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Abstract: The branch-line coupler (BLC) is an important device in radio frequency (RF) and mi-
crowave (MW) circuits. The main drawbacks of the conventional BLC are as follows: first, the
four long quarter-wavelength (λ/4) transmission line sections occupy a large size, especially at the
low frequencies, and second, the presence of unwanted harmonics. This research paper presents
a compact 750 MHz BLC with harmonics suppression using resonators. The typical BLC consists of
four λ/4 branches, two series arms of 35 Ω and two shunt arms of 50 Ω impedances. In the proposed
BLC, these long branches are replaced with two types of compact resonators. The proposed resonators
have the same responses at the operating frequency of 750 MHz and suppress higher frequencies.
The designed BLC is simulated, fabricated and measured. The results show that the proposed BLC
has good performance at 750 MHz with a bandwidth of 200 MHz, which provides more than 26%
fractional bandwidth (FBW). It has a very compact size, about 84% size reduction, as compared with
the typical BLC. Moreover, the fabricated BLC suppresses the 2nd up to 7th unwanted harmonics
with a high suppression level.

Keywords: low-pass filter (LPF); elliptical resonator; stopband; passband; 5G

1. Introduction

Couplers are widely used in radio frequency (RF) and microwave (MW) circuits for
combining/dividing input power [1]. The typical branch-line coupler (BLC) consists of
four λ/4 branches. It consists of two series arms with 35 Ω and two shunt arms with 50 Ω
impedances, which make this component undesirably large, especially at low frequencies,
and susceptible to unwanted harmonics. The typical BLC passes all unwanted harmonics
along with the main signal.

So far, various techniques have been reported to miniaturize the branch-line coupler
structure and/or suppress the harmonics.

In many designs [2–5], low-pass filters (LPFs) are used as the coupler branches to
miniaturize the structure and suppress the harmonics. This technique gives good results
but increases the design complexity and the insertion loss.

Other techniques [6–9] have used external lumped components, such as capacitors
and inductors, to overcome the structure’s large size and the presence of harmonics in
typical BLCs. Applying lumped reactive components significantly reduces the circuit size
and rejects unwanted harmonics but limits the frequency range.

Several works [10–16] have used a defected ground structure (DGS), photonic bandgap
(PBG) cells and electromagnetic bandgap (EBG) cells for cancelling the harmonics and
reducing the large size of BLCs. These cells need an extra implementation process, which
increases the design complexity. Moreover, recently, the crystal photonic structures were
used for higher-frequency circuits, which can be used for coupler structures [17–25].
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Applying open-ended stubs is another effective method, which was previously widely
used to modify typical couplers [26–31]. Using open stubs in couplers leads to achieving
a simple structure. However, in this method, each open stub produces only a single
transmission zero, which cannot provide a wide rejection band.

The coupled line structure [32–35] is another method that provides a bandpass re-
sponse and impressively rejects other frequencies. Because of the coupled structure, the
insertion loss is very high in this method.

In the design process of the coupler, to achieve the best performance, the dimensions of
the applied stubs should be tuned. In [36–39], compact couplers are investigated for which
the size reductions are not significant. To find the optimal dimensions of applied stubs
and also to solve a variety of engineering problems, several models, artificial intelligence
methods [40–49], and neural networks are used [50–66]. Additionally, artificial intelli-
gence methods have been utilized to design microwave devices, such as power dividers
and couplers [67,68].

In this work, two types of resonators are applied instead of the two types of long
branches in the typical BLC. The applied method efficiently reduces the size of the circuit
and eliminates undesirable harmonics.

2. The Conventional Coupler

The typical BLC consists of four λ/4 branches, two series arms of 35 Ω and two shunt
arms of 50 Ω impedances. The schematic diagram of the conventional BLC is depicted
in Figure 1a. The microstrip realization of the conventional BLC with RT/Duroid-5880
substrate of 5 mil thickness, εr = 2.2 and loss tan = 0.0009 at 750 MHz is shown in Figure 1b.
The conventional BLC has a large size of 73 mm × 73 mm (0.25 λ× 0.25 λ) and passes higher
frequencies along with the signal without any suppression. The EM frequency response of
the typical BLC is depicted in Figure 1c.

Figure 1. Cont.
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Figure 1. Conventional 750 MHz BLC: (a) schematic diagram, (b) layout, and (c) frequency response.
Dimensions are in millimeters.

3. Proposed Resonators

The BLC consists of two horizontal series lines of 35 Ω and two vertical shunt lines of
50 Ω impedances. In the proposed structure, two vertical resonators are used instead of the
two long vertical branches, and two horizontal resonators are used instead of the two long
horizontal branches.

