Particle-Particle Collective Excitations of Sn isotopes

Taqi, Ali H. and Saber, Fahema A. (2023) Particle-Particle Collective Excitations of Sn isotopes. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11 (2). pp. 38-42. ISSN 2410-9355

[img] Text (Research Article)
ARO.11153.VOL11.NO2.2023.ISSUE21-PP38-42.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (714kB)
Official URL: http://dx.doi.org/10.14500/aro.11153

Abstract

In this paper, energy-level schemes and reduced electric transition strengths of neutron-rich Tin isotopes 102, 110, 116, 120, 122Sn (Z=50) are studied using collective models, that is, particle-particle Tamm-Dancoff Approximation and particle-particle Random Phase Approximation. According to these models, the excited states of closed-core A+2 systems with multipolarity J and isospin T can be described as a linear combination of particle-particle pairs. In our investigation, the low-lying states of the investigated isotopes 102, 110, 116, 120, 122Sn are described by acting two-particle operators on a correlated core 100Sn, 108Sn, 114Sn, 118Sn, and 120Sn, respectively. The Hamiltonian is diagonalized within the model space include {1g7/2, 2d5/2, 2d3/2, 3s1/2 and 1h11/2} orbits, using the matrix elements of neutron-neutron interaction and modified surface delta interaction. The calculated values are checked by using the resultant eigenvalues and eigenvectors to calculate the excitation energies and reduced electric transition strengths. Our calculated results are compared to the available experimental data, and these comparisons led to reasonable agreements. Effective charges are also used to account for the core polarization effect.

