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Preface

T
his book is based on lectures developed by the author for
B.SC and M.SC. Students at Koya University, Department of

Mathematics, and on the lectures taught by the author in postgraduate
studies to master’s and doctoral students at Salahaddin-Erbil and
Sulaymaniyah Universities, Department of Mathematics, as well the
book is also the product of the accumulated notes from teaching under
the author’s postgraduate studies.

In mathematical structures and mathematics education, finite
Mathematics is a syllabus and method that depends on foundations
of mathematics, while it is independent of calculus. Thereby, since
we devoted ourselves to writing the book Foundations of Mathematics
(Hamadameen, 2022), it was necessary and inevitable for us to write
this book in order to help the student and reader apply mathematical
problem solving and logical thinking to real world phenomena, making
it an important field of knowledge for students who are pursuing
careers in the field of business and its branches (Applied mathematics,
social sciences, computer sciences, and applied sciences in the fields
of statistics, probabilities, medicine, physics, chemistry, biology, most
engineering branches, and other practical professional specializations).

The book takes into consideration the necessity of the contents of
this book for students to study mathematics as well as the other applied
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sciences mentioned above. The contents of this book and its academic
goals aim at:

(i) Helping students to be fully familiar with the mathematical
induction and its principals. When can mathematical induction
be used, what are the conditions for it, what is its application,
and where can it be used in real life?

(ii) Motivating students to learn about complex numbers, their
properties, their representation in the Cartesian plane, and
algebraic operations on them. Polar form of complex numbers,
and applications of De Moivre’s theorem in the field of complex
numbers. What conjugate numbers, their properties, and what
are the relations between complex numbers and their conjugates?
In addition to absolute value inequalities of complex numbers,
their square roots, and roots of unity.

(iii) What are polynomials, and their properties? Quotient of
polynomials, long division algorithm of polynomials, their roots,
and duplicate roots. Greatest common factor of polynomials,
Cardian’s method to solve cubic equations, quartic equations, and
method to solve them.

(iv) Helping students to be familiar with numerical solutions to
nonlinear equations and when to applies to such solutions. Also,
helping the students to find approximate values for the roots
of nonlinear equations using some practical methods, including
Descartes’ sign rule and Horner’s method. In addition, presenting
numerical methods to the student to find the approximate
values of the roots of equations, including the bisection method,
Newton- Raphson’s method, secant method, Birge-Vita method,
and Graeffe’s root-squaring method. And making the student
understand that all of these methods are practical, applicable,
and have a solid algorithm for application on the computer.

(v) Considering matrices to students and expressing the system
of linear equations as matrices. Types of matrices and their
properties, operations on matrices in addition to matrices and
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linear vectors as matrices, as well as identifying dependent and
independent linear vectors and how to find solutions to the linear
systems in the form of matrices via operations on rows and
columns of the matrices. Moreover, considering determinants as
an inevitable result of the matrices, and the related concepts
to them. Types of determinants, how to find them, and
the general formula for finding determinants. Permutations
and determinants, and the relationship between them, and
the main property of determinants. Furthermore, Inverse of
matrix, elementary transformations of the matrix, and inverse
transformations. Equivalence, norm, form, and rank of matrices.
Besides, inserting matrix inverse methods. And, how getting
inverse of complex matrix, and what are the methods to find
the inverse of complex matrix?

(vi) Encouraging students to turn to the system of linear equations
and their role in solving real life problems and how to formulate
them. Provide some methods like; Cramer’s method, Gauss’s
method, and some other methods. In addition to those methods
and their operations on the computer.

(vii) Explaining the concepts of eigenvalues and eigenvectors to the
student and explaining their advantages. What are eigenvalues
and eigenvectors through changing direction transformations and
eigenvalues? Applications of eigenvalues and eigenvectors, and
their properties of matrices. Moreover, introducing two different
methods for finding eigenvalues.

(viii) Considering each of permutations and combinations and how
to formulate them. What is the basic principle in arithmetic?
The basic properties of permutations and combinations and the
difference between them. Embarking on the binomial theorem
and the polynomial theorem.

It is noteworthy that, most of the theorems, corollaries, and
exercises in this book are adapted from the references (Balfour and
Beveridge, 1972; Britton and Snively, 1954; Brown and Churchill, 2009;
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Conte and De Boor, 2017; Fraser, 1958; Froberg, 1965; Goult, 1974;
Hoffman and Kunze, 1967; Hohn, 1972; Knopp, 1952; MacDuffee, 1954;
Parsonson, 1970; Ralston and Rabinowitz, 2001; Ralston, 1965; Strang,
2006; Uspensky, 1948; Wilkinson, 1971).

The contents of this book are organized as follows: chapter
1 is dedicated to discussing to the mathematical induction, the
basic concepts, and the principal of it. Chapter 2, deals with
the complex numbers, properties, Cartesian representations, polar
form of a complex numbers. In addition to De Moivre’s theorem,
complex numbers and their conjugates and roots of complex numbers.
Chapter 3 is devoted to polynomials in which it defines the concept
of polynomials, the properties of polynomials, and the long division
algorithm for polynomials. It also shows the relationship between
roots and polynomial equations, repeated roots, the greatest common
factor of polynomials, solving cubic equations using Cardan’s method
and solving quadratic equations. Numerical solution of nonlinear
equations, finding the differential via Horner’s method, and Numerical
methods for finding approximate values of them took their place in
chapter 4. Chapter 5 deals with the matrices, types of matrices,
operations on matrices, matrices partition, vector expression, linearly
dependent vectors, and linearly independent vectors. Chapter 6 deals
with the determinants, types of determinants, algorithm for finding
determinant of a matrix of third order or higher, General methods
for finding determinants, permutations and the determinant, and
properties of determinants. Chapter 7 is about inverse of a matrix,
matrix inverse methods like; the method of adjoint matrix, and the
method of elementary transformations. In addition to the method of
transformations on rows including; Jacobian method, the method of
Triangularization, and the method of Escalator. Moreover, considered
inverse of a complex matrix, and method to find the inverse of it.
Chapter 8, deals with numerical solution of a system of linear equations,
mathematical formulation of linear system, solutions for systems with
equal equations and variables including; Cramer’s method, Gauss’s
method, Gauss’s method and row echelon form, coefficient matrix
partition method, and matrix inverse method. Furthermore, the
methods and their operations on the computer. eigenvalues and
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eigenvectors, and their features. Chapter 9 is about eigenvalue and
eigenvector through changes direction, transformations and eigenvalues,
polynomial equation of degree n in eigenvalue, eigenvalues and
eigenvectors of matrices. Conclusions from eigenvalues, eigenvectors
and traces. Methods for finding eigenvalues like; LU method,
and Jacobi method. Finally, chapter 10 considered permutations
and combinations, and their formulations. Basic principle of the
arithmetic of of permutations, and combinations. In addition to
difference between combination and permutations, binomial theorem,
multinomial theorem, and harmonic series with its properties. And,
summation by fragmentation.

It is worth to be mentioned that theorems and their corollaries are
printed in italics, while, the end of the proofs to theorems and corollaries
are indicated by the symbol ♦.

Abdulqader Othman
Department of Mathematics, Faculty of Science & Health
Koya University
2025



1

Mathematical Induction

1.1 Introduction

T
here are two kinds of mathematical proofs; mathematical
deduction and mathematical induction. For illustration, assume

that S1, S2, ..., Sn are axioms, and theorems have been proved in the
past. So to prove P ⇒ Q it is enough to prove that S1, S2, ..., Sn, P ⊢
Q its true argument. And this process is called deduction. But,
mathematical induction is a type of mathematical proof usually used to
prove that an equation or difference is true for an infinite set of numbers,
such as natural or positive integer numbers (Hamadameen, 2022). This
proof involves three stages. First, demonstrate that the initial number
in the set meets the requirement. Second, assume the desired condition
is satisfied by an arbitrary element in the set. Lastly, algebraically prove
that this condition holds true for the next number in the sequence. Let
us consider on the Fig. 1.1 below of the similar shapes and Fig. 1.2 on
the image of the domino game, and what happens when the first piece
falls and its effect on the remaining pieces of the set of pieces.
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Figure 1.1: Mathematical induction as the effects of dominoes falling
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Figure 1.2 The above dominoes are standing, bottom dominoes are in
motion



4 Finite Mathematics

1.2 Mathematical induction

The principle of summation is the basis adopted in mathematical
induction. But in the case of a finite algebraic sum, the need arises
to write the sum of the formulation instead of writing all the terms,
because when the sums are infinite, it is impossible to write all the
terms, so two or three terms may be written, followed by three points.
For example:

(i) 1 + 2 + 3 + ..., or

(ii) the nth term, for example; 1 + 2 + 3 + ...+ n+ ..., or

(iii) 1× 2 + 2× 3 + 3× 4 + ...+ n× (n+ 1) + ....

However, the writing of the summation terms remains long, tedious,
and not well-defined mathematically. For example, the summation of
1 + 2+ 3+ ...+128, may be the aim is 1+ 2+ 3+ ...+ n+ ...+128, or
summation of 128-term, or may be the aim is 1+2+4+ ...2n+ ...+128,
percissely the summation of 8-term only.

Thereby, the writing of the sign
∑

with addition of its lower
bond and upper bound is necessary to the summation operation. For
example;

(i)
∑∞

n=1 n = 1 + 2 + 3 + ...,

(ii)
∑17

n=10 n = 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17,

(iii)
∑n

t=1 atm = a1m + a2m + a3m + ...+ anm,

(iv)
∑n

t=1 atmkbtmkctmk = a1mkb1mkc1mk + a2mkb2mkc2mk +
a3mkb3mkc3mk + ...+ anmkbnmkcnmk.

Example 1.1
∑7

t=1(t+t
2)2 = (1+12)2+(2+22)2+(3+32)2+(4+42)2+

(5+52)2+(6+62)2+(7+72)2 = 4+36+144+400+900+1764+3136 =
6384.

Definition 1.1 Mathematical induction is a method for proving that
a statement I(n) is true for for every natural number n, that is, that the
infinitely many cases I(0), I(1), I(2), ..., I(n) all hold (Anderson, 1979;
Bather, 1994).
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1.3 Exercises

Solve the following problems:
Q1: Evaluate each of;

(i)
∑8

k=−5 k.

(ii)
∑0

k=−5 k
2.

(iii)
∑5

n=1
1
n
.

(iv)
∑7

n=3
1

(n+1)(n+2)
.

(v)
∑6

n=1
1
6
.

(vi)
∑11

n=3(an + bn + cn).

(vii)
∑5

n=−3
(n+1)(n+2)

n−4
.

(viii)
∑∞

n=0(3− n)3n.

(ix)
∑∞

n=0(−1).

Q2: State whether the following statements are true or false. Give
reasons for your answers.

(i)
∑∞

n=0 cpn = c
∑∞

n=0 pn.

(ii)
∑m

n=1 f(n) =
∑m+1

n=1 f(n).

(iii) (
∑m

k=1 ak)
2 =

∑m
k=1 a

2
k +

∑m
k=1 2ak +

∑m
k=1 1.

(iv)
∑m

k=1(ak + bk)
2 =

∑m
k=1 a

2
k −

∑m
k=1 2akbk +

∑m
k=1 b

2
k.

(v)
∑n

k=0 ak =
∑n

k=0 a(n− k).

(vi)
∑5

k=1(3k + bk) = c+
∑5

k=1 bk.

(vii)
∑3

k=1(ak − bj) =
∑3

k=1 ak −
∑3

k=1 bk.

(viii)
∑n

k=1(ak + c) =
∑n

k=1 ak + nc.
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(ix)
∑n

i=1(a(i+ 1− ai) = a(n+ 1) + a1.

(x)
∑4

k=2[(k + 1)3 − k3] = 43 − 23.

(xi)
∑30

n=1(−1)n = 0.

(xii) 12 + 22 + 32 + ...+ n2 = n(n+1)(2n+1)
6

,∀n ≥ 1.

(xiii) 3 + 33 + 333 + ...+ 33...3 = 10n+1−9n−10
27

.

1.4 The principle of mathematical induction

There are two types of methods for proving mathematical results:
deduction and induction. Induction cannot be a method of proof,
because it is used in almost all sciences, and in addition to its use in
mathematics, it is based on the Intuition principle, not on mathematical
logic (Rabinovitch, 1970; Francesco, 1575; Henkin, 1960; Gunderson,
2014). As for mathematical induction, it is used in mathematics only. It
is one of the methods of proof that depends on sequential mathematical
logic that covers the gaps in induction.

Consider a statement I(n), n ∈ N. Then to determine the validity
of I(n),∀n, use the following principle::

(i) Check whether the given statement is true for n = 1.

(ii) Assume that given statement I(n) is also true for n = k, where k
is any natural number.

(iii) Prove that the result is true for I(k + 1) for any k ∈ N.

If the above-mentioned conditions are satisfied, then it can be concluded
that I(n) is true for all n natural numbers.

Example 1.2 Using mathematical method, prove that;
1 + 2 + 3 + ...+ n = n(n+1)

2
, n ∈ N.

Solution: Let the given statement I(n) be defined as;

1 + 2 + 3 + ...+ n = n(n+1)
2

, n ∈ N.
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(i) Put n = 1

R.H.S. I(1) = 1.

L.H.S. I(1) = 1(1+1)
2

= 1.

∵ R.H.S.= L.H.S. for n = 1,

∴ I(1) is true.

(ii) Let us assume that the statement is true for n = k, i.e.I(k) is
true. Or,

1 + 2 + 3 + ...+ k = k(k+1)
2

, k ∈ N.

(iii) To prove that I(k + 1) is true;

I(k+1) = 1+2+3+...+k+(k+1) = I(k)+k+1 = k(k+1)
2

+k+1 =
k(k+1)+2(k+1)

2
.

∴ I(k + 1) is true.

Thus if I(k) is true, then I(k + 1) is also true.

∴ I(n),∀n ∈ N.

Thus, 1 + 2 + 3 + ...+ n = n(n+1)
2

, n ∈ N.

Example 1.3 Using mathematical method, prove that;
3n > 3n− 2,∀n ∈ N.
Solution: Let the given statement I(n) be defined as;
3n > 3n− 2,∀n ∈ N.

(i) Put n = 1

R.H.S. I(1) = 31 = 3.

L.H.S. I(1) = 3(1)− 2 = 1.

∵ R.H.S.> L.H.S. for n = 1,

∴ I(1) is true.

(ii) Let us assume that the statement is true for n = k, i.e.I(k) is
true. Or,

3k > 3k − 2, ∀k ∈ N.
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(iii) To prove that I(k + 1) is true;

∵ 2 · 3k > 3,

∴ 3k + 2 · 3k > 3k − 2 + 3.

3k(1 + 2) > (3k + 3)− 2.

∴ 3k · 3 > 3(k + 1)− 2.

∴ 3k+1 > 3(k + 1) − 2. This is the same inequality, where n has
been changed by k + 1.

∴ I(k + 1) is true.

Thus if I(k) is true, then I(k + 1) is also true.

∴ I(n),∀n ∈ N is true.

Example 1.4 Using mathematical induction, prove that I(n) = 3n−1
is a multiple of 2.

Solution:

(i) Put n = 1

R.H.S. I(1) = 31 − 1 = 3− 1 = 2.

2 is a multiple of 2.

∴ I(1) is true.

(ii) Let us assume that the statement is true for n = k, i.e.I(k) is
true. Or, 3k − 1,∀k ∈ N is a multiple of 2.

(iii) Now, we have to prove that I(k + 1) = 3k+1 − 1 is true.

∵ 3k+1 − 1 = 3 · 3k − 1 = (2 + 1) · 3k − 1 = 2 cot 3k + 3k − 1.

∵ 2 cot 3k and 3k + 3k − 1 are multiples of 2,

∴ 2 cot 3k + 3k − 1 is a multiple of 2.

∴ I(k + 1),∀k ∈ N is true.

Thus, I(n) = 3n − 1,∀n ∈ N is a multiple of 2.
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1.5 Exercises

Answer the following questions:
Q1: Use mathematical induction to prove each of claims:

(i)
∑n

l=1(l + 2)(3l + 1) = n(n+ 2)(n+ 3).

(ii)
∑n

t=1
1

t(t+1)
= n

n+1
.

(iii)
∑n

t=1 ar
t−1 = a(rn−1)

r−1
.

(iv)
∑n+1

t=2 t2
t−2 = n2n.

(v)
∑n

r=1 r
3 = [n(n+1)]2

4
.

Q2: Express the following mathematical statements by using (
∑

)
symbol.

(i) a+ (a+ b) + ...+ [a+ (n− 1)b].

(ii) a− (a− b) + ...+ [a− (n− 1)b].

(iii) cotα + cot(α + β) + ...+ cot[(α + (n− 1)β]).

(iv) cotα− cot(α− β) + ...+ cot[(α− (n− 1)β]).

Q3: Prove the following claims:

(i) an + bn is divisible by a+ b, ∀n ∈ Z+
o .

(ii) an − bn is divisible by a− b,∀n ∈ Z+
e .

(iii) n2 − n+ 2, ∀n ∈ Z+
e is an even number.

(iv) 2n+2 + 32n+1∀n ∈ N is a multile of 7.

(v) an ≥ n+ 1,∀n ∈ N, a ≥ 2.
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Q4: For all positive real number, prove that an−1 = 1,∀a ∈ N+.
Q5: If

Un − 4Un−1 + 4Un−2 = 0,

U0 = 1,

U1 = 4,

then prove that
Un = (n+ 1)2

n

.
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Complex Numbers

2.1 Introduction

W
hen we talk about complex numbers and their creation and
the imaginary number, the need for complex numbers and

imaginary numbers appears, since mathematicians can not figure out
the square root of a negative number.

The roots of negative numbers were dealt with for the first time
in the sixteenth century, when the scientist Girolamo Cardano in 1545
(Merino, 2006) found that some problems have a solution in terms of
square roots of negative numbers, and although he believed that such a
solution was unrealistic, he was sure that there was no other solution!
People agreed with him that it was useless for nearly a century.

After that the scientist René Descartes in 1637 (Blank, 1999; Jakob
and Waerden, 1985) developed the standard formula for imaginary
numbers, which later led to the algebraic formula for the complex
number a + ib. This formula means that the complex number is
composed of two parts: the first (real) part a is just a real number,
and the second (imaginary) part ib is a real number b multiplied by
the imaginary number i, and the sum of these two parts is the complex
number. However, Descartes did not believe in complex numbers much,
and assumed that if they were used to solve a problem, you would not



12 Finite Mathematics

reach a conclusion! In fact, he called them “imaginary numbers”.
For more than a century after that, the opinions of scholars varied

between believing in the possibility of the existence of the number i
and trying to prove its existence, and refusing to add a new number!

Now complex numbers have become an important part and field
of mathematics and have an important and vital role in theoretical
applications as well as in practical, productive, and life applications
such as; topics that use complex numbers include research on electric
current, wavelength, fluid flow and its relationship to obstructions,
stress analysis of beams, movement of shock absorbers in automobiles,
the study of resonance for structures, design of generators and electric
motors and in large matrices used in modeling, and so on.

2.2 Negative discriminant of a polynomial

Consider the following polynomial in a unique variable and in the
second degree;

ax2 + bx+ c = 0, 0 ̸= a, b, c ∈ R (2.1)

The set solution for (2.1) is x = −b∓
√
b2−4ac
2a

, i.e. the equation has two
different roots in R provided that the distinctive amount b2 − 4ac ≥ 0,
otherwise the value of the square root will be negative. Thus, the need
arises to define another group of numbers called the group of complex
numbers, through which the square root of negative numbers can be
defined.

2.3 Complex numbers

A complex number is a number that can be expressed in the form a+ ib
where a and b are real numbers, and i is a symbol called the imaginary
unit and satisfying the equation i2 = −1. The set of complex numbers
is denoted by C (Bourbaki, 1994; Andreescu and Andrica, 2006), and
can be defined as follows:

Definition 2.1 The formula C = R × R {(x, y)|x, y ∈ R} ={
a+ ib, a, b ∈ R, i =

√
−1
}

is called the set of the complex numbers
(Hamadameen, 2022), as shown in the Figure 2.1.
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Figure 2.1: Number sets

Notation: The set C =
{
x+ iy|x, y ∈ R, i =

√
−1
}
, where the

imaginary part has the properties:

(i) The term iy is the real number y multiplied by i.

(ii) iy = yi.

(iii) (y1 + y2)i = iy1 + iy2.

(iv) If iy = 0 then y = 0.

2.4 Properties of complex numbers

There are basic properties of the set of complex numbers that
distinguish it from other set numbers. We will list them as follows:

(i) The complex number is called equal to zero if both its real and
imaginary parts are zero. Or, z = x + iy = 0 ⇔ (x = 0) ∧ (y =
0),∀z ∈ C.
Proof:
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assume that z = (x, y) = 0

∴ z = x+ iy = 0

∴ x = −iy
∴ x2 = −y2

∴ x2 + y2 = 0

∴ (x = 0) ∧ (y = 0).

(ii) Addition operation on complex numbers: Ifz1 = x1 + iy1, z2 =
x2 = iy2 then z1 + z2 = (x1 + x2) + i(y1 + y2),∀z1, z2 ∈ C.
Proof:

assume that z1 = (x1, y1), z2 = (x2, y2)

∴ z1 + z2 = (x1, y1) + (x2, y2)

= (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i(y1 + y2).

