Peperites

Qaradaghi, Jabbar M. A. and Merza, Tola A. (2023) Peperites. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11 (2). pp. 157-179. ISSN 2410-9355

[img] Text (Research Article)
ARO.11363-VOL11.NO2.2023.ISSUE21-PP157-179.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (15MB)
Official URL: http://dx.doi.org/10.14500/aro.11363

Abstract

Peperites are volcanosedimentary materials generated by the mingling of magma and unconsolidated wet sediments. They have unique insights into submarine volcanisms and the tectonic environments where they form. For the 1st time, the authors identified two types of peperites (blocky and fluidal) hosted by micritic limestone rocks in the Walash Volcanosedimentary Group of the Mawat area, Kurdistan Region-Iraq. They are designated as peperitic facies one and two (PF1 and PF2) and consist of black basaltic rocks mixed with chocolate-brown micritic limestone rocks. Their abundance demonstrates the contemporaneity of deep marine sediment deposition and submarine volcanism during Walash’s nascent arc. Despite hydrothermal alteration, the basaltic rocks retained their magmatic textures. Basaltic rocks comprise mainly albite, anorthite, diopside, hematite, and alkali-feldspar. Calcite dominates micritic limestone rocks, while quartz is minor. Based on geochemical data, igneous sections are basaltic rocks with tholeiitic series that are strongly enriched in Light Rare Earth Elements with low concentration ratios of (La/Yb) and (Sr/Y), indicating geochemical affinity to normal island arc basalt with a primitive arc signature. Furthermore, their formation is thought to be caused by partial melting of subducted slabs deep within 30 km and the associated derived fluids above the subducted slab. Thirteen species of planktonic foraminifera (Morozovella) are identified through paleontological research and biostratigraphy. Using these various tools lead the authors to illustrate the tectonic setting of the formation of peperitic rocks in arc fronts of the subducted Walash arc during the Middle to Late Paleocene (60 Ma).

Item Type: Article
Additional Information: Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., and Wortel, R., 2011. Zagros orogeny: A subduction-dominated process. Geological Magazine, 148, pp.692-725. DOI: https://doi.org/10.1017/S001675681100046X Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304, pp.1-20. DOI: https://doi.org/10.2475/ajs.304.1.1 Al-Banna, N.Y., and Al-Mutwali, M.M., 2008. Microfacies and age determination of the sedimentary sequences within Walash volcano-sedimentary group, Mawat complex, Northeast Iraq. Tikrit Journal of Pure Science, 13, pp.46-52. DOI: https://doi.org/10.2113/geoarabia130139 Al-Mehaidi, H., 1974. Report on Geological Investigation of Mawat-Chowarta Area, NE Iraq. Ali, S.A., and Aswad, K.J., 2013. SHRIMP U-Pb dating of zircon inheritance in Walash arcvolcanic rocks (paleogene age), Zagros suture zone, NE Iraq: New insights into crustal contributions to trachytic andesite generation. Iraqi National Journal of Earth Sciences, 13, pp.45-58. Ali, S.A., 2012. Geochemistry and Geochronology of Tethyan-arc Related Igneous rocks, NE Iraq, Doctor of Philosophy Thesis, School of Earth and Environmental Sciences. University of Wollongong. Available from: https://ro.uow.edu.au/theses/3478 Ali, S.A., Buckman, S., Aswad, K.J., Jones, B.G., Ismail, S.A., and Nutman, A.P., 2013. The tectonic evolution of a Neo‐Tethyan (eocene-oligocene) island‐arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros suture zone. Island Arc, 22, pp.104-125. Ali, S.A., Sleabi, R.S., Talabani, M.J.A., and Jones, B.G., 2017. Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone. Journal of African Earth Sciences, 125, pp.73-87. DOI: https://doi.org/10.1016/j.jafrearsci.2016.10.011 Al-Mehaidi, H., 1974. Report on Geological Investigation of Mawat-Chowarta area, NE Iraq. Al-Qayim, B., Ghafor, I., and Jaff, R., 2012. Contribution to the stratigraphy of the Walash Group, Sulaimani area, Kurdistan, Iraq. Arabian Journal of Geosciences, 7, pp.181-192. Al-Qayim, B., Ghafor, I., and Jaff, R., 2014. Contribution to the stratigraphy of the Walash Group, Sulaimani area, Kurdistan, Iraq. Arabian Journal of Geosciences, 7, pp.181-192. DOI: https://doi.org/10.1007/s12517-012-0809-x Aragón, E., Pinotti, L., Fernando, D., Castro, A., Rabbia, O., Coniglio, J., Demartis, M., Hernando, I., Cavarozzi, C.E., and Aguilera, Y.E., 2013. The Farallon-Aluk ridge collision with South America: Implications for the geochemical changes of slab window magmas from fore-to back-arc. Geoscience Frontiers, 4, pp.377-388. DOI: https://doi.org/10.1016/j.gsf.2012.12.004 Asvesta, A., and Dimitriadis, S., 2013. Magma-sediment interaction during the emplacement of syn-sedimentary silicic and mafic intrusions and lavas into and onto Triassic strata (Circum-Rhodope Belt, Northern Greece). Geologica Carpathica, 64, pp.181-194. DOI: https://doi.org/10.2478/geoca-2013-0013 Aswad, K.J., Aziz, N.R., and Koyi, H.A., 2011. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148(5-6), pp.802-818. DOI: https://doi.org/10.1017/S0016756811000422 Aswad, K.J.A., Al-Samman, A.H.M., Aziz, N.R.H., and Koyi, A.M.A., 2013. The geochronology and petrogenesis of Walash volcanic rocks, Mawat nappes: Constraints on the evolution of the Northwestern Zagros suture zone, Kurdistan Region, Iraq. Arabian Journal of Geosciences, 7, pp.1403-1432. DOI: https://doi.org/10.1007/s12517-013-0873-x Austermann, J., and Iaffaldano, G., 2013. The role of the Zagros orogeny in slowing down Arabia‐Eurasia convergence since~5 Ma. Tectonics, 32, pp.351-363. DOI: https://doi.org/10.1002/tect.20027 Aziz, N.R.H., 1986. Petrochemistry, Petrogenesis and Tectonic Setting of Spilitic Rocks of Walash Volcanic Sedimentary Group in Qala Diza Area, NE Iraq. MSc Thesis, Mosul University, Iraq, p.164. (in Arabic). Aziz, N.R., Aswad, K.J., and Koyi, H.A., 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148(5-6), pp.819-837. DOI: https://doi.org/10.1017/S0016756811000409 Bann, G.R., Jones, B.G., and Graham, I.T., 2022. A mid-Permian mafic intrusion into wet marine sediments of the lower Shoalhaven Group and its significance in the volcanic history of the Southern Sydney Basin. Australian Journal of Earth Sciences, 69, pp.1-17. DOI: https://doi.org/10.1080/08120099.2022.2075464 Barnes, S.J., and Arndt, N.T., 2019. Distribution and geochemistry of komatiites and basalts through the archean. In: Earth’s Oldest Rocks. Elsevier, Amsterdam.Barnes, S.J., and Van Kranendonk, M.J., 2014. Archean andesites in the East Yilgarn craton, Australia: Products of plume-crust interaction? Lithosphere, 6, pp.80-92. DOI: https://doi.org/10.1130/L356.1 Beresford, S., Cas, R., Lahaye, Y., and Jane, M., 2002. Facies architecture of an Archean komatiite-hosted Ni-sulphide ore deposit, Victor, Kambalda, Western Australia: Implications for komatiite lava emplacement. Journal of Volcanology and Geothermal Research, 118, pp.57-75. DOI: https://doi.org/10.1016/S0377-0273(02)00250-0 Berggren, W.A., Pearson, P.N., Huber, B., and Wade, B.S., 2006. Taxonomy, Biostratigraphy and Phylogeny of Eocene Acarinina. Cushman Foundation for Foraminiferal Research, New York. Biske, N., Romashkin, A., and Rychanchik, D., 2004. Proterozoic peperite-structures of Lebestchina. In: Geology and Mineral Deposits, Proceedings of the Institute of Geology. Vol. 7. Karelian Research Centre of RAS, Petrozavodsk, pp.193-199. Blow, W.H., 1979. The Cainozoic Globigerinida. Atlas. Brill Archive, Leiden.Bolton, C., 1958. The Geology of the Ranya Area. Manuscript Report No. 271. GEOSURV, Baghdad. DOI: https://doi.org/10.1163/9789004611764 Boudagher-Fadel, M.K., 2015. Biostratigraphic and Geological Significance of Planktonic Foraminifera. Newnes, Oxford.Boulter, C., 