Natural Dye of Beetroot

Tahir, Tara F. and Aziz, Kurdistan F. and Kokhasmail, Dashne M. (2023) Natural Dye of Beetroot. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11 (2). pp. 59-64. ISSN 2410-9355

[img] Text (Research Article)
ARO.11286.VOL11.NO2.2023.ISSUE21-PP59-64.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (963kB)
Official URL: http://dx.doi.org/10.14500/aro.11286

Abstract

In this study, a simple and indirect spectrophotometric method for the quantification of atenolol in pharmaceutical formulations, utilizing a natural food dye extracted from red beet root, is presented. The process involves the oxidation of atenolol in a 1 mol/LHCl acidic medium, using an excess of potassium persulfate. Subsequently, the resulting tablet solution is employed to fade the red beetroot dye, and the solution is measured spectrophotometrically. The optimized reaction conditions consist of a 16 µg/mL atenolol solution, 2.1 mL (100 µg/mL) of potassium persulfate, and 5 mL (100 µg/mL) of red beetroot dye. Spectrophotometric measurements were performed at 535 nm, and the linear range for quantification was found to be 4–22 µg/mL (R2 = 0.9987). The method exhibited a limit of detection of 0.01 µg/mL. Notably, the proposed method was successfully applied to analyze various commercial brands of pharmaceutical formulations; yielding results consistent with those obtained using the pharmacopeia method. This research offers a valuable and accessible technique for atenolol quantification, demonstrating potential significance in pharmaceutical analysis and quality control processes.

