT: Text derived

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

16 http://dx.doi.org/10.14500/aro.11032

bots. Regarding a human account, we randomly selected 58K
accounts that scored <0.1. However, all the samples bigger
than 0.1 and <0.6 are ignored to have a big gap between
bot and human. In conclusion, we created a dataset with
100K samples classified based on BotometerLite. Table III
shows the start and end of the labeling process and the total
accounts that were classified based on the specific range.

V. Performance Evaluation
A. Performance Evaluation of Machine Learning Models
We tested our dataset with 10 different models (Fig. 1

shows the steps for the experiment); however, we used two
versions of KNN, RF, and BC and 5-fold cross-validation
to reduce the chance of overfitting in the dataset. However,
different algorithms were tested to normalize our dataset,
such as scaling, standardizing, transforming, and normalizing.
Transforming (Gaussian normalization) usually achieves
the best result. Furthermore, it is worth mentioning that the
dataset without normalization was tested but achieved a
very low result. Therefore, we use Gaussian normalization
in all experiments in this paper. Five selection models are
utilized; the feature selection extracts 10, 15, and 20 features
separately. We trained different models (using 13 ML
algorithms). Table IV shows the max, min, and mean result
based on an accurate measurement. As shown in Table IV,
RF with 20 features and ET with 15 features achieved the
best accuracy result. However, surprisingly, increasing the
number of features has a very slim effect on performance and
an enormous impact on training time. For example, in the
case of RF with 100 trees, the difference between the model
with 20 features and 10 features is just 0.04.

Nevertheless, in the case of AB, KNN with five neighbors,
and RF with 500 trees, the model performed better when
trained with 10 features rather than 15 or 20. Moreover, the
mean columns show that SVM and BC overall performance
achieve the best result. Another interesting finding is that the
increasing number of trees or neighbors has little impact on
the performance. For instance, in the case of ET, the model
achieved precisely the same result, RF performance declined
slightly, and KNN performance increased somewhat.
Table V shows the result of the same experience as
Table IV, but besides average (mean) accuracy, it also reveals
the average of recall, precision, F1 score, and AUC.

B. Feature Selection Evaluation
As mentioned earlier, we trained different models based

on five feature selection algorithms – the performance of all
algorithms was excellent in 15–20 features. REF-DT obtains
the best performance, a little bit higher than other algorithms.
However, for average best performance, information gain
gets a higher result. However, in 10 features, the performance
of the ANOVA F-value declined by more than 10%, but other
algorithms performed relatively high. Nevertheless, when we
consider time, XGBoost is achieving the best; for instance, in
the case of 20 features, it is 3 times faster than RFE-DT with
a 0.45 decline in performance; the same is true for 10–15

features with a little difference. Surprisingly, the appropriate
time for 15 features is higher than for 10–20 feature models.
We thought that the time for the 15 models should be
between 10 and 20. We achieved the time results using the
sklearn Python package, which is a very respectful package
among the Python community; yet, we are not sure about the
exact reasons. Table VI shows the mean (average), maximum,
and minimum accuracy for different feature selection models;
each value is calculated based on 13 ML models (Table IV).
It also shows FitTime (the time for fitting the model for each
train set split) and ScoreTime (the time for fitting the model
on the test set).

However, regarding the most influential features for the
10 features approach, our algorithms selected favorites_
count, friends_growth_rate, friends_count, followers_count,
num_digits_in_screen_name, tweet_freq, favorites_growth_
rate, followers_growth_rate, followers_friends_ratio, and
description_length as the most 10 influential features. The
same experiment was repeated for the 15-feature approach;
besides, features in the 10-feature list, also listed_count,
statuses_count, Name_similarity, account_age, and Name_
entropy have added to complete the 15-feature list. Finally,

Table III
Labeling Process for BotometerLite

Score range BotometerLite
Start date January 27, 2022
End date April 13, 2022
0–0.09 310,026
0.1–0.19 321,790
0.2–0.29 236,290
0.3–0.39 175,183
0.4–0.49 112,001
0.5–0.59 50,313
0.6–0.69 19,837
0.7–0.79 12,367
0.8–0.89 6995
0.9–1 2134
Error 253,064
Total 1,500,000