3.1. Design Procedure of the Proposed Circuit

The design procedure of the proposed coupler is graphically explained in Figure 2.
The conventional BLC at 750 MHz is designed at Step 1, which has a large size and suffers
from the presence of unwanted harmonics in its frequency response. The conventional BLC
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consists of two long series branches and two long shunt branches. In Step 2, at first, the LC
model resonator is presented, and related equations are extracted. Then, the TZ location
can be obtained by equating the input impedance to zero. In addition, the TZ location can
be adjusted by tuning the lumped element values in the LC circuit. In Step 3, two compact
resonators are realized based on the proposed LC model, which are used instead of the long
branches of the conventional coupler. The obtained resonators are used to form preliminary
prototype of the coupler in Step 4, and the final coupler structure is achieved in Step 5 by
adding four extra resonators.

Figure 2. Design procedure of the proposed coupler. In this figure, the design steps of the proposed
circuit are explained in 5 steps.

3.2. Vertical Branches

The structure of the vertical λ/4 branch with 50 Ω (w = 1.15 mm) is depicted in
Figure 3a. The frequency response of this vertical line is depicted in Figure 3b. As the
results show, the vertical λ/4 branch easily passes the signal at 750 MHz without any
attenuation (S12 near zero), and the S11 parameter is more than 10 dB. Note that S12 = S21,
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as the BLC is a reciprocal passive component. Unfortunately, this line passes other higher
frequency signals without any attenuation (S12 near zero), exactly like the main signal.

Figure 3. Vertical λ/4 branch of 50 Ω impedance at 750 MHz; (a) layout with dimensions in millime-
ters, and (b) the simulation of the S11 and S12 magnitudes in decibels.

3.3. Horizontal Branches

The structure of the horizontal λ/4 branch with 35 Ω (w = 2 mm) is depicted in
Figure 4a. The frequency response of this horizontal line is shown in Figure 4b. As the
results show, the horizontal λ/4 branch easily passes the signal at 750 MHz without any
attenuation (S12 near zero), and the S11 parameter is more than 20 dB. Unfortunately, this
line passes other signals at higher frequencies without any attenuation (S12 near zero),
exactly like the main signal.
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Figure 4. Horizontal λ/4 branch of 35 Ω impedance at 750 MHz; (a) layout with dimensions in
millimeters and (b) the simulation of the S11 and S12 magnitudes in decibels.

These vertical and horizontal lines have the same length of λ/4, but their widths are
different. In the proposed design, triangular shaped resonators are used to improve the
performance of the coupler.

3.4. Proposed Vertical Resonator

The layout structure of the proposed vertical resonator is depicted in Figure 5. This
resonator consists of a triangle-shaped resonator at the middle and two flag-shaped sup-
pressing cells on both sides.

The dimensions of the applied stubs in the proposed vertical resonator are listed as
follows: Lb1 = 4.1, Wb1 = 0.6, Lb2 = 19.6, Lb3 = 5.6, Wb2 = 0.1 (all in millimeters). The
frequency responses of the proposed vertical resonator are depicted in Figure 6. The
designed structure easily passes 750 MHz, like the vertical line, and also creates a strong
transmission zero at 1.7 GHz frequency.

The LC-equivalent (LCE) model of the proposed vertical resonator is extracted as
illustrated in Figure 7.
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Figure 5. The layout of the proposed vertical resonator.

Figure 6. The S11 and S12 magnitudes in decibels versus frequency.

The extracted LCE model has an asymmetrical structure, where the obtained values
for the applied lumped reactive elements are listed in Table 1.
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Figure 7. Extracted LCE model of the proposed vertical resonator.

Table 1. Obtained values for the applied lumped elements of the LC model of the resonator.

Parameters L1 L2 L3 L4 L5 L6
Values (nH) 2.1 2.3 5.2 0.4 0.15 0.15
Parameters C1 C2 C3 C4 C5 C6
Values (pF) 1 1 0.87 6 1.2 1.2

In Figure 8, the EM simulation of the proposed vertical resonator and its LCE model
simulation response are compared. In this figure, the LCE model is simulated with a circuit
simulator and the vertical resonator is simulated with electromagnetic (EM) simulation
in Advanced Design System (ADS) software. There is good agreement between these
responses, which shows the validity of the LCE model.

Figure 8. EM simulation of the proposed vertical resonator and its LCE model response.