Item Type: Article
Additional Information: Al-Attiah, K.H.H., Majeed, F.A., and Al-Kawwaz, T.J., 2013. Calculations of even-even 100-108Sn isotopes using shell model in the vicinity of 100Sn. Journal of Babylon University/Pure and Applied Sciences, 21(8), pp.2831-2836. Bhatt, K.H., Nestor C.W. Jr., and Raman, S., 1992. Do nucleons in abnormal-parity states contribute to deformation. Physical Review C, Nuclear Physics, 46(1), pp.164-180. DOI: https://doi.org/10.1103/PhysRevC.46.164 Brussaard, P.J., and Glaudemans, P.W.M., 1977. Shell Model Applications in Nuclear Spectroscopy. North-Holland Publishing Company, Amsterdam. Covello, A., Andreozzi, F., Coraggio, L., Gargano, A., Kuo, T.T.S., and Porrino, A., 1997. Nuclear structure calculations with realistic effective interactions. Progress in Particle and Nuclear Physics, 38, pp.165-172. DOI: https://doi.org/10.1016/S0146-6410(97)00023-9 Covello, A., Coraggio, L., Gargano, A., and Itaco, N., 2011. Shell-model study of exotic Sn isotopes with a realistic effective interaction. Journal of Physics Conference Series, 267, p.012019. DOI: https://doi.org/10.1088/1742-6596/267/1/012019 Dikmen, E., 2009. Shell model description of neutron-deficient Sn isotopes. Communications in Theoretical Physics, 51(5), p.899. DOI: https://doi.org/10.1088/0253-6102/51/5/28 Elliott, J.P., and Lane, A.M., 1954, Evidence for two-body spin-orbit forces in nuclei. Physical Review, 96(4), p.1160. DOI: https://doi.org/10.1103/PhysRev.96.1160 Engeland, T., Hjorth-Jensen, M., Holt, A., and Osnes, E., 1995. Large shell model calculations with realistic effective interaction. Physica Scripta, 1995(T56), p.58. DOI: https://doi.org/10.1088/0031-8949/1995/T56/009 Hasan, A.K., Obeed, F.H., and Rahim, A.N., 2020. Positive parity levels of 21,23Na isotopes by using the nuclear shell model. Ukrainian Journal of Physics, 65(1), p.3. DOI: https://doi.org/10.15407/ujpe65.1.3 Haxel, O., Jensen, J.H.D., and Suess H.E., 1949. On the magic numbers in nuclear structure. Physical Review, 75(11), p.1766. DOI: https://doi.org/10.1103/PhysRev.75.1766.2 Heyde, K.L.G., 1994. The Nuclear Shell Model. Springer-Verlag, Berlin, Heidelderg. DOI: https://doi.org/10.1007/978-3-642-79052-2 Jassim, K.S., 2013. Nuclear structure of 104,106,108Sn isotopes using the nushell computer code. Chinese Journal of Physics, 51(3), p.441. Majeed, F.A., and Obaid, S.M., 2016. Large-scale shell model calculations of 134,136Sn, 134,136Te around doubly-magic 132Sn. International Journal of Scientific and Technology Research, 5(4), p.106. Mayer, M.G., 1949. On closed shells in nuclei. Physical Review, 75(12), p.1969.National Nuclear Data Center. Available from: https://www.nndc.bnl.gov [Last accessed on 2023 Feb 01]. DOI: https://doi.org/10.1103/PhysRev.75.1969 Nichols, A.J., 2014. Gamma-ray Spectroscopy and Lifetime Measurements of Nuclei in the A=70, N =Z Region, PhD Thesis. University of York, United Kingdom. Obeed, F.H., and Abed, B.S., 2020. Study of energy spectrum of 116Sn and 116Te nuclei by using surface delta and modified surface delta interactions. Journal of Physics Conference Series, 1664, p.012145. DOI: https://doi.org/10.1088/1742-6596/1664/1/012145 Ring, P., and Schuck, P., 1980. The Nuclear Many-body Problem. 1st ed., Springer-Verlag, New York. Rowe, D.J., 1970. Nuclear Collective Motion: Models and Theory. Butler and Tanner Ltd., London. Schubart, R., Grawe, H., Heese, J., Kluge, H., Maier, K.H., and Schramm, M., 1995. Shell model structure at 100Sn-the nuclides 98Ag, 103In, and 104, 105Sn. Zeitschrift Für Physik a Hadrons and Nuclei, 352, pp.373-390. DOI: https://doi.org/10.1007/BF01299755 Sorkin, O., 2014. Shell evolutions and nuclear forces. EPJ Web of Conferences, 66, p.01016. DOI: https://doi.org/10.1051/epjconf/20146601016 Tajima, N., and Suzuki, N., 2001. Prolate dominance of nuclear shape caused by a strong interference between the effects of spin-orbit and l2 terms of the Nilsson potential. Physical Review C, 64, p.037301. DOI: https://doi.org/10.1103/PhysRevC.64.037301 Taqi, A.H., 2007. The electroexcitation of low-lying, collective, positive parity, T=1 states in 18O, based on the particle-particle random phase approximation. Chinese Journal of Physics, 45(5), p.530. Taqi, A.H., 2013. Particle-particle Tamm-Dancoff approximation and particle-particle randam phase approximation calculations for 18O and 18F nuclei. Pramana Journal of Physics, 80(2), pp.355-360. DOI: https://doi.org/10.1007/s12043-012-0468-1 Taqi, A.H., 2016. A visual Fortran 90 program for the two-particle or two-hole excitations of nuclei: The PPRPA program. SoftwareX, 5, pp.51-61. DOI: https://doi.org/10.1016/j.softx.2016.04.003 Taqi, A.H., Rasheed, A.A., and Amin, S.H., 2010. Particle-particle and hole-hole random phase approximation calculations for 42Ca and 38Ca nuclei. Acta Physica Polonica B, 41(6), p.1327. Trivedi, T., Srivastava, P.C., Negi, D., and Mehrotra, I., 2012. Shell model description of 102-108Sn isotopes. International Journal of Modern Physics E, 21(4), p.1250049. DOI: https://doi.org/10.1142/S0218301312500498
Uncontrolled Keywords: Collective excitations, Energy-level schemes, Particle-particle Random Phase Approximation, Particle-particle Tamm-Dancoff Approximation
Subjects: Q Science > QC Physics
Divisions: ARO-The Scientific Journal of Koya University > VOL 11, NO 2 (2023)
Depositing User: Dr Salah Ismaeel Yahya
Date Deposited: 04 Sep 2023 09:36
Last Modified: 04 Sep 2023 09:36
URI: http://eprints.koyauniversity.org/id/eprint/390

Actions (login required)

View Item View Item