Table IV
Mean (average), Maximum, and Minimum Accuracy Values for

Different ML Algorithms

ML models 20 15 10

Max Min Mean Max Min Mean Max Min Mean
AB 98.00 73.55 94.32 97.98 73.43 94.05 98.01 73.45 92.06
BC-100 98.61 73.52 95.22 98.61 73.52 95.03 98.57 73.46 92.26
DT 97.67 73.60 94.19 97.69 73.43 93.94 97.65 73.52 91.16
ET-100 98.66 73.46 94.67 98.64 73.52 94.48 98.64 73.39 91.93
ET-500 98.66 73.51 94.72 98.67 73.50 94.59 98.64 73.52 92.00
GN 93.09 67.83 80.87 92.83 67.50 80.09 92.34 67.01 78.59
KNN-3 97.94 72.24 89.65 98.25 73.44 91.23 98.29 60.84 89.82
KNN-5 98.05 67.03 89.89 98.32 73.44 91.25 98.37 73.40 90.80
LR 93.88 69.86 85.70 93.52 62.49 84.64 93.38 66.84 83.07
RF-100 98.67 73.62 95.21 98.65 73.43 94.97 98.63 73.50 92.21
RF-500 98.00 73.55 94.32 97.98 73.43 94.05 98.01 73.45 92.06
SVM 98.61 73.52 95.22 98.61 73.52 95.03 98.57 73.46 92.26
XGboost 97.67 73.60 94.19 97.69 73.43 93.94 97.65 73.52 91.16

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11032 17

for the 20-feature approach, geo_enabled, Screen_name_freq,
Name_freq, screen_name_length, and name_length features
have been chosen with features from the 15-feature set to
complete the 20-feature list. In addition, we draw the SHAP
plot (Lundberg, Erion, and Lee, 2018) for the dataset using
a RF model. The X-axis represents a SHAP value for each
feature and the Y-axis shows features name order by most
to least influential. In the SHAP plot, a positive value means
pushing to one (bot-like), and a negative value means driving
to zero (human-like). Color is another indication in the SHAP

Table V
Mean (average) for Different ML Algorithms with Various Performance Measurements

ML models 10 15 20

A F1 R P AUC A F1 R P AUC A F1 R P AUC
AB 94.32 96.98 92.56 90.75 95.37 94.05 96.61 91.99 89.90 95.56 92.06 94.70 89.03 85.88 94.64
BC-100 95.22 97.02 93.67 92.43 95.83 95.03 97.27 93.67 92.75 95.11 92.26 94.45 89.76 88.21 93.05
DT 94.19 94.76 92.55 91.79 94.08 93.94 94.36 92.04 91.17 94.18 91.16 91.15 88.27 86.81 91.75
ET-100 94.67 96.95 92.90 91.18 95.74 94.48 97.18 92.98 91.62 94.87 91.93 93.77 88.86 86.63 93.73
ET-500 94.72 97.07 93.06 91.53 95.56 94.59 96.92 92.91 91.48 95.37 92.00 94.03 89.36 87.62 92.96
GN 80.87 90.20 73.18 68.39 85.66 80.09 90.15 72.10 68.00 85.18 78.59 88.54 67.33 60.02 86.66
KNN-3 89.65 92.34 87.26 85.61 89.51 91.23 93.18 88.30 85.86 92.80 89.82 91.98 87.43 86.15 90.78
KNN-5 89.89 93.42 87.59 85.61 90.26 91.25 93.84 88.42 86.03 92.71 90.80 92.74 87.68 84.99 92.68
LR 85.70 91.58 81.41 78.40 86.09 84.64 91.23 78.57 75.54 86.82 83.07 88.96 76.69 71.94 85.53
RF-100 95.21 97.16 93.80 92.82 95.56 94.97 96.81 93.23 91.95 95.86 92.21 94.37 89.41 87.52 93.51
RF-500 94.74 96.76 93.02 91.65 95.36 95.06 96.99 93.53 92.50 95.47 92.13 94.46 89.55 88.07 92.91
SVM 90.54 94.42 87.93 85.77 91.18 90.02 93.90 87.07 84.66 91.08 87.99 91.78 83.86 80.40 90.28
XGboost 95.16 97.14 93.45 91.83 96.25 95.06 96.91 93.30 91.92 96.07 92.84 95.03 89.97 87.14 95.34
A: Accuracy, F1: F1 score, R: Recall, P: Precision