(iii) Multiplication of complex numbers: Ifz1 = x1 + iy1, z2 = x2 =
iy2 then z1z2 = (x1x2 − y1y2) + i(x1y2 − y1x2y2),∀z1, z2 ∈ C.
Proof:

assume that z1 = (x1, y1), z2 = (x2, y2)

∴ z1z2 = (x1, y1)(x2, y2)

= x1(x2 + iy2) + iy1(x2 + iy2)

= x1x2 + i2y1y2 + i(x1y2 + x2y1)

= (x1x2 − y1y2) + i(x1y2 − y1x2y2) ∈ C.

(iv) Two Complex numbers are equal if and only if the real and
imaginary parts of the first number are equal to the corresponding
real and imaginary parts of the second number. Or, z1 = z2 ⇔
(x1 = x2) ∧ (y1 = y2);∀z1 = x1 + iy1, z2 = x2 + iy2.

Proof:
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assume that z1 = (x1, y1), z2 = (x2, y2)

∵ z1 = z2

∴ x1 + iy1 = x2 + iy2

∴ x1 + iy1 − x2 − iy2 = 0

∴ (x1 − x2) + i(y1 − y2) = 0 + i0

∴ (x1 − x2) = 0 ∧ (y1 − y2) = 0

∴ (x1 = x2) ∧ (y1 = y2).

(v) The product of multiplying a complex number by a real number
is a complex number. Or, az ∈ ,∀a ∈ R, z ∈ C.
Proof:

assume that a ∈ R, z = (x+ iy) ∈ C
∵ a = (a+ i0)

∴ az

= (a+ i0)(x+ iy)

= (ax− 0y1) + i(ay − 0x)

= (ax, ay)

= ax+ iay ∈ C.

(vi) As in real numbers, complex numbers have additive, associative,
and distributive properties, and their proofs are left as exercises
for the reader.

(vii) Complex numbers have the property of division. Or, z1
z2
∈

C,∀z1, z2 ̸= 0 ∈ C.
Proof:
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assume that z1 = (x1, y1), z2 = (x2, y2)

∵
z1
z2

=
x1x2 + y1y2
x2 + y22

+ i
x2y1 − x1y2
x2 + y22

∈ C, x2 + y22 ̸= 0

.

There are a number of distinct properties of complex numbers like
adding and multiplying complex numbers. In addition, Euler’s and
De Moiver’s formula on complex numbers, and their theorems on such
types of numbers can be found in the foundations of mathematics. For
more details, the reader can read Hamadameen’s book (Hamadameen,
2022).

Example 2.1 (i) Write the folloing expressions in their simplest
form.

(a) −5(2 + 3i) + 2(3− 2i) + (7 + 5i).

(b) (2, 3)(2,−5)(3, 2).

Solution: (a) −5(2 + 3i) + 2(3− 2i) + (7 + 5i) = (3− 14i).

(b) (2, 3)(2,−5)(3, 2) = (2, 3)[(2,−5)(3, 2)] = (2, 3)(6 + 10, 4 −
15) = (2, 3)(16,−11) = (32+ 33,−22+ 42) = (65, 26) = 65+ 26i.

(ii) Find the values of the following.

(a) i13.

(b) i28.

(c) i2023

Solution: (a) i13 = i12i = (i2)6i = (−1)6i = (1)i = i.

(b) i28 = (i2)14 = (−1)14 = 1.

(c) i2023 = i2022i = (i2)1011i(−1)1011i = (−1)i = −1.
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(iii) Solve (3, 4)2 − 2(x,−y) = (x, y).

Solution:

(3, 4)2 − 2(x,−y) = (x, y)

∴ (9− 16, 12 + 12) + (−2x, 2y) = (x, y)

∴ (−7, 24) + (−2x, 2y) = (x, y)

∴ (−7− 2x, 24 + 2y) = (x, y)

∴ (x = −7− 2x) ∧ (y = 24 + 2y)

∴ x = −7

3
, y = −24.

2.5 Exercises

Solve the following questions:
Q1: Reduce the following expressions to their simplest form:

(i) (7− 5i)(i− 4).

(ii) (a, 5)(3, b)∀a, b ∈ R.

(iii) (2, 3)(3,−3)(3, 4) + (−3, 7)(7,−6).

(iv) (3,5)
(0,2)

.

(v) (2,3)(3,−3)
(3,0)

.

(vi) (8,−5)2.

Q2: Find the value of each x, and y in the following equations:

(i) (7,−2)(x, y) = 3(x,−5y) + (−3, 5).

(ii) (2 + 5i)2 − 3(x− iy) = (x, y).

(iii) (2 + 5i)4 − 3(x− iy) = (x, y).

(iv) (2+i
2−i

)2 + 1
2x+3iy

= 1 + i.
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Q3: Find the value of x in (1, 3) + (3,−1)x = (1, 2)(0, 3).
Q4: If z = (x, y) then prove that 1

z
= ( x

x2+y2
, −y
x2+y2

).
Q5: For all z1, z2, z3 ∈ C prove that:

(i) z1 + (z2 + z3) = (z1 + z2) + z3.

(ii) z1 · (z2 · z3) = (z1 · z2) · z3.

(iii) z1 · (z2 + z3) = (z1 · z2) + (z1 · z3).

Q6: If k ∈ Z then prove that:

(i) i4k+3 = −i.

(ii) i4k+2 = −1.

(iii) i4k+1 = i.

(iv) i4k = 1.

Q7: Prove that (1
2
+

√
3
2
i)3 = −1

Q8: If z, z1, z2 ∈ C then prove that:

(i) R(iz) = −I(z).

(ii) I(iz) = R(z).

(iii) R(z1 + z2) = R(z1) +R(z2).

(iv) I(z1 + z2) = I(z1) + I(z2).

Q9: If x−iy
x+iy

= a+ ib then a2 + b2 = 1.

2.6 Cartesian representation of a complex number

Real numbers can be represented by points on a straight line called the
real number line, and complex numbers can be represented by points in
the plane, where any number z = (x, y) can be linked to the coordinates
(x, y) of the Cartesian plane.

There is a one-to-one symmetric correspondence between the
ordered pairs of real numbers and the points of the Cartesian coordinate
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plane. Thus, we can find unique symmetry between the complex
numbers and the points in the coordinate plane. The real numbers are
the ones that can be written in the form (a, 0), the symmetry is a point
(a, 0) on the horizontal axis, which is called the real axis. Likewise,
purely imaginary numbers, which can be written on the form (0, b)
corresponding to the point (0, b) on the vertical axis which it is called
the imaginary axis.

These two axes form together what is called the complex plane.
It is noted here that while the unit on the real axis is equal to one,
the unit on the imaginary axis is equal to i =

√
−1. Thus, the

number (a, b) represents the point in the complex plane at a distance
a from the real axis and at the distance −b from the imaginary
axis, and the following figure shows the Cartesian representation
of some complex numbers, where the symbol of the real axis is R,
while the imaginary axis with the symbol I. For example, points:
A(0, 0), B(3, 0), C(2, 3), D(−3, 0), E(0,−3), F (−2,−3), g(2,−3), and
H(0, 3) can be plotted in the complex cartesian as shown in Figure
2.2.

2.7 Adding and subtracting complex numbers

Since the sum of two complex numbers is a complex number whose real
part is the sum of the two real parts and its imaginary part is the sum of
its two imaginary parts, therefore, the sum represents the resulting new
point which is the end of the diagonal of the parallelogram as shown
in Figure 2.3, and in which 0z1, 0z2 are adjacent sides and in the same
method it is possible to subtract two complex numbers.

This method of addition indicates that the complex number can be
considered as a vector at the Cartesian plane according to the rules
of directional addition. Therefore, any number z can be represented
either in the form (x + iy) or in the form of an ordered pair (x, y)

that corresponds to a point in the form of
−→
0z, and the two components

of the vector represent the real and imaginary part of the number.
Furthermore, this representation is known as the Argand form (Wells,
2008; Jones, 2011; Flanigan, 1983).



20 Finite Mathematics

Figure 2.2: Cartesian representation of a complex number
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Figure 2.3: Adding and subtracting complex numbers
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Example 2.2 if z1 = (3 + i), z2 = (−1 + 2i), then:
(1) z1 + z2 = (3 + i) + (−1 + 2i) = (3 + i). (2) z1 − z2 = (3 + i)−

(−1 + 2i) = (4− i).

2.8 Polar form of a complex number

The polar form of a complex number is another way to represent
a complex number. The formz = x + yi is called the rectangular
coordinate form of a complex number.

The horizontal axis is the real axis and the vertical axis is the
imaginary axis. We find the real and complex components in terms
of r and ϕ where r is the length of the vector and ϕ is the angle made
with the real axis, as shown in Figure 2.3.

From Pythagorean Theorem (Sparks, 2008), we have:
r2 = a2 + b2.
On the other hand, by using the basic trigonometric ratios (Khan,

2020; Szetela, 1979):
cosϕ = x

r
, sinϕ = y

r
. Or, rcosϕ = x, rsinϕ = y, the rectangular

form of a complex number is given by z = x+ iy. Substitute the values
of x, y, we get:

z = x+ iy = rcosϕ+ i(rsinϕ) = r(cosϕ+ isinϕ).
In the case of a complex number, r represents the absolute value or

modulus and the angle ϕ is called the argument of the complex number.
This can be summarized as follows:

The polar form of a complex number:
z = x + iy = r(cosϕ + isinϕ), where r = |z| =

√
x2 + y2, x =

rcosϕ, y = rsinϕ, and ϕ = tan−1( y
x
),∀x > 0, ϕ = tan−1( y

x
)+π,∀x < 0.

Note: (1) sin(ϕ + 2kπ) = sinϕ, ∀k ∈ Z. (2) cos(ϕ + 2kπ) =
cosϕ, ∀k ∈ Z.

Example 2.3 Express each of z1 = (3,−3), z2 = (−5, 0) by polar form.
Solution: r =

√
32 + (−3)2 = 3

√
2.

tanϕ = −3
3

= −1.
Therefore, ϕ = 135◦, or ϕ = 315◦.
Thus, z1 = (3,−3) = 3

√
2(cos135◦, sin135◦), or z1 = (3,−3) =

3
√
2(cos315◦, sin315◦).
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Figure 2.4: The polar form of a complex number
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By the same way, z2 = (−5, 0) = 5(cos180◦ + sin180◦).

2.9 Exercises

Find the polar form of the following complex numbers:
Q1: (1) −7i. (2) i. (3) −8.
Q2: (1) (−1

2
+

√
3
2
i). (2) (1

2
+

√
3
2
i). (3) (−1 + i).

Q3: (1) (−5 + 3i). (2) (1−
√
3 + (1 +

√
3)i). (3) (

√
5− i).

Q4: (1)
√
2 + i. (2)

√
2− i. (3) ()3 + cosα + isinα).

Q5: (cosα + sinγ + i(cosα + sinγ)).
Q6: Find the Cartesian form for the following complex numbers:
(1) 3

2
(sinpi

4
, cospi

4
).

(2) 4
√
3(cos30◦, sin30◦).

(3) 6(cos270◦, sin270◦).
(4) −2(cos180◦, sin180◦).
(5) (−cos180◦, sin180◦).
(6) (−cos180◦, sin180◦).
(7) 2+

√
3

2
(cos30◦, sin90◦).

2.10 Products and quotients of complex numbers
in polar form

The complex numbers in the polar system can be multiplied and divided
based on the following two theorems with the help of the following
lemma to prove those theorems (Phillips, 2020; Ledermann, 2013a;
George, 1967; Spiegel et al., 2009; Priestley, 2003).

Lemma:

(i) cos(α± β) = cosαcosβ ± sinαsinβ.

(ii) sin(α± β) = sinαcosβ ± cosαsinβ.

(iii) cos2α + sin2α = 1 = (1, 0) = (cos2α + sin2α, 0).

Theorem 2.1 The absolute value of a product of two complex numbers
is equal to the product of the absolute values, and the argument of the



Complex Numbers 25

product of two complex numbers is equal to the sum of their arguments.
Or,

|z1z2| = r1r2

arg(z1z2) = arg(z1) + arg(z2)

Proof

Suppose that z1 = r1(cosϕ1, sinϕ1), z2 = r2(cosϕ2, sinϕ2).

∴ z1z2 = r1r2(cosϕ1cosϕ2 − sinϕ1sinϕ2, sinϕ2cosϕ1 + cosϕ2sinϕ1)

= r1r2(cos(ϕ1 + ϕ2), sin(ϕ1 + ϕ2))

∴ |z1z2| = r1r2 |(cos(ϕ1 + ϕ2), sin(ϕ1 + ϕ2))|
∴ r1r2

√
cos2(ϕ1 + ϕ2) + sin2(ϕ1 + ϕ2)

= r1r2

∴ arg(z1, z2) = ϕ1 + ϕ2

= arg(z1) + arg(z1). ♦

Example 2.4 Find z1z2 of z1 = 3(cos120◦, sin120◦), z2 =
5(cos150◦, sin150◦).

Solution: z1z2 = 15(cos(120◦ + 150◦), sin(120◦ + 150◦) =
15(0,−1) = (0,−15).

= 15(0,−1) = (0,−15).

Theorem 2.2 The absolute value of a quotient of two complex numbers
is equal to the quotient of the absolute values, and the argument of
the quotient of two complex numbers is equal to difference between the
arguments . Or, ∣∣∣∣z1z2

∣∣∣∣ = r1
r2

arg(
z1
z2
) = arg(z1)− arg(z2)
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Proof

Suppose that z1 = r1(cosϕ1 + isinϕ1), z2 = r2(cosϕ2 + isinϕ2).

∴
z1
z2

=
r1(cosϕ1 + isinϕ1)

r2(cosϕ2 + isinϕ2)
,

=
r1
r2
· (cosϕ1, sinϕ1)

(cosϕ2, sinϕ2)
· (cosϕ2,−sinϕ2)

(cosϕ2,−sinϕ2)
,

=
r1
r2
· (cosϕ1, sinϕ1)(cosϕ2,−sinϕ2)

(cos2ϕ2 + sin2ϕ2, 0)
,

=
r1
r2
(cosϕ1cosϕ2 + sinϕ1sinϕ2 − (cosϕ1sinϕ2 + sinϕ1cosϕ2))

=
r1
r2
(cos(ϕ1 − ϕ2), sin(ϕ1 − ϕ2)).

∴

∣∣∣∣Z1

z2

∣∣∣∣ = r1
r2
|(cos(ϕ1 − ϕ2), sin(ϕ1 − ϕ2))| .

=
r1
r2
.

∴ arg(
z1
z2
) = ϕ1 − ϕ2,

= arg(z1)− arg(z2). ♦

Example 2.5 If z1 = 7(cos95◦, sin95◦), z2 = 9(cos65◦, sin65◦) then
find z1

z2
.

Solution: z1
z2

= 7
9
(cos30◦, sin30◦) = 7

9
(
√
3
2
, 1
2
) = (7

√
3

18
, 7
18
).

2.11 De Moivre’s theorem

De Moiver’s theorem is one of the most important mathematical
theories in the development of analytical geometry. The correct
formula for the correct image pattern, and how to visualize it, in
addition to using the well-known theory, can be found in the studies
(Lial, 2016; Mukhopadhyay, 2006; Brand, 1942).

As mathematics is not just a part of our lives, it is our entire life, it
is an integral part of our day, every detail in your life is a set of data,
and everything that happens to us is a result of these data, so if we
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stop for a moment and look around us, we will find that the world is
going according to the rules of mathematics and for this studying this
theory and getting to know it is very important (Schaumberger, 1968).

Theorem 2.3 Let z = r(cosϕ, isinϕ) be a complex number, and n any
integer, then zn = rn(cos(nϕ), isin(nϕ)).

Proof We will prove the formula by mathematical induction as
follows:

(1) If n = 1, then

z1 = r1(cos(1ϕ), isin(1ϕ))

= r(cosϕ, isinϕ)

∴ the formula is true wheren = 1.

(2) Suppose that the formula is true where n = k,

∴ zk = rk(cos(kϕ), isin(kϕ))...(2).

(3) Now, we have to prove where n = k + 1.

Now, multiplying(2)by(1),we get :

zk+1 = rk(cos(kϕ), isin(kϕ))r(cosϕ, isinϕ)

= (r(cosϕ, isinϕ))k+1

= rk+1(cos(k + 1)ϕ, sin(k + 1)ϕ)

∴ the theorem is true for all n ∈ N. ♦

Corollary If r= 1, then the De Moivre’s theorem became:
(cosϕ, isinϕ)n = (cos(nϕ), (nϕ)).

Proof The proof has been left as an exercise for a reader. ♦

Example 2.6 Use the corollary of De Moivre’s theorem to evaluate
(−
√
3, 1)9.
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Solution: The polar form of

(−
√
3, 1) = 2(cos150◦, sin150◦).

∴ (−
√
3, 1)9 = (2(cos150◦, sin150◦))9

= 29(cos9(150◦), sin9(150◦))

= 512(cos1350◦, sin1350◦)

= 512(0,−1)
= (0,−512).

2.12 Exercises

Solve the following questions:
Q1: Write the result in the algebraic form x+ iy for the following:

(i) 2(cos30◦, sin30◦) · 4(cos45◦, sin45◦).

(ii) 4(cos50◦, sin50◦) · 5(cos250◦, sin250◦).

(iii) 12(cos245◦, sin245◦)/3(cos20◦, sin20◦).

(iv) (−
√
3, 1)/(cos150◦, sin150◦).

Q2: Convert the following expressions to the polar form, then find
the product and verify the validity of the result by finding the product
algebraically:

(i) (2,−2) · (
√
2, 1).

(ii) (1,−
√
3) · (−2

√
3,−2).

(iii) (4, 4) · (−2,−2).

Q3: Convert the following expressions to the algebraic form, then
find the product and verify the validity of the result by finding the
product in the polar form:

(i) 5(cos330◦, sin330◦) · 4(cos210◦, sin210◦).

(ii) 2(cos30◦, sin30◦) · 6(cos240◦, sin240◦).
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(iii) 4(cos245◦, sin245◦) · 3(cos20◦, sin20◦).

(iv) −2(cos180◦, sin180◦) · 3(cos150◦, sin150◦).

Q4: Use De Moivre’s theorem and its corollary to find the result of
the following expressions. And, express the results algebraically.

(i) 9(cos30◦, sin30◦)3.

(ii)
√
3(cos45◦, sin45◦)7.

(iii)
√
2(cos50◦, sin50◦)6.

Q5: If z = (1, 1) what is the result of z2, z3?
Q6: By using the polar form prove that if the product of two

complex numbers is zero then at least one of these numbers is a zero.
Q7: Prove that, if z = r(cosϕ, sinϕ) then 1

z
= 1

r
(cosϕ,−sinϕ).

Q8: Simplify each of:

(i) ( (1+sinϕ,cosϕ)
(1+sinϕ,−cosϕ)

)n.

(ii) (sinα− sinβ, cosα− cosβ)n.

Q9: Prove that (
√
3 + i)n + (

√
3− i)n = 2n+1cosnπ

6
; ∀n ∈ Z+.

Q10: If sinα + sinβ + sinγ = cosα + cosβ + cosγ then prove that
sin3α + sin3β + sin3γ = 3sin(α + β + γ).

2.13 Conjugate number

Each complex number has the conjugate number. Or, a conjugate of a
complex number is another complex number which has the same real
part as the original complex number and the imaginary part has the
same magnitude but opposite sign. If we multiply a complex number
with its conjugate, we get a real number, defined as follows;

Definition 2.2 Defined a conjugate of the complex number z =
(x, y) = x + iy is another complex number z̄ = (x,−y) = x −
iy (Andreescu and Andrica, 2006; Hahn, 1994; Ledermann, 2013b;
Schwerdtfeger, 2020; Sikka, 2017), as shown in the Figure 2.2.
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Figure 2.5: Conjugate of complex number
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2.14 Properties of complex numbers and their
conjugates

In this section, we will study some of the features and characteristics
of complex numbers and their conjugates based on the results obtained
from some researchers’ work in the field of complex numbers (Bourbaki,
1994; Hamadameen, 2022; Axler, 2010; Spiegel et al., 2009; Brown
and Churchill, 2009; Apostol, 1974; Apostol and Ablow, 1958; Apostol,
1981).

(i) Conjugate is a factor of the factors of differences of squares of the
complex numbers. Mathematically, (x+ iy)(x− iy) = x2− i2y2 =
x2+y2. For example, 5 = 2+3 = 2−3i2 = (

√
2−
√
3i)(
√
2+
√
3i).

(ii) The sum of any complex number and its conjugate is the real
number and is equal to twice the real part of the complex number.
Mathematically, z+ z̄ = (x, y)+ (x,−y) = x+ iy+x− iy = 2x =
(2x, 0),∀z, z̄ ∈ C. For example, (3 + 5i) + (3− 5i) = 6 = 2(3).