1993. High-level peperitic sills at Rio Tinto, Spain: Implications for stratigraphy and mineralization. Transactions of the Institution of Mining and Metallurgy. Section B. Applied Earth Science, 102, pp.30-38. DOI: https://doi.org/10.2307/j.ctt1g69xwk Branney, M.J., Bonnichsen, B., Andrews, G.D.M., Ellis, B., Barry, T.L., and Mccurry, M., 2008. ‘Snake River (SR)-type’ volcanism at the yellowstone hotspot track: Distinctive products from unusual, high-temperature silicic super-eruptions. Bulletin of Volcanology, 70, pp.293-314. DOI: https://doi.org/10.1007/s00445-007-0140-7 Bronnimann, P., 1952. Trinidad paleocene and lower eocene globigerinidae. Bulletins of American Paleontology, 34, p.134. Brooks, E.R., 1995. Paleozoic fluidization, folding, and peperite formation, Northern Sierra Nevada, California. Canadian Journal of Earth Sciences, 32, pp.314-324. DOI: https://doi.org/10.1139/e95-026 Brown, D.J., and Bell, B.R., 2007. How do you grade peperites? Journal of Volcanology and Geothermal Research, 159, pp.409-420. DOI: https://doi.org/10.1016/j.jvolgeores.2006.08.008 Busby-Spera, C.J., and White, J.D., 1987. Variation in peperite textures associated with differing host-sediment properties. Bulletin of Volcanology, 49, pp.765-776. DOI: https://doi.org/10.1007/BF01079827 Busby, C.J., Hagan, J.C., Putirka, K., Pluhar, C.J., Gans, P.B., Wagner, D.L., Rood, D., Deoreo, S.B., and Skilling, I., 2008. The Ancestral Cascades Arc: Cenozoic Evolution of the Central Sierra Nevada (California) and the Birth of the New Plate Boundary. The Geological Society of America, Boulder. DOI: https://doi.org/10.1130/2008.2438(12) Cas, R.A.F., Edgar, C., Allen, R.L., Bull, S., Clifford, B.A., Giordano, G., and Wright, J.V., 2001. Influence of magmatism and tectonics on sedimentation in an extensional lake basin: The upper devonian bunga beds, boyd volcanic complex, South‐Eastern Australia. Volcaniclastic Sedimentation in Lacustrine Settings. Wiley-Blackwell, Hoboken, pp.81-108. DOI: https://doi.org/10.1002/9781444304251.ch5 Chen, S., Guo, Z.J., Pe-Piper, G., and Zhu, B.B., 2013. Late paleozoic peperites in West Junggar, China, and how they constrain regional tectonic and palaeoenvironmental settings. Gondwana Research, 23, pp.666-681. DOI: https://doi.org/10.1016/j.gr.2012.04.012 Chen, S., Guo, Z., Qi, J., Zhang, Y., Pe-Piper, G., and Piper, D.J.W., 2016. Early permian volcano-sedimentary successions, Beishan, NW China: Peperites demonstrate an evolving rift basin. Journal of Volcanology and Geothermal Research, 309, pp.31-44. DOI: https://doi.org/10.1016/j.jvolgeores.2015.11.004 Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J., 2021. The ICS international chronostratigraphic chart. Episodes, 36, pp.199-204. DOI: https://doi.org/10.18814/epiiugs/2013/v36i3/002 Condie, K.C., 1989. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 23, pp.1-18. DOI: https://doi.org/10.1016/0024-4937(89)90020-0 Condie, K.C., 2005. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos, 79, pp.491-504. DOI: https://doi.org/10.1016/j.lithos.2004.09.014 Constenius, K.N., Mcgimsey, R.G., Valencia, V., Ibanex-Mejia, M., and Domanik, K.J., 2017. Peperite in the Purcell Lava and a Revised Age of the Upper Proterozoic Belt-Purcell Supergroup. Geological Society of America Abstracts with Programs, Boulder, pp.1-7. DOI: https://doi.org/10.1130/abs/2017RM-292776 Cushman, J.A., 1925. Some new foraminifera from the Velasco Shale of Mexico. Contributions from the Cushman Laboratory for Foraminiferal Research, 1, pp.18-23. Cushman, J.A., 1942. Eocene, midway, foraminifera from Soldado Rock, Trinidad. Contributions from the Cushman Laboratory for Foraminiferal Research, 18, pp.1-20. Dadd, K.A., and Van Wagoner, N.A., 2002. Magma composition and viscosity as controls on peperite texture: An example from Passamaquoddy Bay, Southeastern Canada. Journal of Volcanology and