Table VI
Mean (Average), Maximum, and Minimum Accuracy Values for Different Feature Selection Models

Selection models 20 15 10

MAX MIN MEAN FT ST MEAN MAX MIN FT ST MIN MEAN MAX FT ST
ANOVA F-value 97.04 76.96 91.09 228.58 4.98 96.61 75.30 91.07 308.07 6.93 86.46 75.09 82.26 123.15 7.52
Information gain 98.62 73.52 93.05 340.72 4.13 98.52 73.52 92.98 461.53 5.72 98.48 60.84 91.75 315.85 5.10
RFE-DT 98.67 72.24 92.44 488.23 5.03 98.71 73.47 92.30 731.81 5.90 98.64 69.76 91.87 535.74 4.87
RF 98.46 67.83 91.95 296.79 5.08 98.47 67.50 91.42 415.34 5.46 98.47 67.39 91.87 276.53 5.02
XGboost 98.22 67.03 91.49 123.83 4.35 98.15 62.49 91.11 454.45 5.17 98.21 66.84 91.62 123.26 4.41
FT: Fit Time, ST: Score time

Table VII
Means for Different Performance Measurements with Over-/Under-sampling Models Tested with Various ML Models

ML model None SMOTETomek SMOTEENN

A F1 R P AUC A F1 R P AUC A F1 R P AUC
AB 97.89 99.61 97.45 96.85 98.05 98.27 99.77 98.26 97.89 98.63 99.70 99.99 99.70 99.65 99.75
BC-100 98.55 99.63 98.25 97.94 98.57 98.94 99.80 98.94 98.85 99.04 99.81 99.98 99.81 99.83 99.80
DT 97.60 97.53 97.11 97.15 97.08 98.29 98.29 98.29 98.33 98.25 99.71 99.71 99.71 99.72 99.71
ET-100 98.61 99.72 98.32 97.94 98.70 99.03 99.87 99.03 98.90 99.17 99.87 100 99.87 99.86 99.89
ET-500 98.63 99.75 98.34 97.98 98.71 99.03 99.89 99.03 98.91 99.16 99.88 100 99.88 99.89 99.88
GN 89.55 97.67 86.28 79.01 95.02 88.72 97.87 87.72 80.60 96.23 90.03 98.48 89.29 82.87 96.79
KNN-3 98.32 98.91 97.97 97.18 98.77 98.72 99.38 98.72 98.30 99.13 99.78 99.91 99.78 99.71 99.84
KNN-5 98.36 99.13 98.00 97.11 98.92 98.76 99.53 98.75 98.27 99.24 99.74 99.93 99.74 99.60 99.87
LR 91.27 94.43 89.10 85.79 92.68 90.94 94.77 90.72 88.57 92.98 92.94 95.81 92.83 91.18 94.55
RF-100 98.62 99.70 98.34 98.07 98.60 98.95 99.85 98.95 98.87 99.03 99.86 100 99.86 99.91 99.82
RF-500 98.63 99.73 98.34 98.10 98.59 98.98 99.87 98.98 98.90 99.06 99.84 100 99.84 99.89 99.79
SVM 98.45 99.65 98.13 97.64 98.62 98.76 99.77 98.76 98.42 99.10 99.68 99.97 99.68 99.56 99.79
XGboost 98.62 99.74 98.33 98.03 98.63 98.98 99.88 98.98 98.87 99.10 99.89 100 P. 89 99.89 99.89
A: Accuracy, F1: F1 score, R: Recall, P: Precision

Table VIII
Five Best AUC-ROC Achieved ML Models

Selection model ROC AUC mean
SVM 75.75
ET-500 75.03
KNN-5 74.73
ET-100 74.66
KNN-3 74.40
SVM 75.75
ET-500 75.03

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

18 http://dx.doi.org/10.14500/aro.11032

plot, as shown on the right side of the Y-axis; when the value
of features is large, the color moves to red, but when the
value of the features is small, the color moves to blue. The
plot shows that the original statistic features and statistically
derived features are highly effective and ranked at the top
of the graph. Furthermore, some features drive the model in
one direction; for example, in the case of the num_digits_in_
screen_name feature, when the number of digits is increased,
the result moves toward one (bot-like), and in the case of the
listed_count feature, when the number rises the model drive
toward zero (human-like). Fig. 2 shows the result of the
SHAP plot, the order of the features may be slightly different
than what we mentioned in the text because the SHAP plot
only depends on one algorithm, but our experience is based
on five algorithms.