(iii) The result of subtracting of the conjugate from a complex number
is an imaginary number, and is equal to twice the imaginary part.
Mathematically, z− z̄ = (x, y)− (x,−y) = x+ iy−x+ iy = 2iy =
(0, 2iy),∀z, z̄ ∈ C. For example, (

√
5 −
√
7i) − (

√
5 +
√
7i) =√

5−
√
7i−

√
5−
√
7i = −2

√
7i.

(iv) The product of multiplying any complex number by its conjugate
is a real number and is called the square of the absolute value of
a complex number and is equal to the sum of the square of the
real part and the square of the imaginary part. Or, The product
is called the square of the length of the complex number or the
square of its absolute value.

Proof:
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assume that z = (x, y)

∴ z̄ = (x,−y)
Also the product = zz̄ = (x2 + y2, xy − xy)

= (x2 + y2, 0)

= x2 + y2 + 0i

= x2 + y2

= r2

∴ zz̄ = z̄z = |z|2

∴ r = |z| =
√
zz̄.

See the example in (i).

(v) (a) The conjugate of an algebraic sum is the algebraic sum of
conjugates. Or, z1 + zz = z̄1 + z̄2.

Proof:

Assume that z1 = (x1, y1), z2 = (x2, y2)

∴ z̄1 = (x1,−y1), z̄2 = (x2,−y2)
z1 + z2 = (x1 + x2, y1 + y2)

L. H. S. is z1 + z2 = (x1 + x2,−y1 − y2)
= (x1,−y1) + (x1,−y1)

= z̄1 + z̄2...(1).

R. H. S. is z̄1 + z̄2 = (x1,−y1) + (x2,−y2)
= (x1 + x2,−y1 − y2)
= (x1 + x2,−y1 − y2)

= z1 + z2...(2)

∵ (1) = (2)

∴ z1 + z2 = z̄1 + z̄2.

(b) The conjugate of an algebraic subtraction is the algebraic
subtraction of conjugates. Or, z1 − z2 = z̄1 − z̄2.
Proof:

The same method of (a).
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(vi) Conjugate of the conjugate of a complex number is the complex
number itself. Or, ¯̄z = z.

Proof:

Assume that z = (x, y)

∴ z̄ = (x,−y)
∴ ¯̄z = (x,−(−y))

= (x, y)

= z.

(vii) (a) The conjugate of multiplication of complex numbers is the
multiplication of conjugates of them. Or, z1 · z2 = z̄1 · z̄2.
Proof:

Assume that z1 = (x1, y1), z2 = (x2, y2)

∴ z̄1 = (x1,−y1), z̄2 = (x2,−y2)
∴ z1 · z2 = (x1x2 − y1y2, x1y2 + y1x2)

∴ z1 · z2 = (x1x2 − y1y2,−x1y2 − y1x2)...(1).
∵ z̄1 · z̄2 = (x1,−y1) · (x2,−y2)

= (x1x2 − y1y2,−x1y2 − y1x2)...(2).
∵ (1) = (2)

∴ z1 · z2 = z̄1 · z̄2.

(b) The conjugate of division of complex numbers is the division
of conjugates of them. Or, ( z1

z2
) = z̄1

z̄2
.

Proof:
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By using (a), we have (
z1
z2
),
z̄1
z̄2

∴ z̄2 · (
z1
z2
); z̄2 ̸= 0

= (
z2 · z1
z2

)

= z̄1...(1).

∵ z̄2 ·
z̄1
z̄2

= z̄1...(2).

∵ (1) = (2)

∴ (
z1
z2
) =

z̄1
z̄2
.

(viii) (a) The product of the absolute value of two complex numbers is
equal to the product of their absolute values. Or, |z1 · z2| =
|z1| · |z2|.
Proof:

By using (iv), we can prove (a), as follows:

|z1 · z2|2 = (z1 · z2)(z1 · z2)
= (z1 · z2)(z̄1 · z̄2)
= (z1 · z̄1)(z2 · z̄2)

= |z1|2 · |z2|2

∴ |z1 · z2| = |z1| · |z2| .

(b) The division of the absolute value of two complex numbers is

equal to the division of their absolute values. Or,
∣∣∣ z1z2 ∣∣∣ = |z1|

|z2| .

Proof:
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We prove this claim by using (a) as follows :

|z2|
∣∣∣∣z1z2
∣∣∣∣

=

∣∣∣∣z2 · z1z2
∣∣∣∣

= |z1| ...(1).

∵ |z2|
|z1|
|z2|

= |z1| ...(2).
∵ (1) = (2)

∴

∣∣∣∣z1z2
∣∣∣∣ = |z1||z2| .

(ix) (a) ∀z ∈ C, |z| = |z̄|.
Proof:

Suppose that :

z = (x, y)

∴ |z| = |(x, y)|
=
√
x2 + y2

=
√
x2 + (−y)2

= |(x,−y)|
= |z̄| .

(b) − |z̄| ≤ R(z) ≤ |z|.
Proof:

∵ y2 ≥ 0

∴ −
√
x2 + y2 ≤ x ≤

√
x2 + y2

∴ − |z̄| ≤ R(z) ≤ |z| .

(c) − |z̄| ≤ I(z) ≤ |z|.
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Proof:
∵ x2 ≥ 0

∴ −
√
x2 + y2 ≤ y ≤

√
x2 + y2

∴ − |z̄| ≤ I(z) ≤ |z| .

2.15 Exercises

Solve the following questions:
Q1: Write the following algebraic expressions in simplest form:

(i) (5,5)
(3,4)

+ (5,−5)
(3,−4)

.

(ii) 2i
1+i
− 2+i

2−i
.

(iii) (2,36)
6,8

+ (7,26)
(3,−2)

.

(iv) sinα+icosα
cosα−isinα

.

(v) (a,b)2

(a,−b)2
− (a,−b)2

(a,b)2
,∀a, b ∈ R.

(vi) (
√
2+i)3(2−i)4

(2+3i)4
.

Q2: If z ∈ C then prove that z + 5i = z − 5i.
Q3: Find the absolute values of the following complex numbers:

(i) cos2β + isin2β.

(ii) (2,−3)(3,−2)
(3,4)(4,3)

.

(iii) 1+
√
3+i

1−i
.

(iv) 1−
√
3+2i

1+i
.

Q4: If (2,2)2

(2,−2)2
+ 4

(x,y)
= (4, 4) then find the values of x, y.

Q5: Find the number of complex numbers which are conjugate of
their own cube?

Q6: If (x+ iy)4 = a+ ib then prove that a2 + b2 = (x2 + y2)4.
Q7: Find each of x, y of the equation: (1 + i)x+ 2(1− 2i)y = 3.
Q8: For each complex number z prove that:
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(i) R(z) = 1/2(z + z).

(ii) I(z) = 1/2i(z − z).

(iii) arg(z) = −arg(z).

Q9: ( z1
z2
) = arg(z1)− arg(z2)(mod2π).

2.16 Absolute value inequalities

We already knew in the previous section that the absolute value of
the product of two complex numbers is equal to the product of their
absolute values. But the matter is different with regard to the absolute
value of the sum of two complex numbers because it depends on the
following theorem (Khamsi and Kirk, 2011; Jacobs and Geometry, 1974;
Abramowitz et al., 1988; Abramowitz and Stegun, 1948; Apostol, 1967;
Krantz et al., 1999).

Theorem 2.4 the absolute value of the addition of two complex
numbers is less than or equal to the addition of their absolute values.
Or, |z1 + z2| ≤ |z1|+ |z2| ,∀z1, z2 ∈ C.
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Proof
Let us consider z1 = (x1, y1), z2 = (x2, y2)

∴ |z1 + z2|2 = (z1 + z2)(z1 + z2)

= (z1 + z2) + (z1 + z1)

= z1z1 + z2z2 + z1z2 + z2z1

= |z1|2 + |z2|2 + (z1z2 + z2z1)...(1)

∵ z2z1 is the conjugate of z1z2,

∴ z1z2 + z2z1

= 2(x1x2 + y2y1)

= 2R(z1z2) ≤ 2 |z1z2|
≤ 2 |z1| |z2|

= 2 |z1| |z2| , (|z2| = |z2|)
By substituting in (1), we get;

|z1 + z2|2 ≤ |z1|2 + |z2|2 + 2 |z1| |z2|
= |z1 + z2|2 ≤ (|z1|+ |z2|)2

∴ |z1 + z2| ≤ |z1|+ |z2| . ♦

Theorem 2.5 the absolute value of the addition of any numbers of
complex numbers is less than or equal to the addition of their absolute
values. Or, |z1 + z2 + ...zn| ≤ |z1|+|z2|+|z3|+...+|zn| ,∀z1, z2, ...zn ∈ C.
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Proof

We prove this theorm by mathematical induction.

(1)if n = 1,

then |z1| ≤ |z1|
∴ the theorem is true.

(2)Suppose that the theorem is true whenn = k.

Or, |z1 + z2 + ...zk| ≤ |z1|+ |z2|+ |z3|+ ...+ |zk| ,∀z1, z2, ...zk ∈ C.
(3)Now, we have to prove that the theorem is true if n = k + 1.

|z1 + z2 + ...zk + zk+1| ≤ |(z1 + z2 + ...zk) + zk+1|
≤ |(z1 + z2 + ...zk)|+ |zk+1|
≤ |z1|+ |z2|+ ...+ |zk+1| .

∴ the theorem is true where n = k + 1.

Thus, the theorem is true for all n ∈ N. ♦

Example 2.7 If |z| ≤ 2 then prove that the maximum value of the
term |z2|+ 2 is 6.

Solution: |z2 + 2| ≤ |z2|+ |22| = 22 + 2 = 6.

2.17 Exercises

Solve the following questions:
Q1: Prove that |z1 − z2| ≥ |z1| − |z2|; (Hint: z1 = z2 + (z1 − z2)).
Q2: If |z| ≤ 2 what is the maximum value of |z3 + z2 + z + 1|?
Q3: Find the locus of the equation |z − 3|+ |z + 3| = 10.
Q4: Prove that |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2) + |z2|2. 4
Q5: If |z2 − z1|2 = |z2 − z0|2 + |z1 − z0|2 then z2 − z0 = iλ(z1 −

z0), λ ∈ R.
Q6: If zi, wi ∈ C, i = 1, 2, ..., n then prove that:

|
∑n

i ziwi| ≤
√∑n

i |zi|
2
√∑n

i |wi|2.
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2.18 Square root of complex number

Finding the square root of the complex number z is equivalent to finding
the solution of the equation:

w2 = z (2.2)

To solve (2.2), we suppose that:

w = x+ iy

z = a+ ib

Or,

(x+ iy)2 = a+ iy

x2 − y2 − 2ixy = a+ ib

By equating the real and imaginary partials in the two equations,
we find that:

x2 − y2 = a

2xy = b
(2.3)

Now, the aim is to find the values of x, y in terms of a, b. By
squaring both sides of the equation (2.3), adding them, and simplifying
the results, we get:

x2 − y2 =
√
a2 + b2

2xy = b
(2.4)

The equation (2.4) can be written as:

x2 =
a+
√
a2 + b2

2

y2 =
−a+

√
a2 + b2

2

(2.5)
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Or,

x = ∓

√
a+
√
a2 + b2

2

y = ∓

√
−a+

√
a2 + b2

2

(2.6)

Thus, (2.3) has the solution ∓(x+ iy), where the values of x, y can
be requested in (2.6).

Example 2.8 Find the square root of complex number 9+40i. (Hint:
To find the square root of a complex number, we will assume the root
to be a+ ib. Then we can compare it with the original number to find
the values of a and b, which will give us the square root).
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Solution:

Let 9 + 40i = (a+ ib)2

We will simplify this equation by proceeding as

9 + 40i = a2 + (ib)2 + 2(ab)i

9 + 40i = a2 − b2 + 2(ab)i

By comparing the real and imaginary parts :

a2 − b2 = 9...(1)

2ab = 40...(2)

Using equation (1) we can write that :

a2 = 9 + b2

⇒ a = ∓
√
9 + b2

Substituting this value in (2) :

∓2(
√
9 + b2b = 40

⇒ ∓b
√
9 + b2 = 20

Squaring both sides of the equation,

b2(9 + b2) = 400

⇒ b4 + 9b2 − 400 = 0

⇒ b4 + 25bb2 − 16b2 − 400 = 0

⇒ (b2 − 16)(b2 + 25) = 0

⇒ b2 = 16 ∨ b2 = −25(rejected because square cannot be negative).

⇒ b = 4,−4
Substituting the value of b in(1) :

∴ a2 = 9

⇒ a2 = 25

⇒ a = ∓5

∴
√
9 + 40i =

{
5 + 4i
−5− 4i

Example 2.9 Find the square root of −4− 3i.
Solution: The solution steps have been left as an exercise to the

reader , and the result is ∓ 1√
2
(3 + i).
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2.19 Exercises

Solve the following questions:
Q1: Find the square roots of each of:

(i) i.

(ii) −3i.

(iii) −1
2
+

√
3
2
i

(iv) a2 − 1 + 2ai, a ∈ R.

(v) −21− 20i.

(vi) 1 + 4
√
3i.

(vii) −8− 6i.

(viii) 3 + 4i.

Q2: Solve the following equations:

(i) x2 + x+ 1.

(ii) x2 − 3
2
x+ 1.

(iii) x4 − 1.

(iv) x5 = x.

(v) x4 − 1− 1√
3
i.

(vi) (1− i)x2 + (11 + 9i)x− 20 + 8i = 0.

(vii) x5 + x3 = 0.
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2.20 Roots of complex numbers

An nth root of a number x is a number r which, when raised to the
power n, yields x:

rn = x, where n is a positive integer, sometimes called the degree of
the root. A root of degree 2 is called a square root and a root of degree
3, a cube root. Roots of higher degree are referred by using ordinal
numbers, as in fourth root, twentieth root,...etc. The computation of
an nth root is a root extraction.

Any non-zero number considered as a complex number has n
different complex nth roots, including the real ones (at most two). The
nth root of 0 is zero for all positive integers n, since 0n = 0.

Definition 2.3 If z, w are complex numbers, and wn = z then w is
called the nth root of z (Andreescu and Andrica, 2006; Bak et al., 2010).

Theorem 2.6 For all nonzero complex number z = r(cosϕ + isinϕ)
has nth root in the form:

n
√
z = n
√
r(cos(

ϕ+ 2πk

n
) + isin(

ϕ+ 2πk

n
)), k = 0, 1, ..., n− 1 (2.7)
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Proof

By using De Moivre’s theorem, we get:

n
√
z = ( n

√
r(cos(

ϕ+ 2πk

n
) + isin(

ϕ+ 2πk

n
)))n

= r(cos(ϕ+ 2kπ) + isin(ϕ+ 2kπ))

= r(cosϕ+ isinϕ)

∴ ∀n ∈ Z+(2.7) is the (n)th roof for Z.

Now, we are going to prove that for all different values of,

k there are different roots.

Since two complex numbers are equal if their absolute values,

and arguments are equal.

Or if the difference between the two arguments is a multiple of 2.

Suppose that k1, k2 two different values of K,

such that (0 ≤ k ≤ n− 1) ∧ (k1 < k2).

Obviously, (
ϕ+ 2πk1

n
) ∧ (

ϕ+ 2πk2
n

), are not equal.

Because the difference between them is (
2π(k2 − k1

n
).

Morever, the difference is less than 2π.

Thus, if w is the nth roor for z, thenw is the solution for (2.7)

∴ wn − z = 0, and this equation has at most n roots.

∴ z = r(cosϕ+ isinϕ) has exactly n roots. ♦

Example 2.10 Find 3
√
8i.
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Solution:

∵ 8i = (0, 8) = 8(cos90◦, sin90◦),

∴ 3
√
8i = 3

√
(0, 8) =

3
√
8(cos

90 + 2kπ

3
, sin

90 + 2kπ

3
).

= 2(cos30◦ + k(30◦), sin30◦ + k(30◦)), k = 0, 1, 2.

k = 0⇒ r1 = 2(cos30◦, cos30◦)

= (
√
3, 1)

=
√
3 + i.

k = 1⇒ r2 = 2(cos150◦, cos150◦)

= (−
√
3, 1)

= −
√
3 + i.

k = 2⇒ r2 = 2(cos270◦, cos270◦)

= (0,−2)
= −2i.

Note: If k = 3 then r3 = r1.

2.21 Exercises

Solve the following problems:
Q1: Express the following roots in polar forms:

(i) x4 = −16i.

(ii) x3 = 1− i.

(iii) x4 = (−1
2
,
√
3
2
).

(iv) x6 = ((1 +
√
3) + (1−

√
3)i).

(v)
∑4

i=0 x
4−i = 0.

Q2: By Solving the equation x ∗ 5 = i algebraically and polarly,
prove that:
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cos18◦ =

√√
5+2

√
5

5
√

176+8
√
5
=

√
10+2

√
5

4
.

sin18◦ = 1
5
√

176+8
√
5
=

√
5−1
4

.

2.22 Roots of unity

This section deals with a special case of Theorem 2.6, in which we try
to study the equation:

xn = 1 (2.8)

whose solutions are known by the nth root of unity;
1 = (1, 0) = (cos0◦, sin0◦).
Thus, the nth root given in the form:
x = (cos2kπ

n
, sin2kπ

n
), k = 0, 1, 2, ..., n− 1.

If k = 0 then x = 1. The reminder n − 1 roots is wk, where
w = (cos2π

n
, sin2π

n
).

Since, xn − 1 = (x− 1)(xn−1 + xn−2 + ..., x+ 1).
Thus, w,w2, w3, ..., wn−1 are roots of the equation:
(xn−1 + xn−2 + ..., x+ 1).
For the certain values of n can be solved algebraically, and by

comparssion between the algebraic and polar solutions, the algebraic
expressions cos(2π

n
), sin(2π

n
) can be obtained. There are some important

interesting properties of the roots of the unity in the literature
(Lang, 1984; Bini and Pan, 2012).

Example 2.11 The cube root of the unity is w = (cos2π
3
, sin2π

3
).

w fulfills the equation x2 + x+ 1 = 0.

∵ (−1

2
,

√
3

2
), (−1

2
,−
√
3

2
) are roots for the equation,

besides cos
2π

3
is positive and sin

2π

3
is negative,

∴ (cos
2π

3
, sin

2π

3
) = (−1

2
,

√
3

2
).

∴ cos
2π

3
= −1

2
, sin

2π

3
=

√
3

2
.
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Example 2.12 The 5th root of the unity is w = (cos2π
5
, sin2π

5
).

w fulfills the equation x4 + x3 + x2 + x+ 1 = 0.

The typical solution of the equation is as follows:

Dividing the equation by x2, it becomes:

x2 +
1

x2
+ x+

1

x
+ 1 = 0.

Let x+
1

x
= y,

∴ x2 +
1

x2
= y2 − 2.

Thus, we have the equation y2 + y + 1 = 0.

∴ y1 =
−1 +

√
5

2
, y2 =

−1−
√
5

2
.

Now, by solving the equations:

x+
1

x
= y1,

x+
1

x
= y2.

Or,

x2 − y1x+ 1 = 0,

x2 − y2x+ 1 = 0.

The set solutions of these two equations are:

(
−1 +

√
5

4
,

√
10 + 2

√
5

4
), (
−1 +

√
5

4
,
−
√
10 + 2

√
5

4
),

(
−1−

√
5

4
,

√
10− 2

√
5

4
), (
−1−

√
5

4
,
−
√

10− 2
√
5

4
).

But each of cos
2π

5
, sin

2π

5
are positive,

∴ (cos
2π

5
, sin

2π

5
) = (

−1 +
√
5

4
,

√
10 + 2

√
5

4
).

∴ cos
2π

5
=
−1 +

√
5

4
, sin

2π

5
=

√
10 + 2

√
5

4
.
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2.23 Exercises

Solve the following questions:
Q1: Prove that the 24th root of the unity (cos15◦, sin15◦) is

fulfills the equation x8 − x4 + 1 = 0. Furthermore, find an express
algebraically and polarity to the equation. (Hint: x24 − 1 = (x12 −
1)(x4 + 1)(x8 − x4 + 1).)

Q2: If the 7th root of the unity fulfills the equation x6+x5+x4+x3+
x2+x+1 = 0, dividing by x3, and assuming y = x+ 1

x
then prove that

the roots of the equation y3+y2−2y−1 = 0 are 2cos2π
7
, 2cos4π

7
, 2cos6π

7
.

Q3: If you know that the 9th root unity is fulfills the equation
x6+x3+1 = 0, then prove that the roots of the equation y3−3y+1 = 0
are 2cos8π

9
, 2cos4π

9
, 2cos2π

9
.

Q4: Find the 4th root of −3− 3i.
Q5: Find the 4th root of the following complex numbers:

(i) −1
2
+ 2

3
i.

(ii) −3
4
i.

Q5: Find the 7th root of the following complex numbers:

(i) −3
2
+

√
2
3
i.

(ii)
√
3
5
i.

(iii)
√

1− 2
3
i.

(iv) (1 + i)
1
3 .

(v) (1− 2i)
1
5 .

(vi) (2 + 3i)
1
3 .

(vii) (3− 3i)
1
3 .

(viii) (3− 3i)4.
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Q6: Prove that the roots of the equation x3 + x2 − 2x− 1 = 0 are
2cos2

7
π, 2cos4

7
π, 2cos6

7
π.

