Omar, Halo D. (2024) Upright Pyramid Surface Textures for Light Trapping and MoOx Layer in Ultrathin Crystalline Silicon Solar Cells. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 12 (1). pp. 203-206. ISSN 2410-9355
Text (Reseach Article)
ARO.11586.VOL12.NO1.2024.ISSUE22-PP203-206.pdf - Published Version Available under License Creative Commons Attribution Non-commercial Share Alike. Download (956kB) |
Abstract
In this work, ray tracing is used to investigate the optical characteristics of various surface structures in ultrathin crystalline silicon (c-Si) for solar cells. Ultrathin c-Si with a thickness of 20 μm is used as the substrate. The light trapping includes front upright pyramids with a molybdenum oxides (MoOx) anti-reflection (AR) layer. Planar ultrathin c-Si (without a MoOx AR layer and upright pyramids) is used as a reference. The wafer ray tracer was developed by a photovoltaic (PV) lighthouse to model the MoOx AR layer to reduce the front surface reflectance and impacts of the AR layer on ultrathin Si solar cells. The optical properties are calculated on the AM1.5 global solar energy spectrum across the 200–1200 nm wavelength region. From the absorbance profile, the photogenerated current density (Jph) in the substrate is also calculated with various surface structures. The front upright pyramids with the MoOx layer result in the largest absorbance enhancement due to the enhanced light scattering by the pyramids and MoOx AR layer. The Jph of 37.41 mA/cm2 is improved when compared to the planar ultrathin c-Si reference. This study is significant as it illustrates the potential of ultrathin c-Si as a promising PV module technology in the future.
Item Type: | Article |
---|---|
Additional Information: | Chee, K.W.A., Tang, Z., Lü, H., and Huang, F., 2018. Anti-reflective structures for photovoltaics: Numerical and experimental design. Energy Reports, 4, 266-273. DOI: https://doi.org/10.1016/j.egyr.2018.02.002 Garín, M., Pasanen, T.P., López, G., Vähänissi, V., Chen, K., Martín, I., and Savin, H., 2023. Black ultra-thin crystalline silicon wafers reach the 4n2 absorption limit-application to IBC solar cells. Small, 19, 2302250. DOI: https://doi.org/10.1002/smll.202302250 Hu, Q., Wang, J., Lu, Y., Tan, R., Li, J., and Song, W., 2022. Sputtering-deposited thin films on textiles for solar and heat managements: A mini-review. Physica Status Solidi (a), 219, 2100572. DOI: https://doi.org/10.1002/pssa.202100572 Huang, S., Xu, C., Wang, G., Du, J., Yu, J., Zhang, L., Meng, F., Zhao, D., Li, R., Huang, H., Liu, Z., and Liu, W., 2024. Smaller texture improves flexibility of crystalline silicon solar cells. Materials Letters, 357, 135768. DOI: https://doi.org/10.1016/j.matlet.2023.135768 Kanda, H., Uzum, A., Harano, N., Yoshinaga, S., Ishikawa, Y., Uraoka, Y., Fukui, H., Harada, T., and Ito, S., 2016. Al2 O3 /TiO2 double layer anti-reflection coating film for crystalline silicon solar cells formed by spray pyrolysis. Energy Science and Engineering, 4, 269-276. DOI: https://doi.org/10.1002/ese3.123 Li, Y., Ru, X., Yang, M., Zheng, Y., Yin, S., Hong, C., Peng, F., Qu, M., Xue, C., Lu, J., Fang, L., Su, C., Chen, D., Xu, J., Yan, C., Li, Z., Xu, X., and Shao, Z., 2024. Flexible silicon solar cells with high power-to-weight ratios. Nature, 626, 105-110. DOI: https://doi.org/10.1038/s41586-023-06948-y Lu, C., Rusli, Prakoso, A.B., and Li, Z., (2018). Aqueous Solution Deposited Molybdenum oxide Crystalline Silicon Heterojunction Solar Cells. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), pp.2155-2157. DOI: https://doi.org/10.1109/PVSC.2018.8547341 Macco, B., Vos, M., Thissen, N.F.W., Bol, A.A., and Kessels, W.M.M., 2015. Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells. Physica Status Solidi, 9, 393-396. DOI: https://doi.org/10.1002/pssr.201510117 Omar, H.D., Hashim, M.R., and Pakhuruddin, M.Z., 2020. Ray tracing of inverted pyramids for light-trapping in thin crystalline silicon for solar cells. Optik, 219, 165279. DOI: https://doi.org/10.1016/j.ijleo.2020.165279 Pakhuruddin, M.Z., 2020. Ray tracing of light trapping schemes in thin crystalline silicon for photovoltaics. Solid State Phenomena. Trans Tech Publications, Switzerland, pp.183-191. DOI: https://doi.org/10.4028/www.scientific.net/SSP.301.183 Pakhuruddin, M.Z., Huang, J., Dore, J., and Varlamov, S., 2016. Enhanced absorption in laser-crystallized silicon thin films on textured glass. IEEE Journal of Photovoltaics, 6, 852-859. DOI: https://doi.org/10.1109/JPHOTOV.2016.2545410 Shanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P., and Das, N., 2020. Anti-reflective coating materials: A holistic review from PV perspective. Energies, 13, 2631. DOI: https://doi.org/10.3390/en13102631 Tahir, S., Saeed, R., Ashfaq, A., Ali, A., Mehmood, K., Almousa, N., Shokralla, E.A., Macadangdang, R.R. Jr., Soeriyadi, A.H., and Bonilla, R.S., 2024. Optical modeling and characterization of bifacial SiNx/AlOx dielectric layers for surface passivation and antireflection in PERC. Progress in Photovoltaics: Research and Applications, 32, 63-72. DOI: https://doi.org/10.1002/pip.3745 Valiei, M., Shaibani, P.M., Abdizadeh, H., Kolahdouz, M., Asl Soleimani, E., and Poursafar, J., 2022. Design and optimization of single, double and multilayer anti-reflection coatings on planar and textured surface of silicon solar cells. Materials Today Communications, 32, 104144. DOI: https://doi.org/10.1016/j.mtcomm.2022.104144 Xue, M., Nazif, K.N., Lyu, Z., Jiang, J., Lu, C.Y., Lee, N., Zang, K., Chen, Y., Zheng, T., Kamins, T.I., Brongersma, M.L., Saraswat, K.C., and Harris, J.S., 2020. Free-standing 2.7 μm thick ultrathin crystalline silicon solar cell with fficiency above 12.0%. Nano Energy, 70, 104466. DOI: https://doi.org/10.1016/j.nanoen.2020.104466 Zhou, Y., Wen, J., Zheng, Y., Yang, W., Zhang, Y., and Cheng, W., 2024. Status quo on recycling of waste crystalline silicon for photovoltaic modules and its implications for China’s photovoltaic industry. Frontiers in Energy. DOI: https://doi.org/10.1007/s11708-024-0923-y Zin, N., Mcintosh, K., Bakhshi, S., Vázquez-Guardado, A., Kho, T., Fong, K., Stocks, M., Franklin, E., and Blakers, A., 2018. Polyimide for silicon solar cells with double-sided textured pyramids. Solar Energy Materials and Solar Cells, 183, 200-204. DOI: https://doi.org/10.1016/j.solmat.2018.03.015 |
Uncontrolled Keywords: | Absorbance, Crystalline silicon, Light trapping, MoOx, Solar Cells |
Subjects: | Q Science > QC Physics |
Divisions: | ARO-The Scientific Journal of Koya University > VOL 12, NO 1 (2024) |
Depositing User: | Dr Salah Ismaeel Yahya |
Date Deposited: | 15 Oct 2024 09:26 |
Last Modified: | 15 Oct 2024 09:26 |
URI: | http://eprints.koyauniversity.org/id/eprint/487 |
Actions (login required)
View Item |