C. Oversampling and Undersampling Evaluation
We use the synthetic minority oversampling technique,

Tomek Link (SMOTETomek), and Edited Nearest
Neighbor (SMOTEENN) to reshape the dataset size. The
original dataset includes 58K of humans and 42K of bots;
SMOTEENN reshapes the dataset to 54K for each human
and bot, and SMOTETomek reshapes the dataset to 57K for
each human and bot. Our experiment (Fig. 3) used Gaussian
normalization and 10 best features based on feature selection
experiment. In addition, an original dataset was used without
any changes. As shown in Table VII, reshaping the dataset
increases performance measurements positively. When
SMOTETomek and SMOTEENN were applied, all ML

models’ measurement performance increased (GN accuracy
decreased with SMOTETomek as an exception). However,
when we compare SMOTEENN and SMOTETomek,
SMOTEENN performed much better than SMOTETomek.
Furthermore, we used some oversampling algorithms such
as SMOTE, ADASYN, and Borderline-SMOTE to reshape a
dataset. Those algorithms increase the samples of lower class
(oversampling) without performing any undersampling. The
results are inferior, and usually, the original dataset performs
better (their results are not mentioned in Table VII).

D. Generalization
Creating new types of bot with a different specialty are

easy; because of that, many Botmasters develop new types
of a bot that can avoid detection by the previous models.
Therefore, a model’s ability to distinguish between humans
and bots outside their datasets (unseen data) is essential
for any machine learning model, and this characteristic is

Fig. 2. The SHAP graph for our dataset. The graph shows the 20
features with the highest impact on the dataset. Using RF and Euclidean

normalization.

Fig. 3. The proposed experiments to determine the impact of over-/under-
sampling algorithms on bot detection performance.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11032 19

called generalization. We use nine datasets out of 11 from
Yang, et al., 2019, work to test our models capability for
generalization. The dataset’s names are Cresci-Rtbust,
Cresci-stock, Gilani-17, midterm-18, pron-celebrity, political-
feedback, Botwiki-verified, vendor-verified, and Cresci-17.
(Fig. 4 shows the distribution of each dataset). However,
Varol-Icwsm and Caverlee datasets are excluded because
their public version only contains id (unique id for an
account) and the remaining features are missing.

We trained the model with one of the datasets (including
ours) and tested the model with the remaining datasets
separately. The 10 best score features are used in feature
selection experiment, SMOTEENN for balancing dataset,
and Gaussian normalization. (Fig. 5 shows the steps for the
experiment). Table VIII shows five ML models achieved the
highest ROC AUC when the models were trained on one
dataset and tested with the remaining datasets.

The SVM model achieves the best AUC average, but when
compared to the result of SVM and ET-500, the generalization
of ET-500 is higher than SVM. As a result, Fig. 6 is a
complete comparison of all datasets based on the ET-500

model. As shown in Fig. 6, our dataset achieved the best
average accuracy among all datasets, 6% higher than others.
Moreover, it achieved the best result for three datasets; the
other two achieved good results, but the remaining datasets
performed poorly. An average of 75% is not satisfying for a
realistic bot detection model.

Nevertheless, two critical points explain why the results
are inadequate. First, our models are trained with 10 features
from metadata which is insufficient for a real-life situation
to increase the performance. Other features such as tweet
content need to be considered. Second, there are different
types of bots with different parameters; for example, fake
followers and spammer bots have quite unlike specialties.
Because of that, we thought in those cases, when the model
performs poorly, the test dataset contains bots that do not
exist in a trained dataset or vice versa.

Fig. 4. The distribution of bots and humans for all the datasets using a
TSNE plot, 1000 samples for each class.

