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Abstract: In this paper, two novel dual-band bandpass filters (BPFs) and a compact quad-channel
diplexer working at 1.7/3.3 GHz and 1.9/3.6 GHz are proposed. In the proposed diplexer design,
triangular loop resonators and rectangular loop resonators are used together to reduce the circuit
size and improve diplexer performances. Insertion loss (IL) and return loss (RL) of the proposed
diplexer are better than 0.8 dB and 21 dB, respectively, at these four operating frequencies. Output
ports isolation parameter is better than 30 dB. With the achieved specifications, the proposed diplexer
can be used in L and S band applications.

Keywords: bandpass filter; diplexer; quad-channel; resonator; coupled lines; microstrip; insertion
loss; return loss

1. Introduction

Diplexers are three-port devices, which are widely used in microwave circuits and
systems. The diplexer devices split input signal from the common input port into two
separate channels with two different desirable operating frequencies [1,2]. Microstrip
diplexers are considered as key component in many communication systems. In many
applications, diplexers allow a single antenna to receive and transmit on different frequen-
cies. Moreover, diplexers will provide the ability for an antenna to receive and transmit
simultaneously [3]. In recent reported works, hairpin resonators [4], stepped-impedance
resonators [5], bandpass filters (BPFs) [6], square ring resonators [7] approaches are used to
design and improve the performance of the diplexers. In [4], two hairpin line resonators are
used in the diplexer structure to obtain two wide operating bands. Five stepped-impedance
resonators are used to achieve a diplexer with compact size and high isolation in [5].

Recently, optimization algorithms [8,9] and neural network techniques have been
used to improve performance of electronic circuits, such as in [10–14], which also have
been used in the designing of the BPF [15] and coupler [16]. In [15], a narrow band BPF at
2.2 GHz is designed, with a hairpin structure. An artificial neural network (ANN) is used
to optimized BPF, and in [16], an ANN model is used to find transfer function of the branch
line coupler. Additionally, higher frequencies for filters and resonators have been achieved
using optical fiber substrates [17–22].

Additionally, lumped reactive components such as capacitors and inductors are used
in microwave circuits to provide a bandpass response, such as in [23–25]. Applied lumped
reactive components increase insertion loss, which is not desirable.
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Different kinds of resonators are also used for the performance improvement of the
frequency response [26–36]. Different shapes of the resonators have been recently presented,
such as U-shaped [26], T-shaped [27], Pi-shaped, [28] stepped-impedance [29], and patch
resonators [30,31]. In [30], patch resonators are used to have a filtering response.

This paper presents a compact diplexer formed by two dual-band bandpass filters
using triangular loop resonators and rectangular loop resonators operating at 1.7/3.3 GHz
and 1.9/3.6 GHz. The proposed quad-channel diplexer is designed for L band and S band
applications, which includes 1–2 GHz for L band and 2–4 GHz for S band.

2. Bandpass Filters Design

The proposed diplexer consists of two dual-band BPFs. At the first step of design
process, the BPFs structure are introduced. The BPFS are designed using triangular loop
and rectangular loop resonators to form a microstrip quad-channel diplexer for L band
and S band applications. At the first step, coupled lines and rectangular loop resonators
are combined to provide a dual-band resonator, named resonator1. The structure and
response of resonator1 are depicted in Figure 1a,b. As seen, resonator1 provides two
narrow operating bands at 2.4 GHz and 3.8 GHz. Additionally, the resonator1 creates a
transmission zero (TZ) at 6.6 GHz, which provides a stop band near this transmission zero.

Micromachines 2023, 14, x FOR PEER REVIEW 2 of 15 
 

 

Additionally, lumped reactive components such as capacitors and inductors are used 
in microwave circuits to provide a bandpass response, such as in [23–25]. Applied lumped 
reactive components increase insertion loss, which is not desirable. 

Different kinds of resonators are also used for the performance improvement of the 
frequency response [26–36]. Different shapes of the resonators have been recently pre-
sented, such as U-shaped [26], T-shaped [27], Pi-shaped, [28] stepped-impedance [29], and 
patch resonators [30,31]. In [30], patch resonators are used to have a filtering response. 

This paper presents a compact diplexer formed by two dual-band bandpass filters 
using triangular loop resonators and rectangular loop resonators operating at 1.7/3.3 GHz 
and 1.9/3.6 GHz. The proposed quad-channel diplexer is designed for L band and S band 
applications, which includes 1–2 GHz for L band and 2–4 GHz for S band. 