The values of ZA, and ZB (which are indicated in Figure 7) can be calculated according
to the following equations:

ZA = L3 S +
1

C3 S + L4 S

C2 S
(

1
C2 S + 1

C3 S + L4 S
) (1)
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ZB = L5 S +
1

C6 S + L6 S

C5 S
(

1
C5 S + 1

C6 S + L6 S
) (2)

where, “S” refers to the Laplace transform. The input impedances, indicated in Figure 7
by Z1 and Zin, can be extracted based on Equations (1) and (2), which are written in
Equations (3)–(5).

Z1 =
ZA (R + L1 S)

C1 S

(
ZA + R+L1 S

C1 S
(

R+ 1
C1 S +L1 S

)
)(

R + 1
C1 S + L1 S

) (3)

Zin = L1 S +
ZA (L2 S + σ1)

C1 S
(

1
C1 S + ZA (L2 S+σ1)

ZA+L2 S+σ1

)
(ZA + L2 S + σ1)

(4)

σ1 =
ZB (L2 S + Z1)

ZB + L2 S + Z1
(5)

where “R” refers to 50 Ω impedance at port 2, and “σ1” is a parameter defined in Equation (5)
to simplify the Zin equation. The real part of the input impedance Zin is shown in Figure 9.
The TZ location can be obtained by equating the input impedance to zero. Additionally, the
TZ location can be adjusted by tuning the lumped element values in the LC circuit.

Figure 9. The real part of the input impedance Zin.

3.5. Proposed Horizontal Resonator

The horizontal resonator is used instead of the 35 Ω series arm, and this is very similar
to the vertical resonator because the horizontal arm and series arm have the same structure,
same length and only a little difference in the line thickness. The layout structure of the
horizontal resonator is depicted in Figure 10.
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Figure 10. Layout of the proposed horizontal resonator. (a) Layout extraction of the resonator from
the LC equivalent circuit. (b) Dimensions of the proposed horizontal resonator.

The dimensions of the applied stubs in the proposed horizontal resonator are listed as
follows: Lc1 = 0.7, Lb2 = 19.6, Lb3 = 5.6, Wc1 = 0.1, Wb1 = 0.6, Wb2 = 0.1 (all in millimeters).
The EM simulation response of the proposed horizontal resonator is illustrated in Figure 11.
The proposed structure easily passes 750 MHz, like the simple horizontal line, and also
creates a strong transmission zero at 1.6 GHz frequency.

Figure 11. EM simulation response of the proposed horizontal resonator.

3.6. The LC Models of the Preliminary and the Final Prototypes of the Coupler

The LCE model for the preliminary and the final prototypes of the coupler are depicted
in Figure 12a. In the LCE circuit, CZ and LZ only exist in the final prototypes of the coupler,
i.e., by adding four series LC branches containing CZ and LZ in the preliminary prototype,
the final prototype of the coupler is constructed. The horizontal LC values in the LCE
circuit of the final prototype of the coupler are the same as the values in Table 1. However,
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according to the impedance difference in the vertical branches of the coupler, the vertical
LC values in the LCE circuit of the final prototype of the coupler are tuned, which are listed
in Table 2. The comparison between the LCE model frequency responses of the preliminary
and the final prototypes of the coupler are shown in Figure 12b, which shows acceptable
results with a wide rejection band.

Figure 12. (a) The LCE models of the preliminary and the final prototypes of the coupler. (b) The
comparison between LCE model frequency responses of the preliminary and the final prototypes of
the coupler. In LCE circuit, CZ and LZ only exist in the final prototypes of the coupler.



Electronics 2022, 11, 793 12 of 19

Table 2. Obtained values for the applied lumped elements of the LC model of the coupler.

Parameters LV1 LV2 LV3 LV4 LV5 LV6
Values (nH) 1 6.3 5.2 0.4 0.18 0.18
Parameters CV1 CV2 CV3 CV4 CV5 CV6
Values (pF) 5.4 1 0.87 6 1.2 1.2

4. Proposed Coupler Design

In the proposed coupler design process, the horizontal and vertical resonators are
used instead of four long branches.

4.1. The Preliminary Prototype of the Designed Coupler

The preliminary prototype of the designed coupler is designed by placing vertical
and horizontal resonators instead of the vertical and horizontal lines. The structure and
frequency responses of the preliminary prototype of the designed coupler are shown in
Figure 13. This coupler rejects the third to sixth harmonics and provides wide rejection
bands from 1.75 GHz to 3.85 GHz, with more than a 20 dB attenuation level.