Fig. 5. The generalization experiments using one dataset for training and
other datasets for testing.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

20

As a result, we believe a dataset cannot achieve high
performance for all other datasets unless to make the bot
detection multi-class classification instead of a binary one.
Instead of having one class for bots, we should create
different bot classes such as spammer, fake follower, and
others. Furthermore, it is worth mentioning that in our
experiment, the result of the comparison between other
datasets is much lower (besides our dataset) than the ones
mentioned in Yang, et al., 2019, paper. We thought that it was
because of a decrease in the number of features; the same
experiment was repeated with the 20 features mentioned in
Yang, et al., 2019, paper, which increased the average result
by almost 2%, but still considerably less than the number in
the original paper.

VI. Conclusion
This paper proposes novel benchmarks (datasets) with
100K samples based on 1.5M metadata collected from
Twitter API. We collected data for more than 100 days to
capture various bot types related to controversial topics
like the US presidential election. Moreover, we use state-
of-the-art online API to obtain the ground truth labels for
the benchmark. The dataset includes 100K samples, and to
the best of our knowledge, it is the largest only metadata
dataset in this research area. Furthermore, this paper applied
various autofeature selections and over-/under-sampling to
the benchmark to increase the benchmark’s generalization
and scalability, reduce training time, and prevent over-/
under-fitting while achieving very accurate results based
on five-cross validation. As a result, our dataset achieved
better AUC compared to other datasets by 6% in the case
of generalization. Furthermore, applying the SMOTEENN
technique achieved 2% higher results than the original
dataset. In the future work, we intend to increase dataset

Fig. 6. AUC scores of ET-500 classifiers trained on one dataset and tested
on others; the final columns also show each dataset’s mean AUC.

http://dx.doi.org/10.14500/aro.11032

generalization by including additional features rather than
metadata features. Since we thought that bot detection on
Twitter is a multiclass nature problem, we planned to create
a multiclass benchmark instead of a binary one. Dataset and
experiment codes are available on this GitHub link to support
overcoming the lack of datasets for the future research.

References
Adewole, K.S., Anuar, N.B., Kamsin, A., Varathan, K.D. and Razak, S.A.,
2017. Malicious accounts: Dark of the social networks. Journal of Network and
Computer Applications, 79, pp.41-67.

Alom, Z., Carminati, B. and Ferrari, E., 2018. Detecting spam accounts on
Twitter. In: Proceedings of the 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, ASONAM 2018. Institute of
Electrical and Electronics Engineers Inc., Piscataway, New Jersey. pp.1191-1198.

Altmann, A., Toloşi, L., Sander, O. and Lengauer, T., 2010. Permutation
importance: A corrected feature importance measure. Bioinformatics, 26(10),
pp.1340-1347.

Brown, P.F., de Souza, P.V., Mercer, R.L., Della Pietra, V.J. and Lai, J.C., n.d.
Class-Based n-gram Models of Natural Language. Computational linguistics,
18, pp.467–480.

Davis, C.A., Varol, O., Ferrara, E., Flammini, A. and Menczer, F., 2016.
BotOrNot: A System to Evaluate Social Bots. In: Proceedings of the
25th International Conference Companion on World Wide Web. pp.14-16.

Derhab, A., Alawwad, R., Dehwah, K., Tariq, N., Khan, F.A. and Al-Muhtadi, J.,
2021. Tweet-based bot detection using big data analytics. IEEE Access, 9,
pp.65988-66005.

Elhassan, T. and Aljurf, M., 2016. Classification of imbalance data using tomek
link (t-link) combined with random under-sampling (rus) as a data reduction
method. Global J Technol Optim, 1, pp.1-11.

Feng, S., Wan, H., Wang, N., Li, J. and Luo, M., 2021. TwiBot-20:
A comprehensive twitter bot detection benchmark. arXiv, 2021, p.13088.

Ferrara, E., Varol, O., Davis, C., Menczer, F. and Flammini, A., 2016. The rise
of social bots. Communications of the ACM, 59, pp.96-104.

Granitto, P.M., Furlanello, C., Biasioli, F. and Gasperi, F., 2006. Recursive feature
elimination with random forest for PTR-MS analysis of agroindustrial products.
Chemometrics and Intelligent Laboratory Systems, 83, pp.83-90.