2. Bandpass Filters Design 
The proposed diplexer consists of two dual-band BPFs. At the first step of design 

process, the BPFs structure are introduced. The BPFS are designed using triangular loop 
and rectangular loop resonators to form a microstrip quad-channel diplexer for L band 
and S band applications. At the first step, coupled lines and rectangular loop resonators 
are combined to provide a dual-band resonator, named resonator1. The structure and re-
sponse of resonator1 are depicted in Figure 1a,b. As seen, resonator1 provides two narrow 
operating bands at 2.4 GHz and 3.8 GHz. Additionally, the resonator1 creates a transmis-
sion zero (TZ) at 6.6 GHz, which provides a stop band near this transmission zero. 

Port 1

Po
rt

 2

 
1 2 3 4 5 60 7

−60

−50

−40

−30

−20

−10

−70

0

Frequency(GHz)

S-
Pa

ra
m

et
er

s (
dB

)

f1 = 2.4 GHz

f2 = 3.8 GHz

TZ = 6.6 GHz

S 21

S11

 
(a) (b) 

Figure 1. The (a) structure and (b) response of resonator1. 
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Figure 1. The (a) structure and (b) response of resonator1.

At the second step, triangular loop resonators and Pi-shaped resonators are incor-
porated to form resonator2. The structure and response of resonator2 are depicted in
Figure 2a,b. Resonator2 provides two operating bands at 1.9 GHz and 5.2 GHz. As seen,
resonator2 cannot provide a stopband with high attenuation level.

In order to create a compact BPF with high attenuated stop band, resonator1 and
resonator2 are combined to form the final structure of the first BPF. Figure 3 shows
the structure of the first designed band-pass filter, which passes signals at 1.9 GHz and
3.6 GHz frequencies and suppresses other frequencies. The simulated frequency responses
of this proposed filter are depicted in Figure 4. The insertion losses (IL) at the operating
frequencies are 0.52 dB and 0.76 dB, and the return losses (RL) parameter values are better
than 40 dB and 33 dB, respectively.

In the structure of the proposed BPF shown in Figure 3, there are two space gaps,
which creates coupling. These gaps, which are demonstrated with “S”, are very important.
As seen in Figure 5, by tuning the values of S, the operating frequency and the IL can be
adjusted. The lowest insertion loss is obtained for S = 0.1 mm.
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Figure 3. Structure of the first proposed BPF at 1.9/3.6 GHz. 
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Figure 3. Structure of the first proposed BPF at 1.9/3.6 GHz. Figure 3. Structure of the first proposed BPF at 1.9/3.6 GHz.

The simplified LC equivalent circuit for the first proposed BPF at 1.9/3.6 GHz is
illustrated in Figure 6a. Additionally, the frequency response of the LC model and the
proposed BPF are compared in Figure 6b, which shows good agreement between the
obtained S-parameters.

Figure 7 shows the structure of the second designed BPF, which passes signals at
1.7 GHz and 3.3 GHz frequencies and suppresses other frequencies. The simulated fre-
quency responses of this proposed filter are depicted in Figure 8. The ILs at operat-
ing frequencies are 0.53 and 0.86 dB, and the RLs parameter are better than 32 dB and
25 dB, respectively.
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Figure 7. Structure of the second proposed BPF at 1.7/3.3 GHz. 

Figure 6. The (a) schematic of simplified LC equivalent circuit model and (b) its frequency response
for the first proposed BPF at 1.9/3.6 GHz. The circuit parameters of the proposed LC model are as
follows: L0 = 5 nH, L1 = 8.2 nH, L2 = 8.5 nH, L3 = 13.3 nH, L4 = 2.1 nH, C1 = 0.1 pF, and C2 = 0.19 pF.
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Like the first BPF, in the structure of the proposed second BPF, as seen in Figure 7,
there are two space gaps, which creates coupling. These gaps, which are demonstrated
with “S”, are very important. As seen in Figure 9, by tuning the values of S, the operating
frequency and the IL can be adjusted. The lowest insertion loss is obtained for S = 0.1 mm.
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The design procedure of the proposed diplexer is depicted in Figure 10. In step1,
rectangular loop and triangular loop resonators are designed. In step2, the designed
rectangular loop and triangular loop resonators are combined to form the main dual-band
proposed BPF. Then, based on the proposed main dual-band BPF, two BPFs are presented
to provide four channels for the diplexer, as shown in step3. Additionally, in step4, the
proposed quad-channel diplexer is presented by combining the two designed BPFs.
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3. Diplexer Design