Figure 13. The preliminary prototype of the designed coupler; (a) layout with dimensions in millime-
ters, and (b) EM simulation response.
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4.2. The Final Prototype of the Designed Coupler

The preliminary prototype of the designed coupler only eliminates the third to sixth
harmonics, but it does not have the ability to suppress the second harmonic. To remove the
second harmonic, four small triangular shaped open-ended stubs are added in the final
prototype of the deigned coupler. The added triangular open-ended stubs can create extra
transmission zeros, which helps to improve the harmonic suppression in the device [69,70].
The structure and S-parameters curves of the final prototype of the designed coupler are
shown in Figure 14. This coupler rejects the second to seventh harmonics and provides
a wide rejection band from 1.5 GHz to 5.4 GHz.

Figure 14. The final prototype of the designed coupler; (a) layout with dimensions in millimeters,
and (b) EM simulation response.
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5. Fabrication and Measurements

The final prototype of the designed BLC is fabricated on a substrate of Rogers RT-5880
substrate with 15 mil thickness, εr = 2.2 and loss tan = 0.0009. The photo of the fabricated
BLC is presented in Figure 15.

Figure 15. Photograph of the fabricated BLC.

The conventional coupler has a size of 0.25 × 0.25 λg2, whereas the size of the final
prototype of the designed coupler is only 0.08 × 0.12 λg2 (24.4 × 35.3 mm2), where λg
is obtained at 750 MHz working frequency. The final prototype of the designed BLC
demonstrates an 84% size reduction, in comparison with the typical BLC. The layout of
the proposed and conventional couplers, which is designed on the same substitute and
operates at the same frequency, is depicted in Figure 16, which shows an extreme size
reduction in the final prototype of the designed coupler.

Figure 16. Layouts comparison between the final prototype of the designed coupler (24.4 mm× 35.3 mm)
and the conventional couplers (73 mm × 73 mm) at 750 MHz.
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The simulated and measured S-parameters of the final prototype of the designed BLC
are depicted in Figure 17. As seen from the obtained S-parameters in Figure 17a,b, the final
prototype of the designed BLC has good performance at 750 MHz with a bandwidth of
200 MHz, which provides more than 26% FBW. Moreover, it provides wide rejection band
from 1.5 GHz to 5.4 GHz, which suppresses the 2nd to 7th harmonics.

Figure 17. Measurement and EM simulation of the S-parameters with respect to frequency for the
final prototype of the designed BLC. (a) The values of |S11|, and |S12| parameters. (b) The values
of |S13|, and |S14| parameters.
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In Figure 18, the measurement and EM simulation results for the output ports phase
difference are depicted. As the results show, at 750 MHz, the phase difference is −270.5◦,
which shows good performance of the final prototype of the designed coupler.

Figure 18. Measurement and EM simulation of the output ports’ phase difference.

In Table 3, some related couplers, which were published in recent years, are compared
with the final prototype of the designed coupler.

Table 3. Performance comparison between the final prototype of the designed coupler and some
related works.

Ref. Reduction
Size (%)

IL
(dB)

RL
(dB)

Isolation
(dB)

Freq.
(GHz)

FBW
(%)

Size
(λ × λ)

Suppressed
Harmonics

Num. Details

[36] 66% 1 27 20 0.93 11 0.14λ × 0.15λ 0 -

[37] 62% 1 20 28 1.5 20 0.15λ × 0.16λ 0 -

[38] - 1.4 - 15 1.87 3.5 0.33λ × 0.42λ 0 -

[39] 73% - 30 30 1 13.6 0.125λ × 0.135λ 1 2nd: 18
dB

Conv.
Coupler - 0.2 35 35 0.75 20 0.25λ × 0.25λ 0 -

This
work 84% 0.3 20 20 0.75 26 0.08λ × 0.12λ 6

2nd: 20
dB

3rd: 23 dB
4th: 28 dB
5th: 39 dB
6th: 52 dB
7th: 23 dB

IL = insertion loss, RL = return loss, Freq. = frequency, FBW = fractional bandwidth, and Conv. = conventional.

6. Conclusions

A compact branch-line coupler (BLC) with improved harmonic suppression ability is
designed, analyzed, and fabricated in this manuscript. In the designed coupler, the main
drawbacks of the conventional coupler, which are the large size and harmonics presence
in the frequency response, are corrected. The triangular shaped and trapezoidal shaped
resonators are incorporated into the proposed resonators to form a compact coupler and
provide extra transmission zeros. The design coupler has achieved 2nd to 7th harmonics
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suppression with a wide rejection band and high attenuation. In addition, the obtained
overall size of the fabricated coupler is only 0.08 × 0.12 λg2, which demonstrates an 84%
size reduction.
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