Q7: Prove that the roots of the equation x3 − 3x + 1 = 0 are
2cos8

9
π, 2cos4

9
π, 2cos2

9
π. Noting that the ninth root of the integer unit

satisfies the equation x6 + x3 + 1 = 0.



3

Polynomials

3.1 Introduction

T
here are some sets in mathematics with certain conditions
and characteristics that have a pivotal role in structural

the infrastructure of mathematics, such as; mathematical systems,
numerical systems, groups, rings, and fields. In what follows, we begin
by defining and studying each of the rings and fields due to their basic
role related to polynomials.

3.1.1 Field of real numbers

In mathematics, a real closed field is a field F that has the same first-
order properties as the field of real numbers. Some examples are the
field of real numbers, the field of real algebraic numbers, and the field
of hyper-real numbers. The field of reals is the set of real numbers,
which form a field. This field is commonly denoted R.

3.1.2 Real number ring properties

The field F of real numbers has these basic properties (Beachy and
Blair, 2006; Fraleigh, 2003; McCoy, 1968):
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(i) The addition operation is closed on F . Or, (a+ b) ∈ F, ∀a, b ∈ F .

(ii) The multiplication operation is closed on F . Or, (a.b) ∈ F, ∀a, b ∈
F .

(iii) Associativity of addition. Or, a+(b+c) = (a+b)+c,∀a, b, c ∈ F .

(iv) Associativity of multiplication. Or, a.(b.c) = (a.b).c,∀a, b, c ∈ F .

(v) Commutativity of addition. Or, a+ b = b+ a,∀a, b ∈ F .

(vi) Commutativity of multiplication. Or, a.b = b.a,∀a, b ∈ F .

(vii) Additive identity. Or, there exist a distinct element 0 ∈ F such
that a+ 0 = a.

(viii) Multiplicative identity. Or, there exist a distinct element 1 ∈ F
such that a.1 = a.

(ix) Additive inverses. Or, ∀a ∈ F, ∃(−a) ∈ F called the additive
inverse of a, such that a+ (−a) = 0.

(x) Multiplicative inverses. Or, 0 ̸= ∀a ∈ F, ∃a−1 ∈ F , called the
multiplicative inverse of a, such that a.a−1 = 1.

(xi) Distributivity of multiplication over addition. Or, a.(b + c) =
(a.b) + (a.c),∀a, b, c ∈ F .

Note:
(1) Since the commutative property is available in the ring of real

numbers, it is always a commutative ring.
(2) If the ring has multiplicative inverses element, it called a ring

with a multiplicative inverses element.

3.1.3 Fields

Based on Hamadameen (2022), and some others (Beachy and Blair,
2006; Fraleigh, 2003; McCoy, 1968; Sharpe, 1987), the field of real
numbers can be defined as follows:
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Definition 3.1 Let ϕ ̸= A, and ∗,# be binary operations on A. The
mathematical system (A, ∗,#) is called a field if and only if

(1) (A, ∗) is a commutative group.
(2) (A′,#′) is a commutative group where A′ = A\ {0}, 0 is a unit

element with respect to ∗, and #′ is a restriction operation on A′.
(3) Distribution laws are fulfilled. Or, if ∀x, y, z ∈ A, then:
(a) x · (y + z) = x · y + x · z.
(b) (y + z) · x = (y · x) + (z · x).

3.2 Polynomials

In mathematics, a polynomial is an expression consisting of variables
and coefficients, that involves only the operations of addition,
subtraction, multiplication, and positive integer powers of variables.
An example of a polynomial of a single variable x is x4 − 4x + 7. An
example with two variables is x3 + 2xy − 1, and so on...

Polynomials appear in many fields of mathematics and science.
For example, they are used to form polynomial equations, which
encode a wide range of problems, from elementary word problems to
complicated scientific problems; they are used to define polynomial
functions, which appear in settings ranging from basic chemistry and
physics to economics and social science; they are used in calculus
and numerical analysis to approximate other functions. In advanced
mathematics, polynomials are used to construct polynomial rings and
algebraic varieties, which are central concepts in algebra and algebraic
geometry (Prasolov, 2004; Marden, 1949; Bell, 1934).

3.2.1 Polynomial concept

Definition 3.2 The polynomial P is a function P (x) : R → R ∋
P (x) = a0+a1x+a2x

2+...+an−1x
x−1+anx

n =
∑n

k=0 akx
k, where ak ∈ R

is a coefficient of xk,∀k = 0, 1, ..., n−1, n (Barbeau, 2003; Borwein and
Erdélyi, 1995).

3.2.2 Properties of polynomials

Polynomials have some important properties, including the following:
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(i) Polynomial equalities. Two polynomials are equal if the
corresponding coefficients are equal in each of them, for example,
polynomials;

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = b3x

3 + b2x
2 + b1x+ b0 ⇔ a4x

4 +
(a3 − b3)x

3 + (a2 − b2)x
2 + (a1 − b1)x + (a0 − b0) = 0 ⇔ a4 =

0, a3 − b3 = 0, a2 − b2 = 0, a1 − b1 = 0, a0 − b0 = 0.

(ii) Addition and subtraction. It is possible to add polynomials
f(x), g(x) in the degrees m, and n respectively, such that n ≤ m,
and the degree of the polynomial (f(x) + g(x)) ≤ m. Morever,
polynomials can be added using the associative law of addition,
possibly followed by reordering, and combining of like terms
(Edward, 1995; Salomon, 2006), for example, polynomials;

If P = 3x2 − 2x + 5xy − 2, Q = −3x2 + 3x + 4y2 + 8 then:
PQ = x+ 5xy + 4y2 + 6.

Note: (1) Subtraction of polynomials is similar. (2) When
polynomials are added together, the result is another polynomial
(Barbeau, 2003).

(iii) Multiplication. Polynomials can also be multiplied. To expand
the product of two polynomials into a sum of terms, the
distributive law is repeatedly applied, which results in each term
of one polynomial being multiplied by every term of the other
(Edward, 1995; Salomon, 2006), for example, polynomials;

If P = 2x+3y+5.Q = 2x+5y+xy+1 then PQ = 4x2+21xy+
2x2y + 12x+ 15y2 + 3xy2 + 28y + 5.

Note: The product of polynomials is always a polynomial
(Barbeau, 2003).

(iv) Composition. Given a polynomial f of a single variable and
another polynomial g of any number of variables, the composition
f ◦ g s obtained by substituting each copy of the variable of the
first polynomial by the second polynomial (Barbeau, 2003). For
example, if f(x) = x2 + 2x, g(x) = 3x + 2 then (f ◦ g)(x) =
f(g(x)) = (3x+ 2)(3x+ 4).
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Note: The composition of two polynomials is another polynomial
(Kriete, 1998).

(v) Division. The division of one polynomial by another is not
typically a polynomial. Instead, such ratios are a more general
family of objects, called rational fractions, rational expressions, or
rational functions, depending on context (Kriete, 1998; Marecek,
2017; Haylock and Cockburn, 2008). For example, 1

x2+1
is not a

polynomial, and it cannot be written as a finite sum of powers of
the variable x.

Note: For polynomials in one variable, there is a notion of
Euclidean division of polynomials, generalizing the Euclidean
division of integers. This notion of the division a(x)

b(x)
results in

two polynomials, a quotient q(x) and a remainder r(x), such
that a = bq + r and degree (r) < degree (b). The quotient
and remainder may be computed by any of several algorithms,
including polynomial long division and synthetic division (Selby
and Slavin, 1991; Marecek, 2017; Lipschutz and Lipson, 2018).

(vi) Factoring. All polynomials with coefficients in a unique
factorization domain also have a factored form in which the
polynomial is written as a product of irreducible polynomials
and a constant. This factored form is unique up to the order of
the factors and their multiplication by an invertible constant. In
the case of the field of complex numbers, the irreducible factors
are linear. Over the real numbers, they have the degree either
one or two. Over the integers and the rational numbers the
irreducible factors may have any degree (Barbeau, 2003). For
example, the factored form of 5x5 − 5 = 5(x − 1)(x2 + x + 1) =

5(x− 1)(x+ 1+i
√
3

2
)(x+ 1−i

√
3

2
) over the integers and the reals and

the complex numbers respectively.

3.2.3 The quotient of polynomials

Consider the polynomials f(x), g(x) ̸= 0 over the field F, there exists
the polynomials q(x), r(x) over F such that r(x) = 0, or its degree is
less than the degree of g(x), in which f(x) = q(x)q(x) + r(x).
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This property enables us to recall the long division we learned
earlier. For example, if f(x) = 4x3 − 2x2 = 5x+ 3, g(x) = 2x2 + x− 1.
Since the first term of f(x) is 4x3 in which can obtained from multiplied
of the first term of g(x) by 2x. Or, (2x2)(2x), and the difference
f(x)−2xg(x) = −4x2+7x+3 is in the second degree, and by repeating
the algorithm, we will get;

f(x)− 2xg(x) + 2g(x) = qx+ 1.
Since the degree of the reminder of the right hand side is less than

the degree g(x) that why we can not go on on the algorithm, and
thereby, we have;

f(x) = (2x− 2)g(x) + q(x) + 1, where q(x) = 2x− 2, r(x) = qx+1.
This is the general method of the long division. In the case if we

assume that f(x) has the degree less than the degree of g(x) then we
take;

q(x) = 0, and r(x) = f(x).
Now, we are going to prove that the uniqueness of the q(x), r(x).
Suppose that f(x) = q1(x)g(x) + r1(x), where r1(x) = 0 or has the

degree m less than the degree of g(x).
Thus we have q(x)− q1(x)g(x) = r1(x)− r(x).
If the term q(x) − q1(x) does not vanishing, that means has the

degree greater than or equal to zero. Thereby, the left hand side of the
previous equation has degree greater than or equal to m, and in that
case;

q(x) = q1(x) and r(x) = r1(x).
The following example illustrates the algorithm of the long division.

Example 3.1 If f(x) = x5 − 4x3 + 2x2 − 5x − 8, g(x) = x − 3 then

evaluate f(x)
g(x)

.

Solution: By long division as shown in Table 3.1, we get the value;
f(x) = (x4 + 3x3 + 5x2 + 17x+ 46)(x− 3) + 130.

3.2.4 Long division algorithm of polynomials

The following are the steps for the long division of polynomials:
Step1. Arrange the terms in the decreasing order of their indices

(if required). Write the missing terms with zero as their coefficient.
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Table 3.1: Long devision of polynomials
1 0 -4 2 -5 -8

3 9 15 51 38 3

1 3 5 17 46 130

Step2. For the first term of the quotient, divide the first term of
the dividend by the first term of the divisor.

Step3. Multiply this term of the quotient by the divisor to get the
product.

Step4. Subtract this product from the dividend, and bring down
the next term (if any). The difference and the brought down term will
form the new dividend.

Step5. Follow this process until you get a remainder, which can be
zero or of a lower index than the divisor.

3.3 Exercises

Solve the following questions:
Q1: What is the degree of a polynomial in x and in x2 of x5+4x2+1?

Q2: Find each of q(x), r(x) for; (1) f(x) = x4 + 4x3 + 4x2 + 7x +
13, g(x) = x+2. (2) f(x) = 3x5−5x4+6x3−8x2+1x−23, g(x) = x−5.

3.4 Number of roots of a polynomial equation

Roots of polynomials are the solutions for any given polynomial for
which we need to find the value of the unknown variable. If we know
the roots, we can evaluate the value of polynomial to zero. Let us
assume that the equation:

f(x) = 2x6 + 15x5 + 3x4 − 94x3 + 84x2 + 15x − 25 = 0. It is a
polynomial of the sixth degree and can be analyzing to rewire it as
follows:

(x+ 5)2(2x+ 1)(x− 1)3 = 0.
Or, each of (x + 5), (2x + 1), (x − 1) is a factor of the polynomial

factors. In othere words; −5,−5,−1
2
, 1, 1, 1 are roots of the polynomial.
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In addition, −5 is a repeated (duplicate) root, −1
2
is a simple (single)

root, and 1 is a triple root. Thereby, the repeated roots appear twice,
and the triple roots appear tree times in addition to the single root.
Thus, the equation has six roots. The following theorem, called the
basic theorem in algebraic which pertain to the roots of polynomial
equations.

Theorem 3.1 (The Fundamental Theorem of Algebra)
If P (x) is a polynomial of degree n ≥ 1, then P (x) = 0 has exactly

n roots, including multiple and complex roots.

Proof The proof of the theorem relies on attempts by some
researchers such as Aigner and Ziegler (1999), Basu (2021), Ahlfors
(1979), Shipman (2007), and Aliabadi and Darafsheh (2015) (See
Appendix A). ♦

Theorem 3.2 Every polynomial of degree n, n ≥ 1, has exactly n roots,
provided that a root repeated by m times is a root of m.

Proof Suppose that f(x) is a polynomial of degree n, where
fn(x) = a0x

n + a1x
n−1 + an−1 + a0.

Based on Theorem 3.1, we have,
fn(x) = 0,
has at least one root r1.
In this case x− r1 is a factor of factors fn(x). Or,
fn(x) = (x− r1)fn−1(x),
where fn−1(x) is a polynomial of the degree n − 1, in which the

highest power of the variable x is a0x
n−1, and the equation;

fn−1(x) = 0,
has at least one root r2 (Based on Theorem 3.1), and in this case

x− r2 is a factor of factors of fn−1, it means;
fn−1(x) = (x− r2)fn−2(x).
Thus fn(x) = (x− r1)(x− r2)fn−2(x),
where fn−2 is a polynomial of the degree n− 2 ≥ 1, has the highest

power for the term a0x
n−2.

By repeating the process n times, we obtain;
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fn(x) = (x− r1)(x− r2)...(x− rn)f0(x),
where f0(x) if a polynomial of degree zero a0x

0 = a0, it means;

fn(x) = a0(x− r1)(x− r2)...(x− rn) (3.1)

The roots of the equation fn(x) = 0 are r1, r2, ...rn.
To prove that there can not be more than n roots, let us assume

that there is s ̸= ri, i = 1, 2, ..., n for (3.1). That means;
fn(s) = a0(s− r1)(s− r2)...(s− rn).
Since any factor of factors in the right hand side of the equation is

not equal to zero, hence
fn(s) ̸= 0.
Thereby, s does not be a root for fn(x) = 0.
Thus the equation has exactly n roots. ♦

3.5 Complex roots

The following theorem emphasizes that the complex roots of a
polynomial equation if exist in a real field occur in the form of duplicate
(Gehman, 1941; Ballantine, 1959).

Theorem 3.3 If the complex number (a, b) is a root of the polynomial
equation f(x) = 0 on the real field, then then its complex conjugate
(a,−b) is also a root of it.

Proof Suppose that,
γ = (a, b) is a root of f(x) = a0x

n + a1x
n−1 + ...+ an = 0.

Then, f(γ) = a0γ
n + a1γ

n−1 + ...+ an = 0.
Therefore, f(γ̄) = a0(γ̄)

n + a1(γ̄)
n−1 + ...+ an = 0̄ = 0.

Thus, γ̄ = (a,−b) is a root of f(x) = 0. ♦

Example 3.2 (1) Find the equation if it has the roots, 3, 2+5i, 2−5i.
(2) Find the equation if it has the roots, −1,−1, 4

5
, 3 + 2i.

(3) Solve the equation; 4x3 − x2 − 100x+ 25 = 0.
Solution: (1) (x−3)(x−2−5i)(x−2+5i) = (x−3)(x2−4x+29).
(2) (x− (3+2i))(x− (3−2i))(x− 4

5
)(x+1)2 = 5x5−24x4+26xx3+

92x2 − 15x− 52 = 0.
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(3) 4x3 − x2 − 100x + 25 = 0 ⇒ x2(4x − 1) − 25(4x − 1) = 0 ⇒
(4x− 1)(x2 − 25)⇒ x = 1

4
, x = 5, x = −5.

3.6 Bound of the roots

This section discusses how to find the limits of the roots between
which the real roots of polynomial equations can lie. Let’s consider
the following equation:

f(x) = a0x
n + a1x

n−1 + ...+ an = 0 (3.2)

where a0 ̸= 0, ai ∈ R,∀i.
By utilizing the fifth property of 3.2.2, and deviding f(x) by (x −

k), k ̸= 0, and if all the coefficints in the third line are positive or zero,
then k will be the uppuer bound of the positive roots for (3.2).

For finding bounds of the negative roots, we substitute each x by
−y of (3.2) to obtain;

f(x) = a0y
n − a1yn−1 + a2y

n−2 − ...(−1)nan = 0 (3.3)

Equation (3.4) has roots that are opposite to the sign of Equation (3.3).
By the same previous method we find the upper bounds for the roots
of (3.4). If we assume that b, then −b is the lower bound for roots of
equation (3.3) provided that all the coefficients in (3.3) are positive, the
roots are all negative (Hirst and Macey, 1997; Lagrange, 1879; Cauchy,
1828; Marden, 1949; Fujiwara, 1916; Kojima, 1917; Akritas et al., 2008;
Ştefănescu, 2007).

Example 3.3 Find the upper and lower bounds of the roots of the
equation 4x3 + 2x2 − 7 = 0.

Solution: First, putting k = 1, we find that; Since, in the third

Table 3.2: Bounds on roots of polynomial-i
4 2 0 -7

4 6 6 1
4 6 6 -1
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line all coefficints are not positive, hence 1 does not necessary to be
uppur bond for roots, as shown in Table 3.2. Putting k = 2, we obtain
that all the coefficints in the third line are positive, as shown in Table
3.3. Thus, 2 is the uppuer bound for the positive roots. To obtaining

Table 3.3: Bounds on roots of polynomial-ii
4 2 0 -7

4 10 20 2
4 10 20 33

the lower bound for the negative roots, we substitute for each x by −y,
So we get 4y3−2y2+7 = 0. Now by putting k = 1, we get that, all the
coefficints in the third line are positive, as shown in Table 3.4. Thereby,
−1 is the lower bound for the negative root. The sketch diagram of the
function 4x3 + 2x2 − 7 = 0 is shown in Figure 3.1.

Table 3.4: Bounds on roots of polynomial-iii
4 -2 0 7

4 2 2 1
4 2 2 9

3.7 Exercises

Solve the following questions:
Q1: Solve each of equations:
(1) (x+5)2(x−1)(x2−6x+2) = 0. (2) (7x−3)2(x+4)(x2+25)−0.

(3) (2x−1)3(x+8)(x2+10x+29) = 0. (4) (3x2−7x)(x2−12x+3) = 0.
Q2: Find the equation that has real coefficients and roots shown in

each of the following cases:
(1) 0, 3,−3,−2. (2) 0.0,−1, 1

3
, 21

7
. (3) −2,

√
11,−

√
11. (4) 1, 1

2
+

3i, 1
2
− 3i. (5) 5, 5, 0, 0, 0,−1

5
.

Q3:
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w

Figure 3.1: Bounds on roots for 4x3 + 2x2 − 7 = 0



Polynomials 63

(i) Find a polynomial equation of the third degree whose coefficients
are real and have two roots 6,−1 + i.

(ii) Find a polynomial equation of the forth degree whose coefficients
are real and have two roots i, 3− i.

Q4: Find the upper and lower bounds of the following equations:
(1) 2x3 − 9x2 + 5x + 7 = 0. (2) 2x3 + x2 − 3x + 8 = 0. (3)

x5 − 3x4 − 6x+ 10 = 0. (4) x3 − x2 − 8 = 0.
Q5: If a, b are integers, prove that for a polynomial equation with

arational factors, if a+
√
b is a root, then a−

√
b is a root too.

Q6: Use the long division method to show that x4 − 4x3 − x2 +
14x+ 10 = 0 has a duplicate −1, and find remaining roots.

Q7: If r1, r2, r3 are roots of the equation x
3+b1x

2+b2x+b3 = 0then
prove that b1 = −(r1 + r2 + r3), b2 = r1r2 + r2r3 + r3r1, b3 = −r1r2r3.

Q8: If f(0) ̸= 0, and r1, r2, ..., rn are roots of f(x) = 0 then prove
that f(x) = f(0)(1− x

r1
)(1− x

r2
)...(1− x

rn
).

3.8 The relationship between roots and
polynomial equations

There exists a relationship between a polynomial roots and their
coefficients based on the mathematical logic(Dickenstein, 2005;
Kudryashov and Demina, 2007). Suppose that α1, α2, ..., αn are roots
of the polynomial in the nth degree:

fn(x) = a0x
n + a1x

n−1 + ...+ an

= a0(x− α1)(x− α2)...(x− αn)

a0 ̸= 0

(1) If n = 2, the polynomial will be in the second degree, and it can
be writtin as follows:

a0x
2 + a1x+ a2

= a0(x− α1)(x− α2)

a0[x
2 − (α1 + α2)x+ α1α2]
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Now, by equating the coefficients of powers of x, we find that;

a1
a0

= −(α1 + α2)

a2
a0

= α1α2

(2) If n = 3, the polynomial will be in the third degree, and it can
be writtin as follows:

a0x
3 + a1x

2 + a2x+ a3

= a0(x− α1)(x− α2)(x− α3)

= a0[x
3 − (α1 + α2 + α3+)x2 + (α1α2 + α3α1 + α3α2)x− α1α2α3]

By equating the coefficients of powers of x, we find that;

a1
a0

= −(α1 + α2 + α3)

a2
a0

= α1α2 + α3α1 + α3α2

a3
a0

= −α1α2α3

By repeating this algorith for n = 4, 5, ..., we conclude that:
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−a1
a0

=
n∑

i=1

αi

a2
a0

=
∑

α1α2

−a3
a0

=
∑

α1α2α3

.

