Brain Tumor Segmentation Using Enhancement Convolved and Deconvolved CNN Model

Almukhtar, Mohammed and Morad, Ameer H. and Hussein, Hussein L. and Al-hashimi, Mina H. (2024) Brain Tumor Segmentation Using Enhancement Convolved and Deconvolved CNN Model. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 12 (1). pp. 88-99. ISSN 2410-9355

[img] Text (Research Article)
ARO.11333.VOL12.NO1.2024.ISSUE22-PP88-99.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (3MB)
Official URL: http://dx.doi.org/10.14500/aro.11333

Abstract

The brain assumes the role of the primary organ in the human body, serving as the ultimate controller and regulator. Nevertheless, certain instances may give rise to the development of malignant tumors within the brain. At present, a definitive explanation of the etiology of brain cancer has yet to be established. This study develops a model that can accurately identify the presence of a tumor in a given magnetic resonance imaging (MRI) scan and subsequently determine its size within the brain. The proposed methodology comprises a two-step process, namely, tumor extraction and measurement (segmentation), followed by the application of deep learning techniques for the identification and classification of brain tumors. The detection and measurement of a brain tumor involve a series of steps, namely, preprocessing, skull stripping, and tumor segmentation. The overfitting of BTNet-convolutional neural network (CNN) models occurs after a lot of training time because training the model with a large number of images. Moreover, the tuned CNN model shows a better performance for classification step by achieving an accuracy rate of 98%. The performance metrics imply that the BTNet model can reach the optimal classification accuracy for the brain tumor (BraTS 2020) dataset identification. The model analysis segment has a WT specificity of 0.97, a TC specificity of 0.925914, an ET specificity of 0.967717, and Dice scores of 79.73% for ET, 91.64% for WT, and 87.73% for TC.