The proposed diplexer consists of two dual-band BPFs and a T-junction connection
at input port. Each filter is constructed using the coupled stepped-impedance resonators
(CSIRs), and two type of resonators, triangular loop resonators and rectangular loop res-
onators. The layout of the proposed diplexer is depicted in Figure 11. All the dimensions
shown in this figure are in mm. By using the coupled open stubs in the diplexer structure,
the parameters of insertion loss, isolation and stopbands are improved slightly. Addi-
tionally, one of the three coupled open stubs, which is closer to the BPF, creates the main
coupling between the BPFs and diplexer ports.
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The simulation S-parameter result of the proposed diplexer is shown in Figure 12.
Four operating frequencies with 30 MHz bandwidths are achieved for the designed
diplexer. Additionally, the isolation values for all operating bandwidths are below 30 dB,
which is a desirable parameter for the designed diplexer. The four operating bands are
1685–1715 MHz with a center of 1700 MHz, 1885–1915 MHz with a center of 1900 MHz,
3285–3315 MHz with a center of 3300 MHz, and 3585–3615 MHz with a center of 3600 MHz.
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4. Results and Discussion

The final dimensions of diplexer are only 11.2 mm × 32.2 mm (0.0903 λg × 0.259 λg).
Figure 13 shows the photograph of the fabricated diplexer. The proposed quad-channel
diplexer, which is working at 1.7/3.3 GHz and 1.9/3.6 GHz, is designed and fabricated
on a single layer of RT Duroid 5880 substrate with a relative electric constant of εr = 2.2,
tanδ = 0.0009, and thickness of 0.7874 mm.
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Figure 13. Fabricated photo of the proposed diplexer.

Port one represents the input port connected to the antenna, whereas port two and
port three represent the output of the receiver filter and the input of the transmitter filter,
respectively. All ports are designed for 50 Ohms impedance. Figure 14a,b shows the
simulation and measurement results of the proposed diplexer. As seen in these figures,
the proposed diplexer has two channels. The lower channel has two frequency bands
1.7/1.9 GHz, whereas the higher channel has two frequency bands 3.3/3.6 GHz. According
to the fabrication measured results, the insertion loss parameters of the proposed diplexer
are better than 0.6 dB at the lower channel and better than 0.8 dB at the higher channel. The
measured return loss parameters are better than 20 dB and 25 dB at the lower and higher
channel, respectively. Moreover, better than 30 dB ports isolation is obtained in the whole
frequency band.

The simulated results of the proposed diplexer are listed in Table 1. As the results
show, the proposed diplexer features very good specifications. In the lower bands (1.7 GHz
and 1.9 GHz), the S21 parameter at 1.7 GHz is achieved (−0.55 dB), while the S31 parameter
at 1.9 GHz is achieved (−0.55 dB); therefore, the insertion loss in lower bands is 0.55 dB.
In the higher bands (3.3 GHz and 3.6 GHz), the S21 parameter at 3.3 GHz is achieved
(−0.87 dB), while the S31 parameter at 3.6 GHz is achieved (−0.78 dB); therefore, the
insertion loss in higher bands is better than 0.87 dB.

In the lower bands (1.7 GHz and 1.9 GHz), the S11 parameter for these two frequencies
is achieved (−23.3 dB and −21.1 dB, respectively); therefore, the return loss in lower bands
is better than 21 dB. In the higher bands (3.3 GHz and 3.6 GHz), the S11 parameter for these
two frequencies is achieved (−25.64 dB and −25.67 dB, respectively); therefore, the return
loss in higher bands is better than 25 dB.
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Table 1. Specifications of the proposed diplexer.

Parameter Unit Lower Bands Higher Bands

Frequency GHz 1.7/1.9 3.3/3.6

Insertion loss dB 0.55 Better than 0.87

Return loss dB Better than 21 Better than 25

Isolation dB Better than 30 Better than 31
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In the lower bands (1.7 GHz and 1.9 GHz), the S23 parameter for these two frequencies
is achieved (−30.83 dB and −30.04 dB, respectively); therefore, the isolation in lower bands
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is better 30 dB. In the higher bands (3.3 GHz and 3.6 GHz), the S23 parameter for these two
frequencies is achieved (−31.32 dB and −36.1 dB, respectively); therefore, the isolation in
higher bands is better than 31 dB.