.

.

(−1)i = ai
a0

=
∑

α1α2α3...αi

.

.

.

(−1)n =
an
a0

= α1α2α3...αn

Example 3.4 Find the roots of the equation 6x3−18x2+24x−12 = 0,
If the product of two roots is 3.

Solution: Suppose that the roots are r1, r2, r3.

r1 + r2 + r3 =
18

6
= 3

r1r2 + r1r3 + r3r3 =
24

6
= 4

r1r2r3 =
12

6
= 3

(3.4)

Because of the product of two roots is 3. Suppose that those two roots
are r1, r2.

Thus r1r2 = 3, implies that r3 = 1.
This implies that r1 + r2 = 2. Or, r1 = 2− r2.
By substituting into the second equation from (3.4), we get;
(2− r2)r2 + (2− r2) + r2 = 4. Or,
r2 − 2r2 + 2 = 0.
Thereby, r2 =

2±
√
4−8
2

= 1± i.
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Thus, the roots are 1 + i, 1− i, 1.

Example 3.5 Find the cube of the sum of the squares of the roots of
the equation x4 − 4x3 + 3x2 + x− 1 = 0.

Solution: Suppose that the roots are α, β, γ, δ.
As, α + β + γ + δ = 4

1
= 4.

αβ + βγ + γα + αδ + δβ + δγ = 3
1
= 3.

But, (α+β+γ+δ)2 = α2+β2+γ2+δ2+2(αβ+βγ+γα+αδ+δβ+δγ)
16 = α2 + β2 + γ2 + δ2 + 6.
α2 + β2 + γ2 + δ2 = 10.
Thus, (α2 + β2 + γ2 + δ2)3 = 103 = 1000.

3.9 Exercises

Solve the following questions:
Q1: Solve the equation 2x3 + 4x2 + 6x + 4 = 0, if you know that

its roota are α, β, γ, and α = β + γ.
Q2: Solve the equation 4x3− 2x2− 36x+ 20 = 0, if you know that

its roota are α, β, γ, and α + β = 0.
Q3: Solve the equation 2x3 − 14x2 − 42x + 216 = 0, if you know

that its roota are α, β, γ, and γ =
√
αβ.

Q4: Solve the equation 3x3 + 27x2 + 18x − 168 = 0, if you know
that its roota are α, β, γ, and β = −2α.

Q5: Solve the equation 9x3−36x2+44x−16 = 0, if you know that
its roota are α, β, γ, and if the roots are numeric sequence.

Q6: Solve the equation 3x3−26x2+52x−29 = 0, if you know that
its roota are α, β, γ, and if the roots are geometric sequence.

Q7: Solve the equation 2x3 − 12x2 + 6x+A = 0, if you know that
its roota are α, β, γ, find the value of A, if α = 2(β + γ).

Q8: Solve the equation x3 − 4x2 + Ax + 46 = 0, if you know that
its roota are α, β, γ, find the value of A, and the roots are numeric
sequence.

Q9: Solve the equation x3 + Cx2 + Bx + A = 0, if you know that
its roota are α, β, γ. What is the relationship between A,B,C if the
roots are geometric sequence?
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Q10: Find the relationship between p, q of the equation x3+px+q =
0, if you know that its roota are α, β, γ, and the equation has the
duplicated root.

Q11: If the roots α, β, γ of x3 + Bx2 + Ax + C = 0 satisfy the
relation αβ = −γ2. Prove that (2A−B2)3γ = (BA− AC)3.

Q12: Solve the equation 4x4− 8x3 +8x2− x− 16 = 0, if you know
that its roota are α, β, γ, δ, and α + β = 2.

Q13: Calculate the sum of the square roots of the equation 4x4 −
8x3 + 16x2 − 12x+ 8 = 0, if you know that its roota are α, β, γ, δ.

3.10 Duplicate roots

As we explained earlier that a is a root of the equation:

f(x) = 0 (3.5)

if f(a) = 0. Let us study the case if a is a root of the equation (3.5),
but repeated k times. f(x) can be written as follows:

f(x) = (x− a)kg(x)
g(a) ̸= 0

a is called a zero of the polynomial f(x) repeated k times (Barbeau,
2003; Leung et al., 1992; McNamee and Pan, 2013). In the case of
k = 1 then a is called a simple zero (Krantz et al., 1999). The following
theorem proves and explains the fact of the repeated root.

Theorem 3.4 If a is a zero of the polyomial f(x) and repeated k times,
where k > 1 then a is a zero repeated k−1 times and derived from f(x).

Proof Let us express f(x) as follows:
f(x) = (x− a)kg(x), g(x) ̸= 0.
By derivation, we find that;

f ′(x) = k(x− a)k−1g(x) + (x− a)kg′(x)
= (x− a)k−1[kg(x) + (x− a)g′(x)]
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Thereby, a is a zero of the f ′(x) and repeated k − 1 times. If the
repetition is more than k − 1 it means that kg(x) + (x − a)g′(x) is
divisible by (x− a).

Thus, g(x) should be divisible by (x−a) without remains, or g(a) =
o. And this is contraduction. ♦

3.11 Greatest common factor of polynomials

Let p, q be polynomials with coefficients in an integral domain F ,
typically a field or the integers. A greatest common factor or greatest
common divisor (GCF) of p, q is a polynomial d that divides p and q,
and such that every common divisor of p and q also divides d. Every
pair of polynomials (not both zero) has a GCF (GCD) if and only if
F is a unique factorization domain (Basu, 2021; Knuth, 2014; van and
Monagan, 2004).

Let us consider the polynomials:
p = (x− 1)2, q = x3 − 1.
p = (x− 1)(x+ 1), q = (x− 1)(x2 + x+ 1).
The GCF = (x− 1).
Suppose that we have the polynomials f, f1. Dividing f by f1,

suppose that the quotient is q1, and the remainder is f2. Or,
f = f1q1 + f2.
If we assume that f2 ̸= 0, and dividing f1 by f2. Let q2, f3 be the

the quotient and remainder respectively. Or,
f1 = f2q2 + f3.
Again, we assume that f3 ̸= 0, and dividing f2 by f3. Let q3, f4 be

the the quotient and remainder respectively. Or,
f2 = f3q3 + f4.
By repeating of this process (where the degree of the polynomial is

decreasing) as long as the remainder is not equal to zero until we get:
fr−1 = frqr.
Thus, we obtain the following identities:
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f = f1q1 + f2

f1 = f2q2 + f3

.

.

.

fr−2 = fr−1qr−1 + fr

fr−1 = frqr

From the identities, fr is the GCF between f, f1 because fr−1 is
divisible by fr. Also,

fr−2 = fr−1qr−1 + fr, fr−1 is the GCF , because it is divisible by fr.
And whereas fr−1, fr−2 are divisible by fr thus, f is divisible by fr, ....
So we find that f1, f are divisible by fr.

Moreover, the identities reflect us that, fr can be divided by any
common factor (d) of polynomials f, f1, ..., fr−1. This can be proven as
follows:

Suppose that each of f, f1 divisible by d such that;
f2 = f − f1q1.
Also, we note that f2, f3 are divisible by d such that;
f3 = f1 − f2q2.
Thus, we find that fr, fr−1 are divisible by d, and since fr can be

divided by any d between f, f1, So none of these common factor (d)s
are of greater degree than fr. Thus, fr is the GCF .

If d is the GCF in the same degree, then fr can be divided by d and
the result is fixed amount. So there is an infinite number of common
factors for polynomials f, f1, but they are all of the same degree and in
the form of:

cfr,
where c is a constant, but When dividing by any polynomial, it

differs from another polynomial by a constant only, and, in fact is not
a new polynomial.

Thus, the GCF is a unique factor regardless of the constant.

Example 3.6 Fin the greatest common factor between the polynomils:
f = x6 + 2x5 + x3 + 3x2 + 3x+ 2, f1 = x4 + 4x3 + 4x2 − x− 2
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Solution: We divide f by f1 as follows (we will follow the long
division method and write the coefficients of all polynomials) as shown
in Table 3.5.

Table 3.5: Greatest common factor (i)

1 2 0 1 3 3 2
1 4 4 −1 −2
−2 −4 2 5 3
−2 −8 −8 2 4

4 10 3 −1 2
4 16 16 −4 −8
−6 −13 3 10

| 1 4 4 −1 −2
1 −2 4

The quotient is x2−2x+4, and the reminder is f2 = −6x3−13x2+
3x+ 10.

Now, we divide f1 by f2, but the qoutient may give fractional
equations, so we will multiply the coefficients of f1 by 6 (Or, f3 will
produce and multiply by a fixed amount, but this is not an important
matter in the processes that we are experimenting with) as shown in
Table 3.6.

Again, to avoid the appearance of fractional transactions, we will
multiply the last line by the number 6 , and going on with our
operations as shown in Table 3.7

Since the last line is a multiple of 19 hence it can be written in the
form:

f3 = x2 + 3x+ 2.
Now, we divide f2 by f3 as shown in Table 3.8 (iv).
In Table 3.8 (iv), since the reminder is zero hence the GCF is x2 +

3x+ 2, and this method is called traditional algorithmic division.
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Table 3.6: Greatest common factor (ii)

6 24 24 −6 −12
6 13 −3 −10

11 27 4 −12

| −6 −13 3 10
−1 −11

Table 3.7: Greatest common factor (iii)

66 162 24 −72
66 143 −33 −100 ← Turn the sign

19 57 38

Table 3.8: Greatest common factor (iv)

−6 −13 3 10
−6 −18 −12

5 15 10
5 15 10
0 0 0

| 1 2 3
−6 5
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Example 3.7 Show that the GCF (x5 − x4 − 2x3 + 2x2 + x− 1, 5x4 −
4x3 − 6x2 + 4x+ 1) = x3 − x2 − x+ 1.

Solution: Has been left as an exercise for the reader.

3.12 Exercises

Find the GCF s for the following polynomials:
Q1: f = 2x4 + 2x3 − 3x2 − 2x+ 1, f1 = x3 + 2x2 + 2x+ 1.
Q2: f = x4 − 6x2 − 8x− 3, f1 = x3 − 3x− 2.
Q3: f = 10x6 − 9x5 − 12x4 + 2x2 − x − 1, f1 = 4x5 + x4 − 7x3 −

8x2 − x+ 1.

3.13 Solving cubic equations using Cardan’s
method

A cubic equation in one variable is an equation of the form:

ax3 + bx+cx+ d = 0, a ̸= 0 (3.6)

The solutions of this equation are called roots of the cubic function
defined by the left-hand side of the equation. If all of the coefficients
a, b, c, and d of the cubic equation are real numbers, then it has at least
one real root (this is true for all odd-degree polynomial functions).

Since ancient times, mathematicians have been busy finding the
general formula for equations of the third degree and their solutions
(Mikami, 1913; Khayyam, 1963; O’Connor and Robertson, 2001;
Berggren et al., 1986; Bidyāran. ya and Singh, 1962; Rowe, 1994). Later,
the trigonometric solution for the cubic equation with three real roots
has been derived and extended (Nickalls, 2006).

Finally, Cardano (1501-1576) came up with a mathematical
formulation for the cubic equations as in (3.6), and found a solution to
it (Branson, 2013; Cardano and Witmer, 1993; Cardano, 2002). The
Cardano’s formula, which is similar to the perfect-square method to
quadratic equations, is a standard way to find a real root of a cubic
equation.

In general, the Algorithm of Cardano’s Method was as follows:
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Consider the cubic function in (3.6), and for convenient we express
it as;

f(x) = x3 + ax2 + bx+ c = 0,
if c > 0 there exists a negative root, and if c < 0 there exists a

positive root.
Assume that;
x = y + k, k is arbitrary constant.
From Taylor’s expansion (Thomas et al., 2010)(See Appendix B); if

the function f is a continuous function and differentiated for any order
over the interval [y, y + k] then:

f(y+k) = f(k)+f
′
(k)y+

f
′′
(k)

2!
y2+

f
′′′
(k)

3!
y2+...+

f (n)(k)

n!
yn+... (3.7)

From (3.7), we have:

f(k) = k3 + ak2 + bk + c

f
′
(x) = 3k2 + 2ak + b;x = k

f
′′
(x) = 2(3k + a);x = k

f
′′′
(x) = 6; x = k

Putting f
′′
(k) = 0, we get;

k = −a
3
.

Thus

p1(
−a
3
) = b− −a

3

f(
−a
3
) = c− ba

3
+

2a3

27

As well, x = y − a
3
so (3.7) became;

y3 + py + q = 0 (3.8)

where

p = b− a3

3

q = c− ba

3
+

2a3

27
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To solve equation (3.8), we use substitution y = u+ v, it becomes;

u3 + v3 + (p+ 3uv)(u+ v) + q = 0 (3.9)

Putting uv = −p
3
, we obtain;

u3 + v3 = −q

So, the solution to equation (3.8) is equivalent to the solution to the
two equations in (3.10a) and (3.10b) below:

uv = −p
3

(3.10a)

u3 + v3 = −q (3.10b)

By cubing the equation in (3.10a), we get;

u3v3 = −p
3

27
(3.11)

From (3.10b) and (3.111), we notice that we have the product and the
sum of two roots of a quadratic equation, and the two roots are u3, v3,
and the equation is

t2 + qt− p3

27
= 0

Assume that A = u3, B = v3, where

A =
−q
2

+

√
q2

4
+
p3

27

B =
−q
2
−
√
q2

4
+
p3

27

When finding the values of A,B, we get the values of u, v where;

u =
3
√
A

u = w
3
√
A

u = w2 3
√
A
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where w = (−1
2
, 2

√
3

2
) is the cube root of the integer one. Also, we

get the value of v in;

v =
3
√
B

v = w
3
√
B

v = w2 3
√
B

As, we have the condition uv = −p
3
, not all values are suitable to u.

Now, let us check the value 3
√
B.

3
√
A 3
√
B = −p

3
.

Thus the suitable values of v to u = 3
√
A, u = w 3

√
A, u = w2 3

√
A are

3
√
B,w2 3

√
B,w 3
√
B respectivily. Finally, the solution to (3.8) is

y1 =
3
√
A+

3
√
B

v = w
3
√
A+ w2 3

√
B

v = w2 3
√
A+ w

3
√
B

These values are known as Cardian values (Cardano, 2002) with the
aim p, q are ral numbers then the kind of the roots y1, y2, y3 are depend
on the function:

∆ = 4p3 + 27q2,∀∆ ∈ R.

(i) ∆ > 0. In this case it is√
q2

4
+ p3

27
=
√

∆
108

. The value of the ∆ will be a real and positive.

Thus the value of A,B are real, and 3
√
A is the third real root for

A. Since q is a real, and 3
√
A 3
√
B = −p

3
.

Also, 3
√
B will be a third real root for B.

Thereby, (3.8) has a real root;

y1 =
3
√
A 3
√
B.

While the other two roots are complex and conjugate.

(ii) ∆ < 0. In this case it is√
q2

4
+ p3

27
= i
√

−∆
108

purely imaginary and both quantities;
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A =
−q
2

+ i

√
−∆
108

B =
−q
2
− i
√
−∆
108

they are complex numbers, so the roots of the equation are in (3.8)
can be expressed by using the cube roots of complex numbers, so
if we assume that;
3
√
A = a+ ib is one of the cubic roots of A. Since B is a conjugate

for A hence a−ib is one of roots of B So that satisfies the relation:
3
√
A 3
√
B = −p

3
.

Or,

3
√
A = a+ ib

3
√
B = a− ib

From Cardano (2002) it produces the roots:

y1 = 2a

y2 = (a+ ib)w + (a− ib)w2 = −a− b
√
3

y3 = (a+ ib)w2 + (a− ib)w = −a+ b
√
3

are real and unequal. Obviously if y2 ̸= y3, then y1 = y2, it implies
that

b = −a
√
3.

Or,
3
√
A = a(1− i

√
3).

Thus, A = a3(1 − i
√
3)3 = −8a3 is a real number, and this

contradicts the claim that A is a complex number. That why, y1 ̸= y2
so as y1 ̸= y3.

Example 3.8 Solve the equation x3 + x2 − 2 = 0
Solution: Using transform x = y− frac13 the equation transforms

into the form;
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y3 − 1
3
y − 52

27
= 0,

where ∆ = 522

27
− 4

27
, p = −1

3
, q = −52

27
.

Thus,
√

∆
108

= 5√
27
.

We conclude that;

A =
26

27
+

5
√
27

27

B =
26

27
− 5
√
27

27
Thus,

3
√
A =

3

√
26

27
+

5
√
27

27
=

1

3

3

√
26 + 5

√
3

3
√
B =

1

3

3

√
26− 5

√
3

We obtain:

y1 =
1

3
(

3

√
26 + 15

√
3 +

3

√
26− 15

√
3)

y2 = −
1

6
(

3

√
26 + 15

√
3 +

3

√
26− 15

√
3) +

i
√
3

6
(

3

√
26 + 15

√
3− 3

√
26− 15

√
3)

y3 = −
1

6
(

3

√
26 + 15

√
3 +

3

√
26− 15

√
3)− i

√
3

6
(

3

√
26 + 15

√
3− 3

√
26− 15

√
3)

So, the roots of the original equation are:

x1 =
1

3
(

3

√
26 + 15

√
3 +

3

√
26− 15

√
3− 1)

x2 = −
1

6
(

3

√
26 + 15

√
3 +

3

√
26− 15

√
3 + 5)+

i
√
3

6
(

3

√
26 + 15

√
3− 3

√
26− 15

√
3)

x3 = −
1

6
(

3

√
26 + 15

√
3 +

3

√
26− 15

√
3 + 2)

−i
√
3

6
(

3

√
26 + 15

√
3− 3

√
26− 15

√
3)
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But, the equation
x3 + x2 − 2 = 0 has the root 1, and its two reminder roots are:
−1∓−.
By comparing these roots with Cardan’s forms, we get that:

3

√
26 + 15

√
3 +

3

√
26− 15

√
3 = 4

3

√
26 + 15

√
3− 3

√
26− 15

√
3 = 2−

√
3

From these two relations we obtain:

3

√
26 + 15

√
3 = 2 +

√
3

3

√
26− 15

√
3 = 2−

√
3

Example 3.9 Solve the equation y3 − 3y + 1 = 0.
Solution: In this case, we have;

p = −3, q = 1,∆ = −81√
−∆
108

=

√
3

2

A =
1

2
+ i

√
3

2
= w

B = −1

2
− i
√
3

2
= w2

Thus, the roots are:

y1 =
3
√
w +

3
√
w2

y2 = w 3
√
w + w

3
√
w2

y3 = w 3
√
w − w 3

√
w2

Since the roots y1,2 , y3 must be real numbers, although they did not
appear here in the form of real numbers, thus we face the real challenge
of finding the cube root of the amount w.
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3.14 Exercises

Solve the following questions:
Q1: Solve the equations;
(1) x3 − 6x+ 6 = 0.
(2) 3x3 − 6x− 2 = 0.
(3) x3 − 2x+ 2 = 0.
(4) 2x3 − 3x+ 5 = 0.
(5) 8x3 + 12x2 + 30x− 3 = 0.
Q2: Prove that;

(1)
3
√√

5 + 2− 3
√√

5− 2 = 1.

(2)
√√

243 +
√
242−

√√
243−

√
242 = i

√
2.

3.15 Solving quartic equations

A quartic equation is one which can be expressed as a quartic function
equaling zero. The general form of a quartic equation is

ax4 + bx3 + cx2 + dx+ e = 0, a ̸= 0

The quartic is the highest order polynomial equation that can be
solved by radicals in the general case (Chávez-Pichardo et al., 2022).

Ferrari (Candido, 1941; Masotti, 1960; Stewart, 2022; Chávez-
Pichardo et al., 2022; Chávez-Pichardo et al., 2023) found the general
algebraic solution to equations of the fourth degree, and his solution
algorithm was as follows:

Consider the equation in (3.12) below:

x4 + ax3 + bx2 + cx+ d = 0 (3.12)

Transform the equation as;

x4 + ax3 = −bx2 − cx− d

Add a2

4
x2 to both sides of the equation to get;

(x2 +
a

2
x)2 = (

a2

4
− b)x2 − cx− d (3.13)
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It is an equivalent equation for the equation (3.12). If the right
side of this equation is a perfect square, then the solution is produced
directly, and on the contrary, we add the expression y(x2 + a

2
x) + y2

4
to

both sides of the equation (3.13).
Thus, we get a perfect square on the left side of the variable y.