Geothermal Research, 114, pp.63-80. DOI: https://doi.org/10.1016/S0377-0273(01)00288-8 Defant, M.J., and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, pp.662-665. DOI: https://doi.org/10.1038/347662a0 Doyle, M.G., 2000. Clast shape and textural associations in peperite as a guide to hydromagmatic interactions: Upper permian basaltic and basaltic andesite examples from Kiama, Australia. Australian Journal of Earth Sciences, 47, pp.167-177. DOI: https://doi.org/10.1046/j.1440-0952.2000.00773.x El Desoky, H.M., and Shahin, T.M., 2020. Characteristics of lava-sediments interactions during emplacement of mid-tertiary volcanism, Northeastern Desert, Egypt: Field geology and geochemistry approach. Arabian Journal of Geosciences, 13, p.328. DOI: https://doi.org/10.1007/s12517-020-05310-0 Elias, Z., Sissakian, V.K., and Al-Ansari, N., 2018. New tectonic activity within Zagros-Taurus belt: A case study from North Iraq using region shuttle radar topography mission (SRTM). Journal of Earth Sciences and Geotechnical Engineering, 8, pp.51-63. Elliott, T., 2003. Tracers of the slab. In: Geophysical Monograph-American Geophysical Union. Vol. 138. American Geophysical Union, Washington, D.C., pp.23-46. DOI: https://doi.org/10.1029/138GM03 Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102, pp.14991-15019. DOI: https://doi.org/10.1029/97JB00788 English, J.M., Lunn, G.A., Ferreira, L., and Yacu, G., 2015. Geologic evolution of the Iraqi Zagros, and its influence on the distribution of hydrocarbons in the Kurdistan Region. AAPG Bulletin, 99, pp.231-272. DOI: https://doi.org/10.1306/06271413205 Erkül, F., Helvaci, C., and Sözbilir, H., 2006. Olivine basalt and trachyandesite peperites formed at the subsurface/surface interface of a semi-arid lake: An example from the early miocene bigadiç basin, Western Turkey. Journal of Volcanology and Geothermal Research, 149, pp.240-262. DOI: https://doi.org/10.1016/j.jvolgeores.2005.07.016 Famelli, N., Millett, J.M., Hole, M.J., Lima, E.F., de O.Carmo, I., Jerram, D.A., Jolley, D.W., Pugsley, J.H., and Howell, J.A., 2021. Characterizing the nature and importance of lava-sediment interactions with the aid of field outcrop analogues. Journal of South American Earth Sciences, 108, p.103108. DOI: https://doi.org/10.1016/j.jsames.2020.103108 Fontboté, L., 2019. Volcanogenic Zn-Pb±Cu massive sulfide deposits in the upper cretaceous plutono-volcanic arc in central Peru. In: Proceedings of Proexplo 2019. Extended Abstracts, Peru. Goto, Y., and McPhie, J., 1996. A Miocene basanite peperitic dyke at stanley, Northwestern Tasmania, Australia. Journal of Volcanology and Geothermal Research, 74, pp.111-120. DOI: https://doi.org/10.1016/S0377-0273(96)00043-1 Haller, M., and Németh, K., 2009. Cenozoic diatremes in Chubut, Northern Patagonia, Argentina. In: 3ICM International Maar Conference, Malargüe, Argentina, Extended Abstract. Hanson, R.E., and Hargrove, U.S., 1999. Processes of magma/wet sediment interaction in a large-scale Jurassic andesitic peperite complex, northern Sierra Nevada, California. Bulletin of Volcanology, 60, pp.610-626. DOI: https://doi.org/10.1007/s004450050255 Hanson, R.E., and Wilson, T.J., 1993. Large-scale rhyolite peperites (Jurassic, Southern Chile). Journal of Volcanology and Geothermal Research, 54, pp.247-264. DOI: https://doi.org/10.1016/0377-0273(93)90066-Z Hanson, R.E., 1991. Quenching and hydroclastic disruption of andesitic to rhyolitic intrusions in a submarine Island-arc sequence, Northern Sierra Nevada, California. Geological Society of America Bulletin, 103, pp.804-816. DOI: https://doi.org/10.1130/0016-7606(1991)103<0804:QAHDOA>2.3.CO;2 Hastie, A.R., Kerr, A.C., Pearce, J.A., and Mitchell, S.F., 2007. Classification of altered volcanic Island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48, pp.2341-2357. DOI: https://doi.org/10.1093/petrology/egm062 Hibbard, M.J., 1995. Petrography to Petrogenesis. Macmillan College, London.Humphris, S.E., and Thompson, G., 1978. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochimica et Cosmochimica Acta, 42, pp.127-136. DOI: https://doi.org/10.1016/0016-7037(78)90222-3 Iacono Marziano, G., Gaillard, F., and Pichavant, M., 2008. Limestone assimilation by basaltic magmas: An experimental re-assessment and application to Italian volcanoes. Contributions to Mineralogy and Petrology, 155, pp.719-738. DOI: https://doi.org/10.1007/s00410-007-0267-8 Ikeda, Y., 1990. CeN/SrN/SmN: A trace element discriminant for basaltic rocks from different tectonomagmatic environments. Neues Jahrbuch für Mineralogie Monatshefte, 4, pp.145-158. Jassim, S.Z., and Goff, J.C., 2006. Geology of Iraq. DOLIN, Sro, Distributed by Geological Society of London, Burlington House. Karim, K.H., and Hamza, B.J., 2021. Relation between Walash Group and Kolosh Formation: A key to the stratigraphy of the Penjween area. In: The 1st International Conference for Natural Resources Research Center, Geo Iraq1, University of Tikrit, Tikrit City. Koshnaw, R.I., Horton, B.K., Stockli, D.F., Barber, D.E., Tamar-Agha, M.Y., and Kendall, J.J., 2017. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq. Tectonophysics, 694, pp.332-355. DOI: https://doi.org/10.1016/j.tecto.2016.11.016 Koyi, A.M.A., 2009. Sr-Nd isotopical significance of Walash volcanic rocks, Mawat area, NE Iraq. ZancoJournal of Pure and Applied Sciences, 21, pp.39-45. Krobicki M., 2018. The earliest Cretaceous (Berriasian) peperites in volcano-sedimentary units of the Ukrainian Carpathians. In: Šujan, M., Csibri, T., Kiss, P., and Rybár, S. (Eds.): Environmental, Structural and Stratigraphical Evolution of the Western Carpathians, Abstract Book, 11th ESSEWECA Conference, 29th– 30th November 2018, Bratislava, Slovakia, pp.52–53. Krobicki, M., Feldman-Olszewska, A., Hnylko, O., and Iwańczuk, J., 2019. Peperites and other volcano-sedimentary deposits (lowermost Cretaceous, Berriasian) of the Ukrainian Carpathians. Geologica Carpathica, 70, p.146. Lieu, W.K., and Stern, R.J., 2019. The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs. Geosphere, 15, pp.621-641. DOI: https://doi.org/10.1130/GES01667.1 Liu, S., Zhang, J., Li, Q., Zhang, L., Wang, W., and Yang, P., 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the paleoproterozoic lüliang complex and constraints on the evolution of the trans-North China orogen, North China craton. Precambrian Research, 222, pp.173-190. DOI: https://doi.org/10.1016/j.precamres.2011.07.006 Loeblich, A.R., and Tappan, H.N., 1957. Planktonic foraminifera of paleocene and early eocene age from the. Bulletin United States National Museum, 215, pp.173-198. Martin, L.T., 1943. Eocene Foraminifera from the Type Lodo Formation, Fresno County, California, Stanford University Press, Redwood City. Martin, U., and Németh, K., 2007. Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in mio/pliocene volcanic fields of Western Hungary. Journal of Volcanology and Geothermal Research, 159, pp.164-178. DOI: https://doi.org/10.1016/j.jvolgeores.2006.06.010 Mawson, J.F., White, J., and Palin, J.M., 2020. Contemporaneously emplaced submarine volcaniclastic deposits and pillow lavas from multiple sources in the Island arc brook street Terrane, Southland, New Zealand. New Zealand Journal of Geology and Geophysics, 63, pp.562-577. DOI: https://doi.org/10.1080/00288306.2020.1766518 McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Reviews in Mineralogy, 21, pp.169-200. DOI: https://doi.org/10.1515/9781501509032-010 Mcphie, J., 1993. The tennant creek porphyry revisited: A synsedimentary sill with peperite margins, early proterozoic, Northern Territory. Australian Journal of Earth Sciences, 40, pp.545-558. DOI: https://doi.org/10.1080/08120099308728103 Memtimin, M., Zhang, Y., Furnes, H., Pe‐Piper, G., Piper, D.J.W., and Guo, Z., 2020. Facies architecture of a subaqueous volcano-sedimentary succession on Bogda Mountains, NW China-evidence of extension in late carboniferous. Geological Journal, 55, pp.3097-3111. DOI: https://doi.org/10.1002/gj.3582 Mercurio, E.C., 2011. Processes, Products and Depositional Environments of Ice-Confined Basaltic Fissure Eruptions: A Case Study of the Sveifluhals Volcanic Complex, SW Iceland. University of Pittsburgh, Pittsburgh. Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274, pp.321-355. DOI: https://doi.org/10.2475/ajs.274.4.321 Mohammad, Y.O., Cornell, D.H., Qaradaghi, J.H., and Mohammad, F.O., 2014. Geochemistry and Ar-Ar muscovite ages of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: Implications for Arabia-Eurasia continental collision. Journal of Asian Earth Sciences, 86, pp.151-165. DOI: https://doi.org/10.1016/j.jseaes.2013.09.029 Morozova, V.G., 1939. K stratigrafii verkhnego mela i paleogena Embenskoi oblasti po faune foraminifer [On the stratigraphy of the upper cretaceous and paleogene of Emba region according to the foraminiferal fauna]. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Geologicheskii, 17, pp.59-86. Moulton, B.J.A., Fowler, A.D., Ayer, J.A., Berger, B.R., and Mercier-Langevin, P., 2011. Archean subqueous high-silica rhyolite coulées: Examples from the Kidd-Munro assemblage in the abitibi subprovince. Precambrian Research, 189, pp.389-403. DOI: https://doi.org/10.1016/j.precamres.2011.07.002 Mueller, W.U., Garde, A.A., and Stendal, H., 2000. Shallow-water, eruption-fed, mafic pyroclastic deposits along a paleoproterozoic coastline: Kangerluluk volcano-sedimentary sequence, southeast Greenland. Precambrian Research, 101, pp.163-192. DOI: https://doi.org/10.1016/S0301-9268(99)00087-X Nayudu, Y.R., 1971. Geologic implications of microfossils in submarine volcanics. Bulletin Volcanologique, 35, pp.402-423. DOI: https://doi.org/10.1007/BF02596964 Nemeth, K., Breitkreutz, C., and Wilke, H.G., 2004. Volcano-sedimentary Successions within an Intra-arc Related Jurassic Large Igneous Province (LIP): La Negra Formation, Northern Chile (a Preliminary Scientific Report on the Br 997/22-1 DFG Pilot Project). Nesbitt, H.W., and Young, G.M., 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, pp.715-717. DOI: https://doi.org/10.1038/299715a0 Nouri, F., Asahara, Y., Azizi, H., Yamamoto, K., and Tsuboi, M., 2017. Geochemistry and petrogenesis of the eocene back arc mafic rocks in the Zagros suture zone, Northern Noorabad, Western Iran. Geochemistry, 77, pp.517-533. DOI: https://doi.org/10.1016/j.chemer.2017.06.002 Olsson, R.K., Berggren, W.A., Hemleben, C., and Huber, B.T., 1999. Atlas of Paleocene Planktonic Foraminifera. Smithsonian Institution Press, Washington, D.C. DOI: https://doi.org/10.5479/si.00810266.85.1 Palinkaš, L.A., Bermanec, V., Šoštarić, S.B., Kolar-Jurkovšek, T., Palinkaš, S.S., Molnar, F., and Kniewald, G., 2008. Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia-Evidence of advanced rifting in the Tethyan domain. Journal of Volcanology and Geothermal Research, 178, pp.644-656. DOI: https://doi.org/10.1016/j.jvolgeores.2008.06.037 Parr, W.J., 1938. Upper eocene foraminifera from deep borings in King’s park, Perth, Western Australia. Journal of the Royal Society of Western Australia, 24, pp.69-101. Pearce, J.A., 1982. In: Thorpe, R.S., editor. En: Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, Hoboken.Pearce, J.A., and Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, pp.290-300. DOI: https://doi.org/10.1016/0012-821X(73)90129-5 Pearce, J.A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. Shiva Cheshire, UK, Cheshire. Pearce, J.A., 1996. A user’s guide to basalt discrimination diagrams. In: Trace element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Vol. 12. Geological Association of Canada, Short Course Notes, Canada, p.113. Pearce, J.A., van der Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W., and Parkinson, I.J., 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction. In: Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, TX, pp.623-659. DOI: https://doi.org/10.2973/odp.proc.sr.125.172.1992 Pearce, T.H., Gorman, B.E., and Birkett, T.C., 1977. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36, pp.121-132. DOI: https://doi.org/10.1016/0012-821X(77)90193-5 Perfit, M.R., Gust, D.A., Bence, A.E., Arculus, R.J., and Taylor, S.R., 1980. Chemical characteristics of island-arc basalts: Implications for mantle sources. Chemical Geology, 30, pp.227-256. DOI: https://doi.org/10.1016/0009-2541(80)90107-2 Philpotts, A.R., and Ague, J.J., 2022. Principles of Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/9781108631419 Rawlings, D.J., 1993. Mafic peperite from the gold creek Volcanics in the middle proterozoic McArthur Basin, Northern Territory. Australian Journal of Earth Sciences, 40, pp.109-113. DOI: https://doi.org/10.1080/08120099308728068 Rogers, G., and Hawkesworth, C.J., 1989. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91, pp.271-285. DOI: https://doi.org/10.1016/0012-821X(89)90003-4 Ross, P.S., and Bédard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Sciences, 46, pp.823-839. DOI: https://doi.org/10.1139/E09-054 Ryerson, F.J., and Watson, E.B., 1987. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters, 86, pp.225-239. DOI: https://doi.org/10.1016/0012-821X(87)90223-8 Saunders, A.D., and Tarney, J., 1979. The geochemistry of basalts from a back- arc spreading centre in the East Scotia Sea. Geochimica et Cosmochimica Acta, 43, pp.555-572. Scrope, G.P., 1827. Memoir on the Geology of Central France: Including the Volcanic Formations of Auvergne, the Velay, and the Vivarsais. Longman, Rees, Orme, Brown, and Green, London. Shuto, K., Nohara-Imanaka, R., Sato, M., Takahashi, T., Takazawa, E., Kawabata, H., Takanashi, K., Ban, M., Watanabe, N., and Fujibayashi, N., 2015. Across-arc variations in geochemistry of oligocene to quaternary basalts from the NE Japan arc: Constraints on source composition, mantle melting and slab input composition. Journal of Petrology, 56, pp.2257-2297. DOI: https://doi.org/10.1093/petrology/egv073 Sinha, K.K., Pandey, P., Bhairam, C.L., and Parihar, P.S., 2011. Peperite occurrence and its implications on origin and temporal development of the proterozoic Dhala Basin, Mohar area, Shivpuri district, Madhya Pradesh. Journal of the Geological Society of India, 77, pp.183-189. DOI: https://doi.org/10.1007/s12594-011-0022-7 Skilling, I.P., White, J.D.L., and Mcphie, J., 2002. Peperite: A review of magma-sediment mingling. Journal of Volcanology and Geothermal Research, 114, pp.1-17. DOI: https://doi.org/10.1016/S0377-0273(01)00278-5 Slovenec, D., Lugovic, B., and Vlahovic, I., 2010. Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW external-internal dinarides junction (Croatia). Geologica Carpathica, 61, pp.273-292. DOI: https://doi.org/10.2478/v10096-010-0016-1 Sohn, C., and Sohn, Y.K., 2019. Distinguishing between primary and secondary volcaniclastic deposits. Scientific Reports, 9, p.12425. DOI: https://doi.org/10.1038/s41598-019-48933-4 Squire, R.J., and Mcphie, J., 2002. Characteristics and origin of peperite involving coarse-grained host sediment. Journal of Volcanology and Geothermal Research, 114, pp.45-61. DOI: https://doi.org/10.1016/S0377-0273(01)00289-X Stern, R.J., 2010. The Anatomy and Ontogeny of Modern Intra-Oceanic Arc Systems. Vol. 338. Geological Society, London, Special Publications, London, pp.7-34. DOI: https://doi.org/10.1144/SP338.2 Sun, S.S., and McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Vol. 42. Geological Society, London, Special Publications, London, pp.313-345. DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19 Templeton, J.H., and Hanson, R.E., 2003. Jurassic submarine arc-apron