Hanouna, S., Neu, O., Pardo, S., Tsur, O. and Zahavi, H., 2019. Sharp power in
social media: Patterns from datasets across electoral campaigns. Australian and
New Zealand Journal of European Studies, 11, pp.95-111.

Hayawi, K., Mathew, S., Venugopal, N., Masud, M.M. and Ho, P.H., 2022.
DeeProBot: A hybrid deep neural network model for social bot detection based
on user profile data. Social Network Analysis and Mining, 12, p.43.

Huang, J. and Ling, C.X., 2005. Using AUC and accuracy in evaluating learning
algorithms. IEEE Transactions on Knowledge and Data Engineering, 17,
pp.299-310.

Jović, A., Brkić, K. and Bogunović, N., 2015. A review of feature selection
methods with applications. In: 2015 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE. pp.1200-1205.

Khanday, A.M.U., Khan, Q.R. and Rabani, S.T., 2021. Identifying propaganda
from online social networks during COVID-19 using machine learning techniques.
International Journal of Information Technology (Singapore), 13, pp.115-122.

Kudugunta, S. and Ferrara, E., 2018. Deep neural networks for bot detection.
Information Sciences, 467, pp.312-322.

Martin-Gutierrez, D., Hernandez-Penaloza, G., Hernandez, A.B., Lozano-Diez, A.
and Alvarez, F., 2021. A deep learning approach for robust detection of bots in

https://github.com/Niyaz94/Bot-Detction-On-Twitter

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11032 21

twitter using transformers. IEEE Access, 9, pp.54591-54601.

Orabi, M., Mouheb, D., Al Aghbari, Z. and Kamel, I., 2020a. Detection of bots
in social media: A systematic review. Information Processing and Management,
57, p.102250.

Orabi, M., Mouheb, D., Al Aghbari, Z. and Kamel, I., 2020b. Detection of bots
in social media: A systematic review. Information Processing and Management,
57, p.102250.

Peng, H., Long, F. and Ding, C., 2005. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27,
pp.1226-1238.

Rodríguez-Ruiz, J., Mata-Sánchez, J.I., Monroy, R., Loyola-González, O. and
López-Cuevas, A., 2020. A one-class classification approach for bot detection
on Twitter. Computers and Security, 91, 101715.

Shannon, C.E. and Weaver, W., 1949. The Mathematical Theory of
Communication. The University of Illinois Press, Urbana, IL.

Shaw, R.G. and Mitchell-Olds, T., 1993. ANOVA for unbalanced data: An
overview. Ecology, 74, pp.1638-1645.

Shevtsov, A., Tzagkarakis, C., Antonakaki, D. and Ioannidis, S., 2021.
Identification of Twitter Bots Based on an Explainable Machine Learning
Framework: The US 2020 Elections Case Study. Proceedings of the International
AAAI Conference on Web and Social Media.

Shukla, H., Jagtap, N. and Patil, B., 2021. Enhanced twitter bot detection using
ensemble machine learning. In: Proceedings of the 6th International Conference
on Inventive Computation Technologies, ICICT 2021. Institute of Electrical and
Electronics Engineers Inc., Piscataway, New Jersey. pp.930-936.

Varol, O., Ferrara, E., Davis, C.A., Menczer, F. and Flammini, A., 2017. Online
Human-bot Interactions: Detection, Estimation, and Characterization. In:
Proceedings of the 11th International Conference on Web and Social Media,
ICWSM 2017, pp.280-289.

Wang, J., Xu, M., Wang, H. and Zhang, J., 2006. Classification of Imbalanced
Data by Using the SMOTE Algorithm and Locally Linear Embedding. In:
2006 8th International Conference on Signal Processing. IEEE.

Wilson, D.L., 1972. Asymptotic properties of nearest neighbor rules using edited
data. IEEE Transactions on Systems, Man, and Cybernetics, 3, pp.408-421.

Yang, K.C., Varol, O., Hui, P.M. and Menczer, F., 2019. Scalable and
generalizable social bot detection through data selection. arXiv, 2019, p. 09179.