(x2 +
a

2
x+

y

2
)2 = (

a2

4
− b+ y)x2 + (−c+ 1

2
ay)x+ (−d+ 1

4
y2) (3.14)

Now, we have to find the value of y so that the amount;

(
a2

4
− b+ y)x2 + (−c+ 1

2
ay)x+ (−d+ 1

4
y2)

becomes a square for th linear expression,

ex+ f

We know that if

Ax2 +Bx+ c = (ex+ f)2 (3.15)

then

B2 − 4AC = 0

Otherwise, (3.15) is equivalent to the three relations;

A = e2

B = 2ef

c = f 2

(3.16)

Therefore, the righr hand side of (3.14) is a perfect square for the
linear expression ex+ f of fulfills the equation;

(
1

2
ay − c)2 = 4(y +

a2

4
− b)(1

4
y2 − d)

Or,

y3 − by2 + (ac− 4d)y + 4bd− a2d− c2 = 0 (3.17)
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Now, we will take the value of y any root of the cubic roots of (3.17),
say y1 which called equation analyzer, and therefore we find that:

(x2 +
a

2
x+

1

2
y1)

2 = (ex+ f)2 (3.18)

This can be transformed into two quadratic equations;

x2 +
a

2
x+

1

2
y1) = ex+ f

x2 +
a

2
x+

1

2
y1) = −ex− f

By solving these two last equations, we get the required roots of the
equation (3.12).

It is worth noting that Descartes (1954) has come up with an
alternative solution to this method, and it has been called the
Descartes’ method.

Example 3.10 Solve x4 + 4x− 1 = 0.
Solution: a = b = 0, c = 4, d = −1.
The cubic equation for solving is
y3 + 4y − 16 = 0.
It has the rationality root 2. Putting y = 2, the expression (3.18)

becames
(x2 + 1)2 = (

√
2x−

√
2)2.

The roots are
x2 + 1 =

√
2x−

√
22,

x2 + 1 = −
√
2x+

√
22.

Thus, the root values are;
1∓i
√√

8+1

2
,
−1∓i
√√

8−1

2
.

3.16 Exercises

Solve the following questions:
Q1 x4 − 8x2 − 4x+ 3 = 0.
Q2 x4 + 4x2 + 4x− 3 = 0.
Q3 x4 − x2 − 2x− 1 = 0.
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Q4 x4 + x3 + 5x2 + 5x+ 12 = 0.
Q5 [(x+ 2)2 + x2]3 = 8x4(x+ 2)2.



4

Numerical Solution of Nonlinear
Equations

4.1 Introduction

I
n polynomial equations of the fifth degree or more, as well
as equations that include transcendental functions, such as

logx, sinx, cosx...etc, there is difficulty in finding roots in terms of
coefficients and simple algebraic methods. Therefore, it is necessitated
searching for numerical methods to find approximate values for the
roots of these equations (Lazard, 2009; Billings, 2013; Atkinson, 1991;
Mathews, 1992).

Let us consider the following equation;

f(x) = 0

if α is a root of the equation, then we are looking for approximate
values αn for this root, such that

|α− αn| < δ

|f(αn)| < ϵ

where δ, ϵ are positive amounts.
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Before proceeding and delving into the methods of finding
approximate solutions to the roots of such equations, we explore some
rules, such as: Descartes rule of signs (Anderson, 1979; Wang, 2004),
Horner’s method for removing roots from polynomials (Horner, 1833;
Horner, 1819), and Finding the differential via Horner’s method
(Cajori, 1911; Volkov, 1990) which would help us to find approximate
solutions to nonlinear equations.

4.2 Auxiliary rules for finding approximate roots

A root-finding algorithm is an algorithm for finding zeros, also called
roots, of continuous functions. A zero of a function f , from the real
numbers to real numbers or from the complex numbers to the complex
numbers, is a number x such that f(x) = 0. In general, the zeros of a
function cannot be computed exactly nor expressed in closed form, root-
finding algorithms provide approximations to zeros, expressed either
as floating-point numbers or as small isolating intervals, or disks for
complex roots. Or, an interval or disk output being equivalent to an
approximate output together with an error bound (Vetterling et al.,
1992; Press, 1992).

4.2.1 Descartes’ rule of signs

This rule is used to find the number of real zeros of polynomials whose
coefficients are real numbers. The method relies mainly on counting
the number of changes in the signs of non-zero coefficients in the order.
Let us assume that the number of signs changing in order is v.

For example, the signs of the coefficients of terms in th polynomial:
p1(x) = 2x32x − 5 is in order (+,+,−), so v = 1. In p2(x) = 3x4 −
81x2 − 300x − 445 is in order (+,+,−,−,−), in this case v = 1 also,
while in p3(x) = 4x4−8x3+81x2−300x−445 is in order (+,−,+,−,−),
in this case v = 3.

4.2.2 Methodology of using Descartes’ rule of signs

Supose that k be the number of positive real zeros of the polynomial,
so k ≤ v, and v − k should be an even integer that is positive or equal
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to zero.
Based on the rule v = 1 and in the case p1(x), so k = 1 and the

number of the real roots is just one root. By the same way, we conclude
that k = 1 in the case of the polynomial p2(x). And, k = 1 or k = 3 in
the case of p3(x), and Neither of them can be determined in this way.

It is easy to prove that if r is a zero of the polynomial p(x), then
−r is a zero of the polynomial p(−x). Thus, we can find the number of
negative real zeros by applying p(−x) If we substitute of all x by −x
in p1(x), p2(x) we get;

p1(−x) = −2x3 − 2x− 5,
p2(−x) = 3x4 − 8x3 − 81x2 + 300x− 445.
In the case p1(−x), the boundary signs, in order, are; (−,−,−)

so v = 0, and p1(x) It has no negative real zeros. And it can be
concluded that p1(x) has one positive real number, and couple complex
root (conjugate).

In what related to the polynomial p2(−x) the signs, in order are;
(+,−,−,+,−), thereby v = 3, and;

v − k = 0, or
v − k.
Thus, p2(x) either it has one negative root, or three negative real

roots.

4.2.3 Horner’s method for removing roots from polynomials

Horner’s method enables us to remove any root from the roots of a
polynomial equation , which can be summarized as follows:

Suppose the polynomial;

P (x) = xn + a1x
n−1 + a2x

n−2 + ...+ an = 0

has a root α, it is possible to find a polynomial of degree (n− 1) such
that

(x− α)(xn−1 + b1x
n−2 + b2x

n−3 + br−1x
n−r + brx

n−r−1 + ...+ bn−1)

≡ xn + a1x
n−1 + a2x

n−2 + ...+ arx
n−r + ...+ an

Now, by comparing the coefficient of xn−r we get:
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br = ar + αr1

b0 = 1

For all values of r, from these relations we get;

b1 = a1 + α

b2 = a2 + a1α + α2

.

.

.

bn = an + an−1α + an−2α
2 + ...+ αn = P (α) = 0

To find these values, we follow the following process as shown in
Table 4.1:

Table 4.1: Horner’s method for removing roots from polynomials
1 a1 a2... an α

α a1α + α2...
1 a1 + α a2 + a1α + α2... bn

If α is not a root then;

P (α) = bn ̸= 0

This process can be used to find the numerical value of P (x), ∀x.
Whenever one of the roots of the equation is removed, we obtain a new
equation of degree (n− 1).

Example 4.1 The polynomial 2x4 + 2x3 − x − 2 = 0 has two roots
x = −2, x = 1. it is required to remove them, and find the resulting
equation.

Solution: After performing the first operation ( dividing by x−1),
it produces the numbers in the third line, which are the coefficients of
a third-degree polynomial equation;

x3 + 3x2 + 3x+ 2 = 0.
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Table 4.2: Horner’s method for removing roots from polynomials
1 2 0 -1 -2 1

1 3 3 2 Operation I
1 3 3 2 0 -2

-2 -2 -2 Operation II
1 1 1 0

And, after performing the first operation ( dividing by x + 2), it
produces the numbers in the third line, which are the coefficients of a
second-degree polynomial equation;

x2 + x+ 1 = 0.

Example 4.2 The polynomial 2x5−6x4+8x3+4x2−20x−8 = 0 has
two roots x = 2, x = −1. it is required to remove them, and find the
resulting equation.

Solution: 2x5− 6x4+8x3+4x2− 20x− 8 = x5− 3x4+4x3+2x2−
10x− 4 = 0

Table 4.3: Horner’s method for removing roots from polynomials
1 -3 4 2 -10 -4 2

2 -2 4 12 4 Operation I
1 -1 2 6 2 0

-1 2 -4 -2 Operation II
1 -2 4 2 0

After performing the first operation ( dividing by x−2), it produces
the numbers in the third line, which are the coefficients of a forth-degree
polynomial equation;

x4 − x3 + 2x2 + 6x+ 2 = 0.
And, after performing the first operation ( dividing by x + 1), it

produces the numbers in the third line, which are the coefficients of a
third-degree polynomial equation;

x3 − 2x2 + 4x+ 2 = 0.
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Example 4.3 Find the value of P (0.5) by usung Horner’s method, if
P (x) = 7x4 − 2x3 + 3x+ 8 = 0.

Solution: We arrange the problem in Table 4.4 as:

Table 4.4: Horner’s method for removing roots from polynomials
4 -6 0 3 -5 0.5

2 -2 -1 1

2 -2 -1 1 -4

The quotient is 2x3 − 2x2 − x+ 1, and P (−1
2
) = −4.

4.2.4 Finding the differential via Horner’s method

It had been proved that by repeatedly dividing a polynomial of degree
n by the linear term (x − α) we obtain the numerical value of the
polynomial and its differentiation at x = α (Horner, 1833; Horner,
1819; Cajori, 1911; Pan, 1997; Sitton et al., 2003).

Suppose that

P (x) = a0x
n + a1x

n−1 + a2x
n−2 + ...+ an (4.1)

Dividing by (x− α), to get

P (x) = (x− α)q1(x) + P (α) (4.2)

where q1(x) is a polynomial in degree (n − 1), and dividing it over
(x− α), we get;

q1(x) = (x− α)q2(x) + q1(α)

where q2(x) is a polynomial in degree (n− 2), and in compensation for
q1(x) in (4.2), the result will be;

P (x) = P (α) + (x− α)q1(α) + (x− α)2q2(x) (4.3)

Again, dividing q2(x) by (x−α), and in compensation for (4.3), we
obtain;
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P (x) = P (α) + (x− α)q1(α) + (x− α)2q2(α) + (x− α)3q3(x)

where q3(x) is a polynomial in degree (n − 3), and by repeating this
process n times we get;

P (x) = P (α)+(x−α)q1(α)+(x−α)2q2(α)+(x−α)3q3(α)+...+(x−α)nqn
(4.4)

where qn = a0 is a constant.
Using the Taylor’s expansion (Thomas et al., 2010) for the

polynomial P (x) near x = α, we get:

P (x) = p(α)+
(x− α)

1!
p(1)α+

(x− α)2

2!
p(2)α+ ...+

(x− α)n

n!
p(n)α (4.5)

where n! = n(n− 1)(n− 2)...3.2.1, p(n)(x) = ( d
np

dxn )x = α.
The series (4.5) is finat because p(x) is polynomial in the degree n,

thus;

P (n+1)α = 0

P (n+2)α = 0

.

.

.

P (n+r)α = 0, r ≥ 1

By comparing the terms in the equations (4.4) and (4.5), we find
that:



90 Finite Mathematics

q1(α) =
p(1)α

1!

q2(α) =
p(2)α

2!

q3(α) =
p(3)α

3!
.

.

.

qn(α) =
p(n)α

n!
Generally;

qj(α) =
p(j)α

j!
, j = 1, 2, 3, ..., n.

Now, it can be used Horner’s method, to find p(z0), p
1(z0), where

z0 = x0 + iy0 is a complex number, as follows:
Assume that;

P (z) = a0z
n + a1z

n−1 + a2z
n−2 + ...+ an−1z + an

It can be finding the polynomials:

q(z) = b0z
n−2 + b1z

n−3 + ...+ bn−2

d(z) = (z − z0)(z − z0) = z2 − 2x0z + x20 + y20

where

p(z) = q(z)d(z) + bn−1z + bn (4.6)

In compensation for p(z), q(z), d(z) in (4.6), and compare cofficients,
we find that:

bk = ak + 2x0bk−1 + (−x20 − y20)bk−2, k = 1, 2, 3, ..., n− 1

b0 = a0, b−1 = 0

bn = an + (−x20 − y20)bn−2
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Furthermore,

P (z0) = bn−1z0 + bn

p′(z0) = 2iy0(cn−3z0 + cn−2) + bn−1

where

c−1 = 0, c0 = b0

ck = bk + 2x0ck−1 + (−x20 − y20)cn−2, k = 1, 2, 3, ..., n− 3

cn−2 = bn−2 + (−x20 − y20)cn−4

Example 4.4 If p(x) = x3+2x2−3x+1 then find each of p(2), p(3)(2).
Solution: It can be found p(2), p(3)(2) by utilizing Horner’s method

table as follows:

Table 4.5: Finding the differential via Horner’s method
1 2 -3 1 2

2 8 10

1 4 5 11 p(2)= 11
2 12

1 6 17 17= p(1)(2)
1!

2

1 8 8 = p(2)(2)
2!

1 1= p(3)(2)
3!

p(3)(2) = 6

Example 4.5 Consider the polynomial p(x) = x3+3x−1, and evaluate
each of p(1 + i), p(1)(1 + i).
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Solution:

x0 = y0 = 1

a0 = 1, a1 = 0, a2 = 3, a3 = −1
P (1 + i) = b2(1 + i) + b3

b−1 = 0, b0 = a0 = 1

b1 = a1 + 2b0 − 2b−1 = a1 + 2 = 0 + 2 = 2

b2 = a2 + 2b1 − 2b0 = 3 + 4− 2 = 5

b3 = a3 − 2b1 = −1− 2 = −3
∴ p(1 + i) = 5(1 + i)− 3 = 2 + 5i

∵ P (1)(1 + i) = 2i(c0(1 + i) + c1) + b2 = 2i(1 + i+ c1) + 5

c1 = b1 − 2c−1 = b1 = 2

∴ p(1)(i+ 1) = 2i(3 + i) = −2 + 6i

4.3 Numerical methods for finding approximate
values of the roots of equations

This section deals with some numerical methods for finding
approximate values for the real or complex roots of polynomial
equations or equations of transcendental functions. Most of these
methods require finding the maximum or minimum, or both of the
roots. Therefore, the following lemma is of great importance before
embarking on the various methods.

Lemma Assume that α is a root of the following equation polynomial:
P (x) = xn + a1x

n−1 + a2x
n−2 + ...+ an = 0.

If λ = max |ai| , i = 1, 2, ..., n then −1− λ ≤ α ≤ 1 + λ.

4.3.1 Bisection method

The bisection method is a root-finding method that applies to any
continuous function for which one knows two values with opposite signs.
The method stated based on repeatedly bisecting the defined interval
and then selecting the subinterval in which the function changes sign,
and therefore must contain a root, as shown in Figure 4.1.
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The method is a very simple, robust, and relatively slow. It often
used to obtain a rough approximation to a solution, and used as a
starting point for more rapidly converging methods, and the method
has more than one name (Burden and Faires, 1985). The algorithm of
the method can be described step by step as follows:

Let us assume that f(x) It is a continuous function on the closed
interval [b0, c0], and it defined as:

f(x) = xn + a1x
n−1 + a2x

n−2 + ...+ an = 0

a0 = −1− λ
b0 = 1 + λ

f(a0) · f(b0) ≤ 0

Thus,

• Step1: Put j = 0.

• Step2: Put cj =
aj+bj

2
.

• Step3: If f(aj) · f(cj)
{
≤ 0; aj = aj+1, cj = bj+1

> 0; cj = aj+1, bj = bj+1

• The function f(x) has a root in the Nested Interval [aj+1, bj+1] =
[a1, b1] ⊆ [a0, b0] (Königsberger, 2004; Fridy, 2000).

• Put j = 1, and repeat from Step2 until |cj+1 − cj| ≤ e, where e is
small enough.

Example 4.6 Find the negative root of x3 − 21x + 3500 = 0, by the
bisection method, correct to three decimal places.

Solution:
f(x) = x3 − 21x+ 3500 = 0

f(−x) = −x3 + 21x+ 3500 = 0

The negative root of f(x) = 0 is a positive root of f(−x) = 0.
Therefore, we have to find the positive root of f(−x) = 0.
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Figure 4.1: Bisection method
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Let us take,

f(−x) = ψ(x) = −x3 + 21x+ 3500 = 0

ψ(x) = x3 − 21x− 3500 = 0

ψ(0) = −ve
ψ(1) = −ve
ψ(2) = −ve
.

.

.

ψ(14) = −ve
ψ(15) = −ve
ψ(16) = +ve

Thus, a root lies between [15, 16].
By putting;

x0 =
15 + 16

2
= 15.5

f(15.5) = −ve

Thus, a root lies between [15.5, 16].
By repeating the algorithm, we will find that the approximate

positive root is 15.644. Thereby, the positive root of ψ = 15.644, hence
the negative of the equation is −15.644, as shown in Table 4.6.

Example 4.7 Use bisection method to find roots of the equation x3−
x− 1 = 0.

Solution: Since the coefficients are a1 = 0, a2 = −1, a3 = −1,
hence

λ = max |aj| = 1; j = 1, 2, 3.
Thereby, the roots of the equation are exists in [−2, 2]. Or, a0 =

−2, b0 = 2.
Bisides,
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Table 4.6: Bisection method iterations
j x1 x2 f(x1) f(x2) x f(x)
1 15 16 −ve +ve 15.5 +ve
2 15.5 16 −ve +ve 15.75 +ve
3 15.5 15.75 −ve +ve 15.6250 −ve
4 15.625 15.75 −ve +ve 15.6875 +ve
5 15.625 15.6875 −ve +ve 15.6563 +ve
6 15.625 15.6563 −ve +ve 15.6407 −ve
7 15.6407 15.6563 −ve +ve 15.6485 +ve
8 15.6407 15.6485 −ve +ve 15.6446 +ve
9 15.6407 15.6446 −ve +ve 15.6427 −ve
10 15.6427 15.6460 −ve +ve 15.6444 +ve
11 15.6427 15.6444 −ve +ve 15.64355

f(a0) · f(b0) ≤ 0

Now, we are follow the following steps:

(i) Put j = 0

(ii) Utilize cj =
aj+bj

2
= a0+b0

2
= 0.

(iii) Since, f(a0) · f(c0) = f(−2) · f(0) > 0, hence a1 = c0 = 0, c0 =
c1 = 2.

Therby, the new interval is [0, 2].

(iv) Put j= 1, and repeat the steps, the roots lie in the [1, 2]. By going
on we find the root lies at [1.3246, 1.3250]. Or, the root is 1.3250.
What related to the other two roots, we will obtaining them, by
dividing the equation over x1 − 1.325, and finally we solve the
second degree equation by the constitution method.

Example 4.8 Find a root of x2

4
− sinx = 0 by using the bisection

method.
Solution: As in the Example 4.6, we obtain the root as shown

Table 4.7.
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Table 4.7: Bisection method iterations
j aj−1 bj−1 cj−1 f(cj) · f(aj)
1 1.5 2 1.75 −ve
2 1.75 2 1.8752 −ve
. . . . .
. . . . .
. . . . .
13 1.93372 1.93384 1.93378 +ve
. . . . .
. . . . .
. . . . .

4.3.2 Newton-Raphson’s method

Newton-Raphson Method is a powerful technique for solving equations
numerically. It is most commonly used for approximation of the
roots of the real functions. Newton Rapson Method was developed
by Isaac Newton and Joseph Raphson (Atkinson, 1991; Süli and
Mayers, 2003; Atkinson, 1991; Ypma, 1995). Newton Raphson Method
involves iteratively refining an initial guess to converge it toward the
desired root. In this section, we will study the method and its steps to
calculate the roots, as well as the applications of it.

The Newton-Raphson method is an iterative numerical method used
to find the roots of a real-valued function. This formula is named
after Sir Isaac Newton and Joseph Raphson, as they independently
contributed to its development. Newton Raphson Method is an
algorithm to approximate the roots of zeros of the real-valued functions,
using guess for the first iteration (x0) and then approximating the next
iteration (x1) which is close to roots, using the following formula;

x1 = x0 −
f(x0)

f ′(x0)

where, x0 is the initial value of x, f(x0) is the value of the equation
at initial value, and f ′(x0) ̸= 0 is the value of the first order derivative
of the equation or function at the initial value x0. As shown in Figure
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4.2.
In the general form, the Newton-Raphson method formula is written

as follows:

xn = xn−1 −
f(xn−1)

f ′(xn−1)

where, xn−1 is the estimated (n − 1)th root of the function, f(xn−1)

is the value of the equation at (n − 1)th estimated root, and f ′(xn−1)
is the value of the first order derivative of the equation or function at
xn−1.

Now, let us describe the algorithm step by step:

• Step1: Draw a graph of f(x) for different values of x as shown in
Figure 4.2.

• Step2: A tangent is drawn to f(x) at x0. This is the initial value.

• Step3: This tangent will intersect the X− axis at some fixed point
(x1, 0) if the first derivative of f(x) is not zero i.e. f ′(x0) ̸= 0.

• Step4: As this method assumes iteration of roots, this x1 is
considered to be the next approximation of the root.

• Step4: Now steps (2 − 4) are repeated until we reach the actual
root x∗.

Note:

(i) Conditions required to apply the Newton-Raphson method.