Item Type: Article
Additional Information: Abdelrahman, A.H., Abdelrahman, M.A., and Elbadawy, M.K., 2013. Possibility of using the beet dyes as a laser gain medium. Natural Science, 5(11), pp.1183-1188. DOI: https://doi.org/10.4236/ns.2013.511144 Al-Ghannam, S.M., 2006. A simple spectrophotometric method for the determination of beta-blockers in dosage forms. Journal of Pharmaceutical and Biomedical Analysis, 40(1), pp.151-156. DOI: https://doi.org/10.1016/j.jpba.2001.12.001 Al-Ghannam, S.M., and Belal, F., 2002. Kinetic spectrophotometric determination of atenolol in dosage forms. Journal of AOAC International, 85(4), pp.817-823. DOI: https://doi.org/10.1093/jaoac/85.4.817 Amin, A.S., Ragab, G.H., and Saleh, H., 2002. Colorimetric determination of beta-blockers in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 30(4), pp.1347-1353. DOI: https://doi.org/10.1016/S0731-7085(02)00205-4 Anastas, P.T., 1999. Green chemistry and the role of analytical methodology development. Critical Reviews in Analytical Chemistry, 29(3), pp.167-175. DOI: https://doi.org/10.1080/10408349891199356 Antakli, S., Nejem, L., and Joumaa, M.A., 2020. Determination of atenolol in tablet formulation by analytical spectrophotometry. Research Journal of Pharmacy and Technology, 13(2), pp.609-614. DOI: https://doi.org/10.5958/0974-360X.2020.00115.8 Argekar, A.P., and Powar, S.G., 2000. Simultaneous determination of atenolol and amlodipine in tablets by high-performance thin-layer chromatography. Journal of Pharmaceutical and Biomedical Analysis, 21(6), pp.1137-1142. DOI: https://doi.org/10.1016/S0731-7085(99)00210-1 Basima, A.A.S., Afyaa, M.Y., and Najih, H.S., 2022. Visible spectrophotometric method for quantitative estimation of atenolol drug using cerium (III and IV). AIP Conference Proceedings, 2660(1), p.20097. Bonato, P.S., and Briguenti, A.C.C., 2005. Quantitative analysis of beta-blockers in pharmaceutical preparations by capillary electrophoresis. Drug Development and Industrial Pharmacy, 31(2), pp.209-214. DOI: https://doi.org/10.1081/DDC-200047809 Ferraro, M.C.F., Castellano, P.M., and Kaufman, T.S., 2004. Chemometric determination of amiloride hydrochloride, atenolol, hydrochlorothiazide and timolol maleate in synthetic mixtures and pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 34(2), pp.305-314. DOI: https://doi.org/10.1016/S0731-7085(03)00521-1 Gotardo, M.A., Sequinel, R., Pezza, L., and Pezza, H.R., 2008. Determination of atenolol in pharmaceutical formulations by diffuse reflectance spectroscopy. Ecletica Quimica, 33(4), pp.7-12. DOI: https://doi.org/10.1590/S0100-46702008000400001 Goyal, R.N., and Singh, S.P., 2006. Voltammetric determination of atenolol at C60-modified glassy carbon electrodes. Talanta, 69(4), pp.932-937. DOI: https://doi.org/10.1016/j.talanta.2005.11.041 Goyal, R.N., Gupta, V.K., Oyama, M., and Bachheti, N., 2006. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochemistry Communications, 8(1), pp.65-70. DOI: https://doi.org/10.1016/j.elecom.2005.10.011 Gülcü, A., Yücesoy, C., and Serin, S., 2004. Spectrophotometric determination of some beta-blockers in dosage forms based on complex formation with Cu(II) and Co(II). Farmaco, 59(6), pp.487-492. DOI: https://doi.org/10.1016/j.farmac.2003.12.010 Hoffman, B.B., Hardman, J.G., Limbird, L.E., and Gilman, A.G, (eds)., 1987. Goodman and Goodman¥s. The Pharmacological Basis of Therapeutics. 10th ed., Vol. 10. MacGraw-Hill, Rio de Janeiro, pp.1011-1021. Hussin, S.H.S., 2022. Optical properties of beetroot dye and its different applications. bn AL-Haitham Journal For Pure and Applied Sciences, 35(2), pp.17-27. DOI: https://doi.org/10.30526/35.2.2722 Kokhasmail, D.M., Tahir, T.F., and Azeez, K.F., 2020. Spectrophotometric indirect determination of captopril through redox reaction with n-bromosuccinimide and RB dye in pharmaceutical products. ARO-The Scientific Journal, 8(2), pp.8-14. DOI: https://doi.org/10.14500/aro.10662 Meixner, T., Rennenberg, H., and Kuhn, A.J., 2002. Temperature effects on redox reactions of the nitrogen cycle: A review. European Journal of Soil Science, 53(4), pp.539-556. Nikolelis, D.P., Petropoulou, S.E., and Mitrokotsa, M.V., 2002. Aminisensor for the rapid screening of atenolol in pharmaceutical preparations based on surface stabilized bilayer lipid membranes with incorporated DNA. Bioelectrochemistry, 58(1), pp.107-112. DOI: https://doi.org/10.1016/S1567-5394(02)00121-4 Nisa, A.U., Hina, S., Kalim, I., Saeed, M.K., Ahmad, I., Zahra, N., Mazhar, S., Masood, S., Ashraf, M., Syed, Q.A., and Shad, R., 2021. Quality assessment and application of red natural dye from beetroot (Beta vulgaris). Pakistan Journal of Agricultural Research, 34(3), pp.552-558. DOI: https://doi.org/10.17582/journal.pjar/2021/34.3.552.558 Pastore, K., and Capriglione, L., 1998. O feitiço do corpo ideal. Revista Veja, 1532, pp.62-69. Pezza, L., Tubino, M., Melios, C.B., and Pezza, H.R., 2000. Rapid spot test analysis for the detection of dipyrone in pharmaceutical preparations. Analytical Sciences, 16(3), pp.313-315. DOI: https://doi.org/10.2116/analsci.16.313 Prashanth, K.N., and Basavaiah, K., 2012. Simple, sensitive and selective spectrophotometric methods for the determination of atenolol in pharmaceuticals through charge transfer complex formation reaction. Acta Poloniae Pharmaceutica and Drug Research, 69(2), pp.213-223. Saad, S.M.H., Abou-Sekkina, M.M., El-Ries, M.A., and Wassel, A.A., 2003. Polymeric matrix membrane sensors for sensitive potentiometric determination of some beta-blockers in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 32(1), pp.175-180. DOI: https://doi.org/10.1016/S0731-7085(03)00015-3 Saleem, B.A.A., 2019. Spectrophotometric determination of atenolol using indigo carmine dye. Kirkuk University Journal for Scientific Studies, 14(2), pp.15-39. DOI: https://doi.org/10.32894/kujss.2019.14.2.2 Salem, H., 2002. Spectrophotometric determination of beta-adrenergic blocking agents in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 29(3), pp.527-538. DOI: https://doi.org/10.1016/S0731-7085(02)00100-0 Shadjou, N., Hasanzadeh, M., Saghatforoush, L., Mehdizadeh, R., and Jouyban, A., 2011. Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles. Electrochimica Acta, 58, pp 336-347. DOI: https://doi.org/10.1016/j.electacta.2011.09.055 Shamsipur, M., and Jalali, F., 2005. Preparation of an atenolol ion‐selective electrode and its application to pharmaceutical analysis. Analytical Letters, 38(3), pp.401-410. DOI: https://doi.org/10.1081/AL-200047762 Thankappan, A., Thomas, S., and Nampoori, V.P.N., 2012. Effect of betanin natural dye extracted from red beet root on the nonlinear optical properties ZnO nanoplates embedded in polymeric matrices. Journal of Applied Physics, 112(12), pp.104-123. DOI: https://doi.org/10.1063/1.4768930 Vidotti, E.C., Costa, W.F., and Oliveira, C.C., 2006. Development of a green chromatographic method for determination of colorants in food samples. Talanta, 68(3), pp.516-521. DOI: https://doi.org/10.1016/j.talanta.2005.01.059 Wati, E.J., Chandra, B., and Rivai, H., 2020. Overview of the analysis methods of atenolol in pharmaceutical preparations and biological matrices during 2000-2020. Indian Journal of Preventive and Social Medicine, 5(11), pp.13-23. DOI: https://doi.org/10.47760/ijpsm.2020.v05i11.002 Weich, A., De Oliveira, D.C., De Melo, J., Goebel, K., and Rolim, C.M.B., 2007. Validation of UV spectrophotometric and HPLC methods for quantitative determination of atenolol in pharmaceutical preparations. Latin American Journal of Pharmacy, 26(5), pp.765-770
Uncontrolled Keywords: Atenolol, Beetroot dye, Indirect measurement, Redox reaction, Spectrophotometric method
Subjects: Q Science > QR Microbiology
Divisions: ARO-The Scientific Journal of Koya University > VOL 11, NO 2 (2023)
Depositing User: Dr Salah Ismaeel Yahya
Date Deposited: 25 Sep 2023 09:45
Last Modified: 25 Sep 2023 09:45
URI: http://eprints.koyauniversity.org/id/eprint/409

Actions (login required)

View Item View Item