deposits and associated Magma/Wet-sediment interaction, northern Sierra Nevada, California. Journal of Volcanology and Geothermal Research, 128, pp.299-326. DOI: https://doi.org/10.1016/S0377-0273(03)00197-5 Thompson, G., 1991. Metamorphic and hydrothermal processes: Basalt-seawater interactions. In: Oceanic Basalts. Springer, Berlin. DOI: https://doi.org/10.1007/978-94-011-3042-4_8 Toulmin, L.D., 1941. Eocene smaller foraminifera from the Salt Mountain Limestone of Alabama. Journal of Paleontology, 15, pp.567-611. Wade, B.S., Pearson, P.N., Berggren, W.A., and Pälike, H., 2011. Review and revision of cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104, pp.111-142. DOI: https://doi.org/10.1016/j.earscirev.2010.09.003 Waichel, B.L., de Lima, E.F., Sommer, C.A., and Lubachesky, R., 2007. Peperite formed by lava flows over sediments: An example from the central paraná continental flood basalts, Brazil. Journal of Volcanology and Geothermal Research, 159, pp.343-354. DOI: https://doi.org/10.1016/j.jvolgeores.2006.07.009 Walker, G.P.L., 1992. Morphometric study of pillow-size spectrum among pillow lavas. Bulletin of Volcanology, 54, pp.459-474. DOI: https://doi.org/10.1007/BF00301392 Wang, T., Wang, Z., Yan, Z., Ma, Z., He, S., Fu, C., and Wang, D., 2016. Geochronological and geochemical evidence of amphibolite from the Hualong Group, Northwest China: Implication for the early Paleozoic accretionary tectonics of the Central Qilian belt. Lithos, 248, pp.12-21. DOI: https://doi.org/10.1016/j.lithos.2016.01.012 White, J., and Houghton, B., 2006. Primary volcaniclastic rocks. Geology, 34, pp.677-680. DOI: https://doi.org/10.1130/G22346.1 White, J.D.L., and Busby‐Spera, C.J., 1987. Deep marine arc apron deposits and syndepositional magmatism in the Alisitos Group at Punta Cono, Baja California, Mexico. Sedimentology, 34, pp.911-927. DOI: https://doi.org/10.1111/j.1365-3091.1987.tb00812.x White, J.D.L., Mcphie, J., and Skilling, I., 2000. Peperite: A useful genetic term. Bulletin of Volcanology, 62, pp.65-66. DOI: https://doi.org/10.1007/s004450050293 White, M.P., 1928. Some index foraminifera of the Tampico Embayment area of Mexico. Part I. Journal of Paleontology, 2, pp.177-215. Whitney, D.L., and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, pp.185-187. DOI: https://doi.org/10.2138/am.2010.3371 Wilson, A.H., and Grant, C.E., 2006. Physical Volcanology and Compositions of the Basaltic Lavas in the Archean Nzuse Group, White Mfolozi Inlier, South Africa. Geological Society of America, Boulder. DOI: https://doi.org/10.1130/2006.2405(14) Wilson, T.J., and Hanson, R.E., 1991. Submarine rhyolitic volcanism in a Jurassic proto-marginal basin; southern Andes, Chile and Argentina. In: Andean Magmatism and its Tectonic Setting. Vol. 265. Geological Society of America, Boulder, p.13. DOI: https://doi.org/10.1130/SPE265-p13 Winchester, J.A., and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, pp.325-343. DOI: https://doi.org/10.1016/0009-2541(77)90057-2 Wood, D.A., Joron, J.L., Treuil, M., Norry, M., and Tarney, J., 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contribibution to Mineralogy and Petrology, 70, pp.319-339. DOI: https://doi.org/10.1007/BF00375360 Zhu, B., Guo, Z., Zhang, Z., and Cheng, F., 2014. Peperites in the permian tarim large igneous province in Northwest China and their constraints on the local eruption environments. Science China Earth Sciences, 57, pp.2914-2921. DOI: https://doi.org/10.1007/s11430-014-4966-5
Uncontrolled Keywords: Mawat, Paleocene, Peperite, Primitive Arc, Volcanic Arc, Walash
Subjects: Q Science > QE Geology
Divisions: ARO-The Scientific Journal of Koya University > VOL 11, NO 2 (2023)
Depositing User: Dr Salah Ismaeel Yahya
Date Deposited: 30 Nov 2023 08:36
Last Modified: 30 Nov 2023 08:36
URI: http://eprints.koyauniversity.org/id/eprint/443

Actions (login required)

View Item View Item