The following conditions must be met when using the Newton-
Raphson method to find the approximate roots of the equation
f(x) = 0,∀x ∈ [a, b].

(a) f(x) ̸= 0, and exists.

(b) Signal f ′(x),∀x ∈ [a, b] does not change.

(c) If f(a)ḟ(b) < 0 then
∣∣∣ f(a)f ′(a)

∣∣∣ < |b− a|, and ∣∣∣ f(b)f ′(b)

∣∣∣ < |b− a|.
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Figure 4.2: Newton-Raphson method
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It should be noted that, (a) and (b) mean that f(x) = 0 has a
unique root at [a, b], while (c) means that there exist at least one
root at [a, b].

(ii) Slope-intercept equation of a line.

The slope-intercept equation of any line is represented as y =
mx+ c, Where m is the slope of the line and c is the x−intercept
of the line. Using the same formula we, get;

y = f(x0) + f ′(x0)(x− x0)

Here f(x0) represents the c and f ′(x0) represents the slope of
the tangent m. As this equation holds true for every value of x,
it must hold true for x1. Thus, substituting x with x − 1, and
equating the equation to zero as we need to calculate the roots,
we get:

0 = f(x0) + f ′(x0)(x1 − x0)

x1 = x0–
f(x0)

f ′(x0)

Thus, Newton Raphson’s method was mathematically proved and
accepted to be valid.

(iii) Convergence of Newton Raphson method.

The necessary condition for the convergence of the Newton-
Raphson method is:

|f(x) · f ′′(x)| < |f ′(x)|2

Example 4.9 For the initial value x0 = 3, approximate the root of
f(x) = x3 − 3x+ 1.
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Solution:

x0 = 3, f(x) = x3 − 3x+ 1

f ′(x) = 3x2 − 3

f ′(x0) = 3(9)− 3 = 24

f(x0) = f(3) = 27− 3(3) + 1 = 19

x1 = x0–
f(x0)

f ′(x0)

= 3− 19

24

= 2
5

24
.

Example 4.10 For the initial value x0 = 2, approximate the root of
f(x) = x2 − 2 = 0.

Solution:

x0 = 2, f(x) = x2 − 2

f ′(x) = 2x

f ′(x0) = 2(2) = 4

f(x0) = f(2) = 22 − 2 = 4

x1 = x0–
f(x0)

f ′(x0)

x1 = 2− 2

4

x1 =
3

2
Using Newton Raphson method again :

x2 =
17

12

x3 =
577

408

Therefore, the root of the equation is approximatelyx =
577

408
≈ 1.414.

Example 4.11 Use x0 = 1.5 as the initial point to find a root of
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f(x) = sin(x)− x2

4

Solution:

f(x) = sin(x)− x2

4

f ′(x) = cos(x)− x

2
x0 = 1.5

xn = xn−1 −
f(xn−1)

f ′(xn−1)
,∀n ∈ N

Accoeding to Table 4.8, the root is x4 = 1.93375.

Table 4.8: Newton Raphson method iterations

n xn f(xn) f ′(xn) xn−1 − f(xn−1)
f ′(xn−1)

0 1.50000 0.434995 −0.67927 −0.64039
1 2.14039 −0.30319 −1.6095 0.1884
2 1.95201 −0.02437 −1.34805 0.0181
3 1.93393 −0.00023 −1.32217 0.00018
4 1.93375 0.000005 −1.3219 ≤ 1

2
10−5

. . . . .

Example 4.12 Find the nth root of number γ by using Newton
Raphson.

Solution:
x = n
√
γ

f(x) = xn − γ
f ′(x) = nxn−1

xk+1 = xk −
f(xk)

f ′(xk)

xk+1 =
1

n
[(n− 1)xk +

γ

xn−1
k

]
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For a radicand γ, beginning from some initial value x0 and using
Newton Raphson method repeatedly with successive values of k, one
obtains after a few steps a sufficiently accurate value of n

√
γ if x0 was

not very far from the searched root.
For cub root 3

√
γ;

xk+1 =
1

3
[2xk +

γ

x2k
]

For example, if one wants to compute 3
√
2, and uses x0 = 1, at the fifth

step gives x5 = 1.259921049894873.

Note: Newton Raphson method advantage and disadvantage.

(i) The method allows us to guess the roots of an equation with a
small degree very efficiently and quickly.

(ii) • The method tends to become very complex when the degree
of the polynomial becomes very large.

• The difficulty when using Newton-Raphson’s method to find
roots is the need to find the numerical value of the derivative
f ′(x) when x = xi; i = 0, 1, 2, ....

4.3.3 Secant method

The use of an approximation of the derivative f ′(x) when x =
xi, i = 1, 2, 3, ... by utilizing transversal straight (Fuzzy, 2009;
Fusy, 2005; Vázquez-Ávila, 2021) that connects the two points
(xn−1, f(xx−1)), (xn, f(xn)) is to cover the disadvantage of Newton
Raphson’s method. Thus, the secant method is a root-finding algorithm
that uses a succession of roots of secant lines to better approximate
a root of a function f , as sketched in Figure 4.3. And, it can be
thought of as a finite-difference approximation of Newton’s method
(Papakonstantinou and Tapia, 2013; Avriel, 1976).

The derivation of the method can be summarized as following:

• Step1: Select two initial approximations x0, x1 to the root.

• Step2: Calculate the function’s values at these points,
i.e.f(x0), f(x1).
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Figure 4.3: Secant method



Numerical Solution of Nonlinear Equations 105

• Step3: Apply the Secant Method formula to find the next
approximation x2.

• Step4: Repeat the process until an acceptable level of accuracy is
reached or a maximum number of iterations is achieved.

Mathematically, assume that the initial values x0, x1, we construct
a line through the points (x0, f(x0)), (x1, f(x1)), as shown in figure 4.3.
In slope–intercept form, the equation of this line is

y = f(x0) +
f(x1)− f(x0)

x1 − x0
The root of this linear function, that is the value of x such that

y = 0 is

x = x1 − f(x1
x1 − x0

f(x1)− f(x0)
we use this new value of x as x2 and repeat the process, using

x1, x2 instead of x0, x1 respectively. We continue this process, solving
for x3, x4, etc., until we reach a sufficiently high level of precision. A
sufficiently small difference between xn, xn−1:

x2 = x1 − f(x1
x1 − x0

f(x1)− f(x0)

x3 = x2 − f(x2
x2 − x1

f(x2)− f(x1)
.

.

.

xn = xn−1 − f(xn−1)
xn−1 − xn−2

f(xn−1)− f(xn−2)

Note:

(i) The iterates xn of the secant method converge to a root of f if
the initial values x0, x1 are sufficiently close to the root.

(ii) Using the secant method needs two initial approximate values for
the root, while the Newton-Raphson method requires just one
initial approximation value.
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Example 4.13 Find a root of the equation 2x − 2 − sinx, where the
root located between 0.4, 0.6.

Solution:

x0 = 0.4, x1 = 0.6

f(x) = 2x− 2− sinx
f(x0) = 0.3891

f(x1) = −0.4352

x2 = 0.6− (0.2)(−0.4352)
0.8243

= 0.404

x3 = 0.494− (−0.106)(0.0042)
0.4392

= 0.49501

f(x3) = 0.00003

x4 = 0.4950− (0.001)(0.00003)

−0.00417
= 0.4950

Thus, the desirable value is x4 = 0.4950.

Example 4.14 Compute the root of the equation x2e
–x
2 = 1 in the

interval [0, 2] using the secant method. The root should be correct to
three decimal places.

Solution:

x0 = 1.42, x1 = 1.43, f(x0) = –0.0086, f(x1) = 0.00034

x2 = x1–
x0–x1

f(x0)–f(x1)
f(x1)

= 1.43–
1.42–1.43

0.00034–(–0.0086)
(0.00034)

= 1.4296

f(x2) = –0.000011(–ve)

x3 = x2–
x1–x2

f(x1)–f(x2)
f(x2)

= 1.4296–
1.42–1.4296

0.00034–(–0.000011)
(–0.000011)

= 1.4292
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The value of each x2, x3 matching up to three decimal places, thereyby,
the required root is x3 = 1.429.

4.3.4 Birge-Vieta method

Combining Newton-Raphson’s method (Atkinson, 1991; Süli and
Mayers, 2003; Atkinson, 1991; Ypma, 1995) to find the roots of
the polynomial f(x) = xn + a1x

n−1 + ... + an = 0 with Horner’s
method (Horner, 1833; Horner, 1819) to find f(x), f ′(x) values for all
values of x in the closed interval [a, b] is called Birge-Vieta method
(Funkhouser, 1930; Vinberg, 2003; Djukić et al., 2011; Britannica
et al., 1993). In other words, Newton-Raphson’s method can be used
to find a root of a polynomial equation via Horner’s method.

Example 4.15 Find all roots of x4 − 5x3 + 5x2 + 5x − 7 = 0, if the
equation has a roots in the interval [−1, 3].

Solution:
f(x) = x4 − 5x3 + 5x2 + 5x− 7

By putting x0 = 3, and find f(3), f ′(3) as shown in Table 4.9:

Table 4.9: Birge-Vieta method (i)

1 -5 5 5 -7 3
3 -6 -3 6

1 -2 -1 2 -1 f(3)= -1
3 3 6

1 1 2 8 f ′(3) = 8

x1 = x0 −
f(x0)

f ′(x0)
= 3− −1

8
= 3.125

Now, by putting x1 = 3.125, and repeating the previous process, we
find that the result as shown in Table 4.10:

x2 = x1 −
f(x1)

f ′(x1)
= 3.125− 0.238

11.838
= 3.105
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Table 4.10: Birge-Vieta method (ii)

1 -5 5 5 -7 3.125
3.125 -5.859 -2.689 7.238

1 -1.875 -0.859 2.316 0.238 f(3.125)= 0.238
3.125 3.906 9.522

1 1.250 3.047 11.838 f ′(3.125) = 11.838

Again, put x3 = 3.1048 as the absolut approximate value, and to
find the other roots, repeat the process in the beginning and by utilizing
x0 = −1. And, the better is to reduction the orignal equation in the
fourth degree to the thied degree by dividing f(x) over (x− 3.1048).

f1(x) = x3 − 1.895x2 − 0.8840x+ 2.2552

And, utilizing Horner’s method, to find f1(−1), f ′
1(−1), as shown in

Table 4.11

Table 4.11: Birge-Vieta method (iii)

1 -1.895 -0.8840 2.2552 -1
-1 2.895 -2.0110

1 -2.895 2.0110 0.2442 f1(−1) = 0.2442
-1 3.895

1 -3.895 5.9060 f ′
1(−1) = 5.9060

x1 = −1−
0.2442

5.9060
= −1.041

Morever, as in Table 4.12:

x2 = −1.041−
−0.0063
6.3125

= −1.0400

Again repeating the process, we get x3 = −1.0399. Thereby, the
second required root is
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Table 4.12: Birge-Vieta method (iv)

1 -1.895 -0.8840 2.2552 -1.041
-1.041 3.0564 -2.2615

1 -2.936 2.1724 0.0063
-1.041 4.1401

1 -3.977 6.3125

x3 = −1.0399

On the other hand, the remaind two roots can be obtaind by solving
the equation in the second degree, after dividing f1(x) by (x+1.0399).

x2 − 2.936x+ 2.1724 = 0

x4 =
2.936 + 8328

31589
i

2

x5 =
2.936− 8328

31589
i

2

Thus, the set of the roots are:

x1 = 3.125

x2 = 3.1048

x3 = −1.0399

x4 =
367

250
+

4164

31589
i

x5 =
367

250
− 4164

31589
i

4.3.5 Graeffe’s root-squaring method

Graeffe’s method or Dandelin-Lobachesky-Graeffe method is an
algorithm for finding all of the roots of a polynomial in the same
time (Bini and Pan, 2012). The method has been developed
independently and Relatively simultaneously by Germinal Pierre
Dandelin, Lobachevsky and Karl Heinrich Gräffe (Alston, 1959) .
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The method separates the roots of a polynomial by squaring them
repeatedly. This squaring is done implicitly, only working on the
coefficients. Finally,Viète’s formulas are used in order to approximate
the roots (Best, 1949).

The method is derived as follows in the following steps:
Suppose that what is required is to find the real roots of the

polynomial equation;

xn + a1x
n−1 + a2x

n−2 + ...+ an = 0

By putting the even terms on one side of the equation and the odd
terms on the other side of the equation and squaring both sides, we
get;

(xn ++a2x
n−2 + a4x

n−4...+)2 = (a1x
n−1 + a3x

n−3 + ...)2

Now, by substituting y for x2, we get;

yxn ++b1y
n−1 + b2y

n−2...+ bn = 0

where,

b1 = −a21 + 2a2

b2 = a22 − 2a1a3 + 2a4

b3 = −a23 + 2a2a4 − 2a1a5 + 2a6

.

.

.

bn = (−1)na2n
Or;

(−1)kbk = a2k − 2ak−1ak+1 + 2ak−2ak+2 + ...

By repeating this process r−times, we get the following equation;

xn + c1x
n−1 + c2x

n−2 + ...+ cn = 0
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where the roots of the equation are;

P1, p2, ..., pn

and the roots of the original equation are;

z1, z2, ..., zn

Obviously,

pj = z2rj , j = 1, 2, ..., n

If we assume;

|pn| < |pn−1| < ... < |p2| < |p1|
|zn| < |zn−1| < ... < |z2| < |z1|

then;

c1 = −
∑
k

pk ≃ −p1

c2 = −
∑
j,k

pjpk ≃ −p1p2

c3 = −
∑
j,k,l

pjpkpl ≃ −p1p2p3

.

.

.

Implies that;

p1 =≃ −c1
p2 =≃ −

c2
c1

p3 =≃ −
c3
c2

.

.

.
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Generally;

zj = (pj)
1
2r , ∀j

It is worth noting that the sign of the root can be obtained by
substituting into the equation.

Example 4.16 Find the roots of the equation:

4x3 − 32x2 + 68x− 40 = 0

Solution: By dividing the equation by 4, putting the even terms
on one side and the odd terms on the other side, and also by squaring
both sides, we have;

(x3 + 17x)2 = (8x2 + 10)2

by substituting y for x2, we get;

y3 − 30y2 + 129y − 100 = 0

(y3 + 129y)2 = (30y2 + 100)2

Again, substituting z for y2, we get;

z3 − 642z2 + 10641y − 10000 = 0

(z3 + 10641z)2 = (642z2 + 10000)2

Next, substituting r for z2, we get;

r3 − 390882r2 + 100390881r − 108 = 0

Thereby, the approximate absolute values of the roots are;

|z1| = (390882)
1
8 =

12166

2433

|z2| = (
100390881

390882
)
1
8 =

2467

1233

|z3| = (
108

100390881
)
1
8 =

2050

2051

Thus, the {z1, z2, z3} =
{

12166
2433

, 2467
1233

, 2050
2051

}
.
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4.4 Exercises

Solve the following questions:
Q1: Find the number of real positive and negative roots of the

polynomials;

(i) 3x3 + 3x2 − 3x+ 1.

(ii) x3 − 3x2 + 3x− 1.

(iii) x4 + 3x2 − 4x+ 1.

(iv) x5 − 3x3 + 3x2 − x+ 1.

(v) x6 − x2 + x.

(vi) x4 + 3x2 + 1.

(vii) x6 − x5 + x2 + x.

(viii) x6 − x5 + 2x4 − x3 + x2 + x.

Q2: Using Horner’s method, find the differential values of the following
functions;

(i) 3x3 − 2x+ 1, at x = 3.

(ii) 2x4 + x2 − 1, at x = 1.5.

(iii) 2.1x3 + 3.02x2 − 1.78, at x = −1.41.

Q3: The equation; x8 − 170x6 + 7.392x4 − 39.712x2 + 51.200 = 0
has eight roots. If four of them are known, they are

{
2, 10,

√
2, 8
}
, then

remove these roots to obtain an equation in the fourth degree.
Q4: Use the bisection method to find the roots of the equations, in

which have roots between [0.5, 1];

(i) p1(x) = x3 − 2x− 1.

(ii) p2(x) = x4 − 3x3 + x2 + 1.
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(iii) p3(x) = x− 0.2sinx.

Q5: If the initial interval [a0, b0] in the case the bisection method
used, and if M = |b0 − a0|, the values x0, x1, x2, ... have been found by
the method. Prove that |xi+1 − xi| = M

2i+2 , i = 0, 1, 2, ....
Q6: Use Nweton-Raphson method to find the roots of the

equations, if they have roots between x = 1, x = 2.

(i) x3 − 2x− 1 = 0.

(ii) x6 + x4 + x3 + 1 = 0.

Q7: Use Secant method to find the roots of the equations, if they
have roots between x = 1, x = 2.

(i) x3 − 2x− 1 = 0.

(ii) x6 + x4 + x3 + 1 = 0.

Q8: Use Newton-Raphson method to find a root of the equation;
z5+(7−2i)z4+(20−12i)z3+(20−28i)z2+(19−12i)z+(13−26i) = 0

[Hint: z0 = 3i, Ans.: z8 = −1 + 2i]
Q9: What is the positive value of x that makes the function;
y = tanx

x2 has a minimum value.
[Hint: Ans.: x = 0.94775]

Q10: Find the intersection of the equations;
y = ex−2, y = loge(x+ 2), x > 2.
Q11: Use Birge-Vieta method to find the roots of;
x3 − 3x+ 1 = 0.
Q12: Use the Root-squaring method to find the roots of;
x3 − 5x2 − 17x+ 20 = 0.
Q13: Apply Newton-Raphson’s method to the equations;

x3−N = 0, Xp−M = 0 to show that; N
1
3 ,M

1
p , and find

√
10, 3
√
10.

Q14: Consider the polynomial;
p(x) = a0x

n + a1x
n−1 + ... + an−1x + an, where b0 = a0, bi = ai +

zbi−1, i = 1, 2, ..., bn = p(z). Prove that;
p(x)−p(z)

x−z
=
∑n−1

i=0 bix
n−1−i.

Q15: In the previous question if bi is known, and c0 = b0, ci =
bi + zci−1, i = 1, 2, ..., n− 1. Prove that cn−1 = p1(z).
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Matrices

5.1 Introduction

A
matrix is a rectangular array arranged in rows and columns,
which is used to represent a mathematical object or a property

of such an object. The study of matrices takes an important position
in terms of its use in the fields of knowledge and science in general
and in the field of mathematics in particular. The matrices had been
used for the first time by mathematician Arthur Cayley (1822-1995)
(Dossey et al., 1987; Cayley, 1858a; Cayley, 1894; Dieudonné, 1978) as
a shorthand to express a system of linear equations.

There are numerous applications of matrices whether in
mathematics or in science and other fields. Some of them take
advantage of the compact representation of a set of numbers in a matrix.
Including:

• Algebraic aspects and generalizations (Coburn, 1955; Brown,
1991).

• Game theory and economics (Fudenberg and Tirole, 1991).

• Graph theory (Godsil and Royle, 2001; Punnen and Kabadi,
2002).
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• Analysis and geometry (Lang, 1984; Wright, 2006; Lang, 2012a;
Trudinger, 1983; Ŝoĺın, 2005).

• Probability theory and statistics (Latouche and Ramaswami,
1999; Srinivasan and Mehata, 1976; Healy, 2000; Krzanowski,
2000; Conrey, 2007; Brézin et al., 2006).

• Symmetries and transformations in physics (Bessis et al., 1980;
Itzykson and Zuber, 1980).

• Linear combinations of quantum states (Schiff, 1968; Böhm, 2013;
Weinberg, 1995).

• Normal modes (Wherrett, 1986; Riley et al., 1999).

• Geometrical optics (Guenther, 1990).

• Electronics (William et al., 2007; Nilsson and Riedel, 2001; Dimo,
1975; Baker, 2019; Slurzberg and Osterheld, 1950; Callegaro,
2012; Ushida et al., 2003; Kline, 2019; Dybkaer, 2003; Mohr and
Phillips, 2014).

• Chemstry (McNaught et al., 1997a; Fifield and Haines, 2000;
Delmonte, 1997; McNaught et al., 1997b; Arruda, 2007).

• Biology (Caswell, 2000; Bruce and Shernock, 2002; Zhang et al.,
2010).

In short, we can say that matrices have applications in almost
all areas of life. This chapter will be a tool to learn about
matrices, the basic concepts of them, their types, how to express them
mathematically, and the basic operations on them.

5.2 Linear equations

Definition 5.1 Let F be a field, a1, a2, ....an ∈ F , and x1, x2, ..., xn be
unknown variables. The mathematical form:

a1x1 + a2x2 + ...+ anxn = b (5.1)
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is called a linear equation, and a1, a2, ....an are its cofficints and b is the
absolute term (Barnett et al., 2019; Charles, 1892; David, 1890; Wilson
and Tracey, 1925).

Definition 5.2 A set of equations in the form:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

.

.

.

am1x1 + am2x2 + ...+ amnxn = bm

(5.2)

is called a system of linear equation of m equations, and n varisbles
(Barnett et al., 2019; Charles, 1892; David, 1890; Wilson and Tracey,
1925).

Definition 5.3 The (n− tuple)n x1, x2, ....xn ∈ F which satisfies (5.2)
is called the solution of the linear equation system. (Cullen, 2012).