The surface current distributions in the proposed quad-band diplexer are demon-
strated in Figure 15a–d. The proposed diplexer correctly works at four frequency bands
of 1.7/1.9/3.3/3.6 GHz. As per the results shown in Figure 15a,c, the currents are cor-
rectly distributed uniformly at the port2 at the 1.7 GHz and 3.3 GHz frequencies and
show that the currents have not reached the port3. Additionally, as seen in Figure 15b,d,
the results show that the currents are correctly distributed uniformly at the port3 at the
1.9 GHz and 3.6 GHz frequencies and show that the currents have not reached the port2.
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Figure 15. Surface current distribution in the proposed diplexer at the frequencies of: (a) 1.7 GHz, first
frequency band in port2; (b) 1.9 GHz, second frequency band in port3; (c) 3.3 GHz, third frequency
band in port2; and (d) 3.6 GHz, fourth frequency band in port3. The maximum value of magnetic
intensity is 1 A/M in all of cases.

The proposed diplexer has good features, where the S-parameters of the proposed
device at the four operating frequencies are listed in Table 2.

A performance comparison between the designed diplexer with the previous reported
diplexers is listed in Table 3. As seen in this table, most of the reported works focus
on a dual-band diplexer, but the proposed diplexer operates at four frequencies. The
proposed quad-channel diplexer shows good performance, compared to the reported
works. The designed diplexer has the smallest size and lowest ILs, as compared with other
reported works.
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Table 2. Scattering parameters of the designed device.

S-Parameters
(dB)

Frequency (GHz)

1.7 1.9 3.3 3.6

S11 −23.30 −21.1 −25.64 −25.67
S12 −0.55 −30.63 −0.87 −35.93
S13 −29.44 −0.55 −30.20 −0.78
S23 −30.83 −30.04 −31.32 −36.10

Table 3. Comparison between the designed devices with the previous diplexers.

Ref.

Lower Band (1)
(dB)

Higher Band (1)
(dB)

Lower Band (1)
(dB)

Higher Band (1)
(dB)

Lower Band (1)
(dB)

Higher Band (1)
(dB)

Lower Band (2)
(GHz)

Higher Band (2)
(GHz) Size

IL1 IL2 IL3 IL4 IRL1 IRL2 IRL3 IRL4 I1 I2 I3 I4 f1 f2 f3 f4 mm2 λg2

This work 0.53 0.55 0.87 0.78 23 21 25 25 30 30 31 36 1.7 1.9 3.3 3.6 360.64 0.0233
[37] 0.8 1 0.7 1.5 24 21 23 22 50 30 45 30 1.5 2 2.4 3.5 1456 0.078
[38] 1.55 - 1.70 - 21 - 31 - 45 - 41 - 1.8 - 2.2 - 923.4 0.0667
[39] 2.2 - 2.1 - 27 - 26 - 30 - 30 - 1.82 - 2.41 - 859.32 0.0646
[40] 1.25 - 1.48 - 25 - 14 - 35 - 30 - 2.16 - 2.91 - 256 0.470
[41] 1.34 - 0.95 - 22 - 21 - 24 - 22 - 1.81 - 2.44 - 1040 0.179
[42] 2.1 - 2.1 - 20 - 20 - 20 - 20 - 1.75 - 1.85 - 918 0.0705
[43] 0.6 - 0.9 - 11 - 12 - 13 - 23 - 2.6 - 6 - 573.11 0.0809
[44] 1.5 - 1.3 - 21 - 21 - 31 - 35 - 2.34 - 2.59 - 816 0.1019

The parameter of ILi represents insertion loss, IRLi corresponds to input return loss, and Ii represents isolation.

5. Conclusions

In this paper, a compact quad-channel diplexer is designed, simulated and fabricated.
The proposed structure is composed of two BPFs. In the proposed design, triangular loop
and rectangular loop resonators are used together in order to reduce the circuit size and
optimize the specifications of the proposed circuit. The proposed diplexer operates correctly
at 1.7 GHz, 1.9 GHz, 3.3 GHz, and 3.6 GHz frequencies. The measured ILs are better than
0.8 dB, and the RLs are better than 20 dB at the four operating frequencies. Moreover,
better than 30 dB ports isolation is obtained in the whole frequency band. With these
specifications, the proposed diplexer can be useful for L band and S band applications.
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