Item Type: Article
Additional Information: Abdulkareem, M., Islam, M.S., Aljoubory, A.D., and Nuoya, Z., 2019. Deep Fully Convolutional Networks for Mitosis Detection. In: Proceedings of the 20194thI nternational Conference on Robotics, Control and Automation, pp.84-89. DOI: https://doi.org/10.1145/3351180.3351213 Al Mahmud, M.A., Karim, A.Z., Miah, M.S., Kim, Y., Kim, J., and Bashar, S.S., 2020. Biomedical image processing: Spine tumor detection from MRIimage using MATLAB. The Journal of Contents Computing, 2(2), pp.225-235. DOI: https://doi.org/10.9728/jcc.2020.12.2.2.225 Al-Dabbas, H.M., and Morad, A.H., 2019. Medical image enhancement to extract brain tumors from CT and MRI images. Iraqi Journal of Science, 60(8), pp.1820-1829. DOI: https://doi.org/10.24996/ijs.2019.60.8.19 Cao, T., Wang, G., Ren, L., Li, Y., and Wang, H., 2022. Brain tumor magnetic resonance image segmentation by a multiscale contextual attention module combined with a deep residual UNet (MCA-ResUNet). Physics in Medicine and Biology, 67(9), p.095007. DOI: https://doi.org/10.1088/1361-6560/ac5e5c Chen, G., Li, Q., Shi, F., Rekik, I., and Pan, Z., 2020. RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields. NeuroImage, 211, p.116620. DOI: https://doi.org/10.1016/j.neuroimage.2020.116620 Chen, M., Yan, Q., and Qin, M., 2017. Asegmentation of brain MRI images utilizing intensity and contextual information by Markov random field. Computer Assisted Surgery, 22(Suppl1), pp.200-211. DOI: https://doi.org/10.1080/24699322.2017.1389398 Cheng, J., 2017. Brain tumor dataset. In: Dataset. Figshare, London.El-Dahshan, E.S.A., Hosny, T., and Salem, A.B.M., 2010. Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), pp.433-441. DOI: https://doi.org/10.1016/j.dsp.2009.07.002 Faris, M., Javid, T., Fatima, K., Azhar, M., and Kamran, R., 2019. Detection of Tumor Region in MR Image through Fusion of Dam Construction and K-mean Clustering Algorithms. In: 20192ndInternational Conference on Computing, Mathematics and Engineering Technologies (ICOMET). IEEE, Piscataway, pp.1-16. DOI: https://doi.org/10.1109/ICOMET.2019.8673511 Ghadi, N.M., and Salman, N.H., 2022. Deep learning-based segmentation and classification techniques for brain tumor MRI: Areview. Journal of Engineering, 28(12), pp.93-112. DOI: https://doi.org/10.31026/j.eng.2022.12.07 Gull, S., Akbar, S., and Khan, H.U., 2021. Automated detection of brain tumor through magnetic resonance images using convolutional neural network. BioMed Research International, 2021, p.3365043. DOI: https://doi.org/10.1155/2021/3365043 Hamad, Y., Mohammed, O.K.J., and Simonov, K., 2019. Evaluating of Tissue Germination and Growth Rate of ROI on Implants of Electron Scanning Microscopy Images. In: Proceedings of the 9thInt ernational Conference on Information Systems and Technologies, pp.1-7. DOI: https://doi.org/10.1145/3361570.3361598 Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., and Xu, D., 2021. Swin Unetr: Swin Transformers for Semantic Segmentation of Brain Tumors in Mri Images. In: International MICCAI Brainlesion Workshop. Springer International Publishing, Cham, pp.272-284 DOI: https://doi.org/10.1007/978-3-031-08999-2_22 Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., and Larochelle, H., 2017. Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, pp.18-31. DOI: https://doi.org/10.1016/j.media.2016.05.004 Hu, K., Gan, Q., Zhang, Y., Deng, S., Xiao, F., Huang, W., Cao, C., and Gao,X., 2019. Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access, 7, pp.92615-92629. DOI: https://doi.org/10.1109/ACCESS.2019.2927433 Huang, Z., Xu, H., Su, S., Wang, T., Luo, Y., Zhao, X., Liu, Y., Song, G., and Zhao, Y., 2020. Acomputer-aided diagnosis system for brain magnetic resonance imaging images using a novel differential feature neural network. Computers in Biology and Medicine, 121, p.103818. DOI: https://doi.org/10.1016/j.compbiomed.2020.103818 Ismael, S.A.A., Mohammed, A., and Hefny, H., 2020. An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artificial Intelligence in Medicine, 102, p.101779. DOI: https://doi.org/10.1016/j.artmed.2019.101779 Joseph, R.P., Singh, C.S., and Manikandan, M., 2014. Brain tumor MRI image segmentation and detection in image processing. International Journal of Research in Engineering and Technology, 3(1), pp.1-5. DOI: https://doi.org/10.15623/ijret.2014.0313001 Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon,D.K., Rueckert, D., and Glocker, B., 2017. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 36, pp.61-78. DOI: https://doi.org/10.1016/j.media.2016.10.004 Milletari, F., Navab, N., and Ahmadi, S.A., 2016. V-net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE, Piscataway, pp.565-571. DOI: https://doi.org/10.1109/3DV.2016.79 Mohammed, E., Hassaan, M., Amin, S., and Ebied, H.M., 2021. Brain Tumor Segmentation: AComparative Analysis. In: The International Conference on Artificial Intelligence and Computer Vision. Springer International Publishing, Cham, pp.505-514. DOI: https://doi.org/10.1007/978-3-030-76346-6_46 Morad, A.H., and Al-Dabbas, H.M., 2020. Classification of brain tumor area for MRI images. Journal of Physics: Conference Series, 1660(1), p.012059. DOI: https://doi.org/10.1088/1742-6596/1660/1/012059 Ortiz, A., Gorriz, J.M., Ramírez, J., Salas-Gonzalez, D., and For the Alzheimer’s Disease Neuroimaging Initiative., 2013. Improving MRI segmentation with probabilistic GHSOM and multiobjective optimization. Neurocomputing, 114, pp.118-131. DOI: https://doi.org/10.1016/j.neucom.2012.08.047 Pedapati, P., and Tannedi, R.V., 2017. Brain Tumour Detection Using Hog by SVM. Department of Applied Signal Processing. Master Thesis, Blekinge Institute of Technology SE-37179, Karlskrona, Sweden. Rao, C.S., and Karunakara, K., 2021. Acomprehensive review on brain tumor segmentation and classification of MRI images. Multimedia Tools and Applications, 80(12), pp.17611-17643. DOI: https://doi.org/10.1007/s11042-020-10443-1 Sharif, M.I., Li, J.P., Khan, M.A., and Saleem, M.A., 2020. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognition Letters, 129, pp.181-189. DOI: https://doi.org/10.1016/j.patrec.2019.11.019 Shukla, A.P., 2016. Training cellular automata for image edge detection. Romanian Journal of Information Science and Technology, 19(4), pp.338-359. Siar, M., and Teshnehlab, M., 2019. Brain Tumor Detection Using Deep Neural Network and Machine Learning Algorithm. In: 20199thInternational Conference on Computer and Knowledge Engineering (ICCKE). IEEE, Piscataway, pp.363-368. DOI: https://doi.org/10.1109/ICCKE48569.2019.8964846 Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A., 2021. Cancer statistics, 2021. CA: ACancer Journal for Clinicians, 71(1), pp.7-33. DOI: https://doi.org/10.3322/caac.21654 Taha, N.A., Qasim, Z., Al-Saffar, A., and Abdullatif, A.A., 2021. Steganography using dual tree complex wavelet transform with LSB indicator technique. Periodicals of Engineering and Natural Sciences, 9(2), pp.1106-1114. DOI: https://doi.org/10.21533/pen.v9i2.2060 Tustison, N.J., Shrinidhi, K.L., Wintermark, M., Durst, C.R., Kandel, B.M., Gee, J.C., Grossman, M.C., and Avants, B.B., 2015. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics, 13, pp.209-225. DOI: https://doi.org/10.1007/s12021-014-9245-2 Wala’a, N.J., and Rana, J.M., 2021. Asurvey on segmentation techniques for image processing. Iraqi Journal for Electrical and Electronic Engineering, 17, pp.73-93. DOI: https://doi.org/10.37917/ijeee.17.2.10 Wang, T., Cheng, I., and Basu, A., 2009. Fluid vector flow and applications in brain tumor segmentation. IEEE Transactions on Biomedical Engineering, 56(3), pp.781-789. DOI: https://doi.org/10.1109/TBME.2009.2012423 Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., and Li, J., 2021. Transbts: Multimodal Brain Tumor Segmentation Using Transformer. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:24thInternational Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, PartI 24. Springer International Publishing, Cham, pp.109-119. DOI: https://doi.org/10.1007/978-3-030-87193-2_11 Wu, S., Wu, Y., Chang, H., Su, F.T., Liao, H., Tseng, W., Liao, C., Lai, F., Hsu,F., and Xiao, F., 2021. Deep learning-based segmentation of various brain lesions for radiosurgery. Applied Sciences, 11(19), p.9180. DOI: https://doi.org/10.3390/app11199180 Yang, Z., Hu, Z., Ji, H., Lafata, K., Vaios, E., Floyd, S., Yin, F.F., and Wang, C., 2023. Aneural ordinary differential equation model for visualizing deep neural network behaviors in multi‐parametric MRI‐based glioma segmentation. Medical Physics, 50(8), pp.4525-4838. DOI: https://doi.org/10.1002/mp.16286 Zebari, D.A., Zeebaree, D.Q., Abdulazeez, A.M., Haron, H., and Hamed, H.N.A., 2020. Improved threshold based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images. IEEE Access, 8, pp.203097-203116. DOI: https://doi.org/10.1109/ACCESS.2020.3036072 Zhang, B., 2010. Computer Vision vs. Human Vision. In 9thIEEE International Conference on Cognitive Informatics (ICCI’10). IEEE, Piscataway, p.3. DOI: https://doi.org/10.1109/COGINF.2010.5599750 Zhang, J., Shen, X., Zhuo, T., and Zhou, H., 2017. Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical dice loss. arXiv preprint arXiv:1712.09093. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., and Fan, Y., 2018. Adeep learning model integrating FCNNs and CRFs for brain tumor segmentation. Medical Image Analysis, 43, pp.98-111. DOI: https://doi.org/10.1016/j.media.2017.10.002
Uncontrolled Keywords: Brian tumor, Magnetic resonance imaging, Image enhancement, Image segmentation, Convolutional neural network
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: ARO-The Scientific Journal of Koya University > VOL 12, NO 1 (2024)
Depositing User: Dr Salah Ismaeel Yahya
Date Deposited: 02 Sep 2024 06:56
Last Modified: 02 Sep 2024 06:56
URI: http://eprints.koyauniversity.org/id/eprint/474

Actions (login required)

View Item View Item