Definition 5.4 Let F be a field, a1, a2, ....an ∈ F , and x1, x2, ..., xn be
unknown variables. The mathematical form:

a1x1 + a2x2 + ...+ anxn = 0 (5.3)

is called a homogeneous linear equation, (Barnett et al., 2019; Charles,
1892; David, 1890; Wilson and Tracey, 1925).

Definition 5.5 A set of equations in the form:

a11x1 + a12x2 + ...+ a1nxn = 0

a21x1 + a22x2 + ...+ a2nxn = 0

.

.

.

am1x1 + am2x2 + ...+ amnxn = 0

(5.4)
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is called system of homogeneous linear equations (Strang, 2006; Strang,
2011; Apostol, 1967).

Note: When (b1 = b2 = ... = bm = 0), the n− tiple (0, 0, ..., 0) is a
solution to the m− homogeneous linear equations.

Definition 5.6 A linear combination is an expression constructed from
a set of terms by multiplying each term by a constant and adding the
results. Mathematically, a linear combination of x1 and x2 would be
any expression of the form ax+ by, where a, b are constants in the field
F (Strang, 2022; Lay, 2003; Axler, 2015).

Note: In the system (5.2), if we multiply the equations by
c1, c2, ..., cm respectively, and add them, the result will be:

(c1a11 + c2a21 + ...+ cmam1)x1

+ (c1a12 + c2a22 + ...+ cmam2)x2

.

.

.

+ (c1a1n + c2a2n + ...+ cmamm)xn

= c1b1 + c2b2 + ...+ cmbm

Example 5.1 Solve the following system of linear equations:

2x1 + 3x2 + 8x3 + x4 = 1...(1)

x1 + x2 + 3x3 − x4 = 2...(2)

3x1 − 4x2 + 8x3 − x4 = 5...(3)

Solution: Multiplying (2) by 2 and subtracting it from (1) we get;

x2 + 2x3 + 3x4 = 2...(4)

Again Multiplying (2) by 3 and subtracting it from (3) we get;

x2 + x3 − 2x4 = 1...(5)

Solving (4) , (5) simultaneously, , we get;



Matrices 119

x2 = 6x4, x3 = 1− 5x4.
By putting the values of x2, x3 at one of the equations of the system,

we obtain;
x1 = −1 + 10x4.
Thereby, the set solution of the system is (−1+10x4, 6x4, 1−5x4, x4).
It should be noticed that, we have found x1, x2, x3 in terms of x4.
Thus, x1, x2, x3 are dependent variables, and x4 is independent

variable. Furthermore, the set solution of the system is infinite,
because, the system consisted of four variables with three equations.

Example 5.2 Solve the following system of linear equations:

6x1 + 3x2 + 2x3 = −6
12x1 − 3x2 + x3 = 15

− 24x1 − 3x2 + 4x3 = 24

[Hint: Ans.: (0,−4, 3)]
The solution has been left as an exercise for the reader.

5.3 Exercises

Solve the following system of linear equations:
Q1:

x1 + x2 = 6

3x1 − 2x2 = 2

Q2:

x1 + x2 + x3 = 8

x1 − x2 + 3x3 = 13

24x1 + 3x2 − x3 = 7

Q3:

x1 + x2 + x3 = 4

2x3 + 3x2 + 2x1 = 5

3x1 + 4x2 − 3x3 = −3
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Q4:

x1 + x2 − 2x3 = 3

3x1 + x2 − 6x3 = 8

x2 + 7x2 + 3x3 = 0

− x1 + 8x2 + 7x3 = −4
Q5:

x1 + x2 + 3x3 + x4 = 0

x1 − x2 − x3 − x4 = 0

3x1 + x2 + 5x3 + 3x4 = 0

x1 + 5x2 + 11x3 + 8x4 = 0

5.4 Matrices

Definition 5.7 A matrix is a rectangular array of numbers (objects),
called the entries of the matrix. Matrices are subject to standard
operations such as addition and multiplication. A matrix over a field
F is a rectangular array of elements of F . A real matrix and a complex
matrix are matrices whose entries are respectively real numbers or
complex numbers (Lang, 1984; Lang, 2002; Fraleigh, 2003; Nering,
1970).

Note:

(i) A matrix can be represented as:

A =


a11 a12 ... a1n
a21 a22 ... a2n
. . ... .
. . ... .
. . ... .
am1 am2 ... amn


Or, the matrix A has m rows, and n columns. Mathematicaly,
A = (aij) ∈ F, ∀i, j; 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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(ii) If a matrix consists of m rows and n columns, it is called a matrix
m× n, and m× n represents its degree.

(iii) Capital letters are used to denote matrices. For example, A5×3 is
a mtrix has five rows and three columns.

(iv) A matrix of degree m × n is defined as a function from the set
(i, j) : i = 1, 2, ...,m ∧ j = 1, 2, ..., n→ F . It means this function
is fixed each location of element (i, j) of the field elements F , and
covering all possibilities, the matrix is formed.

5.5 Types of matrices

There are different types of matrices, and the following is a list of
these types in some detail, based on some of the studies of scientists
(Lang, 1984; Lang, 2002; Fraleigh, 2003; Nering, 1970).

5.5.1 Row matrix

Definition 5.8 A row matrix has only one row but any number of
columns. A matrix is said to be a row matrix if it has only one row.
Or, A = [aij]1×n is a row matrix of order 1× 5.

Example 5.3 A =
[√
−2 7 3 4 1

]
is a row matrix of order 1× 5.

5.5.2 Column matrix

Definition 5.9 A column matrix has only one column but any number
of rows. A matrix is said to be a column matrix if it has only one
column. Or, A = [aij]m×1 is a column matrix of order m× 1.

Example 5.4 A =

 4
−5√
3

 is a column matrix of order 3× 1.
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5.5.3 Square matrix

Definition 5.10 A square matrix has the number of columns equal to
the number of rows. A matrix in which the number of rows is equal to
the number of columns is said to be a square matrix. Thus an m × n
matrix is said to be a square matrix if m = n, and is known as a square
matrix of order ‘m′. Or, A = [aij]m×m is a square matrix of order m.

Example 5.5 A


−1 2 4 2 −3

5
1
2
−7 6 −3 3

−7
8
−2 −3 0 9

1 −2 −7 3 5
7 −3

5
−5 3 0


is a square matrix of order 5.

5.5.4 Trace of a square matrix

Definition 5.11 The trace of an n× n square matrix A is defined as
(Weisstein, 2002; Lipschutz and Lipson, 2018):

T (A) =
n∑

i=1

aii = a11 + a22 + ...+ ann

where aii denotes the entry on the ith row and ith column of A. The
entries of A can be real numbers, complex numbers, or more generally
elements of a field F . The trace is not defined for non-square matrices.

Example 5.6 A


−1 2 4 2
1
2
−7 6 −3

−7
8
−2 −3 0

1 −2 −7 3


T (A) =

∑4
i=1 aii = (−1) + (−7) + (−3) + (+3) = −8.

Note: The trace is a linear mapping. That is for each matrices
A,B, and a constant c, has the following basic properties:

(i) T (A+B) = T (A) + T (B).

(ii) T (cA) = cT (A).
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(iii) T (A) = T (AT ).

(iv) T (AB) = T (BA).

5.5.5 Rectangular matrix

Definition 5.12 A matrix is said to be a rectangular matrix if the
number of rows is not equal to the number of columns.

Example 5.7 (i) A


−1 2 4 2
1
2
−7 6 −3

−7
8
−2 −3 0

1 −2 −7 3
7 −3

5
−5 3

 is a square matrix of order

5× 4.

(ii) B =

−1 2 4 2 7
1
2
−7 6 −3 2

−7
8
−2 −3 0 −3

 is a square matrix of order 3× 5.

5.5.6 Diagonal matrix

Definition 5.13 A square matrix A = [aij]m×m is said to be a diagonal
matrix if all its non-diagonal elements are zero, that is a matrix A =
[aij]m×m is said to be a diagonal matrix if aij = 0, when i ̸= j.

Example 5.8 (i) A =
[
−3
]
is a matrix of order 1.

(ii) B =

2 0 0
0 1

2
0

0 0 −3

 is a matrix of order 3.

5.5.7 Scalar matrix

Definition 5.14 A diagonal matrix is said to be a scalar matrix if
all the elements in its principal diagonal are equal to some non-zero
constant. A diagonal matrix is said to be a scalar matrix if its diagonal
elements are equal, that is, a square matrix A = [aij]m ×m is said to

be a scalar matrix if:

{
aij = 0,when i ̸= j.

aij = k,when i = j, for some constant k.
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Example 5.9 (i) A =
[
2
]
is a matrix of order 1.

(ii)

(iii) B =

[
1
2

0
0 1

2

]
is a matrix of order 2.

(iv) C =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 is a matrix of order 5.

5.5.8 Zero matrix

Definition 5.15 A matrix is said to be zero matrix or null matrix if
all its elements are zero, and denoted by O.

Example 5.10 (i) A =
[
0
]
is a matrix of order 1.

(ii)

(iii) B =

[
0 0
0 0

]
is a matrix of order 2.

(iv) C =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 is a matrix of order 4.

5.5.9 Unit matrix

Definition 5.16 If a square matrix has all elements 0 and each
diagonal elements are they are units, it is called identity matrix and
denoted by I. Or, the square matrix A = [aij]m×m is an identity matrix
if: {

aij = 1,when i = j.
aij = 0,when i ̸= j

Example 5.11 (i) A =
[
1
]
is a matrix of order 1.
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(ii)

(iii) B =

[
1 0
0 1

]
is a matrix of order 2.

(iv) C =

1 0 0
0 1 0
0 0 1

 is a matrix of order 3.

Note:

(i) We denote the identity matrix of order n by In. When the order
is clear from the context, and we simply write it as I.

(ii) A scalar matrix is an identity matrix when k = 1.

(iii) Every identity matrix is clearly a scalar matrix, but the vice versa
is not true.

5.5.10 Upper triangular matrix

Definition 5.17 A square matrix in which all the elements below the
diagonal are zero is known as the upper triangular matrix, and denoted
by U .

Example 5.12 A =


5 4 3 −1
0 2 −7 4
0 0 −1 −3

4

0 0 0 9

 is the U in order 4.

5.5.11 Lower triangular matrix

Definition 5.18 A square matrix in which all the elements above the
diagonal are zero is known as the upper triangular matrix, and denoted
by L.

Example 5.13 B =


5 0 0 0 0
2 2 0 0 0
−1 2 4 0 0
5 3 −2 9 0
2 7 3 9 7

9

 is the L in order 5.
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5.5.12 Transpose of a matrix

Definition 5.19 The transpose of a matrix A, denoted by AT

(Whitelaw, 2019; Cayley, 1858a), may be constructed by any one of
the following methods:

(i) Reflect A over its main diagonal (which runs from top-left to
bottom-right) to obtain AT .

(ii) Write the rows of A as the columns of AT .

(iii) Write the columns of A as the rows of AT .

Or, the ith row, jth column element of AT is the jth row, ith column
element of A: [AT ]ij = [A]ji. If A is an m × n matrix, then AT is an
n×m matrix.

Example 5.14 If A =


5 0 6 −1
2 2 3 5
−1 2 4 0
5 3 −2 9
2 7 3 7

9

 then,

AT =


5 2 −1 5 2
0 2 2 3 7
6 3 4 −2 3
−1 5 0 9 7

9


5.5.13 Symmetric matrix

Definition 5.20 A symmetric matrix is a square matrix that is equal
to its transpose. Or, A is a symmetric if and only if A = AT (Bellman,
1997; Zielke, 1985).

Note:

(i) Since equal matrices have equal dimensions, hence, only square
matrices can be symmetric.

(ii) The entries of a symmetric matrix are symmetric with respect to
the main diagonal. So if aij denotes the entry in the ith row and
jth column then; A is symmetric ⇔ aij = aji,∀i, j.
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Example 5.15 The following 4× 4 matrix is symmetric:

A =


1 7 3 6
7 3 2 1
3 2 5 0
6 1 0 9

. Since A = AT .

5.5.14 Skew symmetric matrix

Definition 5.21 A skew symmetric (antisymmetric or antimetric)
matrix is a square matrix whose transpose equals its negative. Or,
A is skew symmetric matrix if and only if AT = −A (W et al., 1997;
Lipschutz and Lipson, 2018; Lipschutz and Lipson, 2001a).

Note: In terms of the entries of the matrix, if aij denotes the entry in
the ith row and jth column then;

A is skew symmetric ⇔ aji = −aji,∀i, j.

Example 5.16 A =

 0 3 −60
−3 0 −7
60 7 0

 is skew-symmetric because;

−A =

 0 −3 60
3 0 7
−60 −7 0

 = AT .

5.5.15 Matrix conjugate

Definition 5.22 The matrix A is the conjugate matrix of matrix B if
the elements of A are the complex conjugate numbers of the elements
of matrix B, and it denoted by A (Arfken, 1985; Ayres, 1962; Courant
and Hilbert, 2008).

Example 5.17 If A =


3i 4 + i 2

7− i 3 + 7i 4− 10i
−8i 11 + 3i 0
6 1− i 0

, then
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A =


−3i 4− i 2
7 + i 3− 7i 4 + 10i
8i 11− 3i 0
6 1 + i 0


is the conjugate of A, since all entries of matrix A are conjugated.
In other words, the numbers in matrix A have the same real part as
numbers in matrix A, but their complex part have the opposite sign.

Note: The conjugate transpose of A is denoted by A′ = A⋆.

5.5.16 Hermitian matrix

Definition 5.23 A Hermitian matrix (self adjoint matrix) is a complex
square matrix that is equal to its own conjugate transpose that is, the
element in the ith row and jth column is equal to the complex conjugate
of the element in the jth row and ith column.

Or, A is Hermittian matrix, if and only if aij = aji, ∀i, j. In matrix

form, A is Hermittian matrix, if and only if A = AT . (Liu and Li, 2015;
Frankel, 2011; Sylvester et al., 1855).

Example 5.18 The following matrices are Hermitian:

(i) A =

[
3 7− 2i

7 + 2i 1
3

]
.

(ii) B =

 2 1− 2i 2− 6i
1 + 2i 4 1
2 + 6i 1 −5

.
Note: Hermitian matrix denoted by AH .

5.5.17 Skew Hermitian matrix

Definition 5.24 A square matrix with complex entries is said to be
skew Hermitian (anti-Hermitian matrix) if its conjugate transpose is
the negative of the original matrix.

Or, A is a skew Hermitian matrix if and only if AH = −A, where
AH denotes the conjugate transpose of the matrix A. This means that;
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A is a skew Hermitian matrix if and only if aij = −aji,∀i, j (Hom
and Johnson, 1985; Horn, 1985; Meyer and Stewart, 2023).

Example 5.19 The following matrices are Hermitian:

(i) A =

[
0 1 + i

−1 + i 0

]
.

(ii) B =

 0 2i 2− 3i
2i 0 −4

−2− 3i 4 0

.
5.6 Exercises

What are the following types of matrices?
Q1:1 2 0
2 3 −4
0 −4 5

.
Q2: 0 1− 2i 5i
−1− 2i 0 3

5i 3 i

.
Q3:
0 −2 −3 −4
2 0 −5 −6
3 5 0 −7
4 6 7 0

.
Q4:
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

.
Q5: 1

3
2
3

2
3

2
3

1
3

−2
3

−2
3

2
3

−1
3

.
Q6:
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0 5

13
12
13

0 −12
13

5
13

.
Q7:[
i i
i i

]
.

Q8:−6
7

2
7

3
7

2
7

−3
7

6
7

3
7

6
7

2
7

.
Q9:a2 − b2 − c2 + d2 2(ab− cd) 2(ac− bd)

2(ab+ cd) −a2 + b2 − c2 + d2 2(bc− ad)
2(ac− bd) 2(bc+ ad) −a2 − b2 + c2 + d2

.
Q10:
1 2 3 1
0 2 1 i
0 0 0 1
0 0 0 2

.
Q11:

2 0 0 0
i 1 0 0
2 2 3 0
−1 4 −i 1

.
Q12:1 0 0
0 3 0
0 0 4

.
5.7 Operations on matrices

In this section, we review some of the basic operations on the set of
matrices: addition, subtraction, multiplication, and division are not
defined. It is worth noting that these operations are inherited from
the regular operations in the field F , with emphasis on the symbols
⊡,⊞,⊟,⊠ to Scalar multiplication, adding, subtratind, and maltiplying
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matrices respectively to show that these operations are special on the
set of matrices. But for convenience, we will use the usual symbols.

5.7.1 Equality of matrices

Definition 5.25 Two matrices A and B are said to be equal if they
are of the same degree and all of their corresponding elements are equal.
Or, Am×n = Bm×n ⇔ aij = bij, ∀i, j (Finkbeiner, 2013; Bellman, 1997;
Schwartz, 2001).

5.7.2 Scalar multiplication and scalar division

Definition 5.26 Multiplying by a constant of a matrix is defined by
multiplying the constant by each element of the matrix, and the symbol
⊡ is used to indicate it.

Or, if the scalar is k, and the matrix is amn then:
k ⊡ (aij)mn = (k ⊡ aij);∀i, j (Strang, 2006; Strang, 2012; Strang,

2012; Lay, 2003).

Now, we can define a scalar division of a matrix, as follows;

Definition 5.27 Scalar division by a constant of a matrix is defined
by dividing each element of the matrix by the constant and the symbol
1
k
⊡ is used to indicate it.
Or, if the scalar is k, and the matrix is amn then:
1
k
⊡ (aij)mn = ( 1

k
⊡ aij);∀i, j.

Example 5.20 (i) 3⊡


2 0 0 0
i 1 0 0
2 2 3 0
−1 4 −i 1

 =


6 0 0 0
3i 3 0 0
6 6 9 0
−3 12 −3i 3

.

(ii) 1
3
⊡


2 0 0 0
i 1 0 0
2 2 3 0
−1 4 −i 1

 =


2
3

0 0 0
i
3

1
3

0 0
2
3

2
3

1 0
−1
3

4
3

−i
3

1
3

.
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5.7.3 Adding and subtracting matrices

Definition 5.28 Matrix addition is the operation of adding two
matrices by adding the corresponding entries together.

Or, (aij)mn ⊞ (bij)mn = (aij ⊞ bij)mn = cij (Anton and Rorres, 2013;
Lipschutz and Lipson, 2018; Lipschutz and Lipson, 2001a; Riley et al.,
1999).

Now, we can define subtraction of matrices, as follows;

Definition 5.29 The two matrices whose difference is calculated have
the same number of rows and columns. The subtraction of the two
matrices can also be defined as addition of A and −B.

Or, (aij)mn ⊟ (bij)mn = (aij ⊞ (−1⊡ bij))mn = cij

Example 5.21 (i)


1 3 −1 3
2 4 0 5
−5 4 3 −2
3 4 0 6

 ⊞


6 3 7 3
0 4 9 5
5 −4 3 2
13 0 10 −6

 =


7 6 6 6
2 8 9 10
0 0 6 0
16 4 10 0

.

(ii)

 1 3 −1
2 4 0
−5 4 3

 ⊟

6 3 7
0 4 9
5 −4 7

 =

 1 3 −1
2 4 0
−5 4 3

 ⊞−6 −3 −70 −4 −9
5 −4 −7

 =

−5 0 −8
2 0 −9
0 0 −4

.
5.7.4 Multiplying matrices

Matrix multiplication was first described by Jacques Philippe Marie
Binet in 1812 (Souza and Tatiana, 2018), to represent the composition
of linear maps that are represented by matrices. Matrix multiplication
is thus a basic tool of linear algebra, and as such has numerous
applications in many areas of mathematics, as well as in applied
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mathematics, statistics, physics, economics, and engineering (Van
et al., 1991). Computing matrix products is a central operation in
all computational applications of linear algebra.

Definition 5.30 Matrix multiplication is a binary operation that
produces a matrix from two matrices. For matrix multiplication, the
number of columns in the first matrix must be equal to the number
of rows in the second matrix. The resulting matrix, known as the
matrix product, has the number of rows of the first and the number
of columns of the second matrix. The product of matrices A and B is
denoted as AB (Hoffman and Kunze, 1967; Hohn, 1972; Strang, 2006;
Strang, 2022).

Or, if A is an m× n matrix, and B is an n× p matrix,

A =


a11 a12 ... a1n
a21 a22 ... a2n
. . ... .
. . ... .
. . ... .
am1 am2 ... amn

, B =


b11 b12 ... b1p
b21 b22 ... b2p
. . ... .
. . ... .
. . ... .
bn1 bn2 ... bnp

,
the matrix product C = A⊡B is defined to me m× p matrix

C =


c11 c12 ... c1p
c21 c22 ... c2p
. . ... .
. . ... .
. . ... .
cm1 cm2 ... cmp

,
where
cij = ai1b1j + ai2b2j + ...+ ainbnj =

∑n
k=1 aikbkj

∀i = 1, 2, ..,m; j = 1, 2, ..., p.
Implies that, the dot product of the ith row of A and the jth column

of B (Lipschutz and Lipson, 2018; Lipschutz and Lipson, 2001b; Riley
et al., 1999; Adams and Essex, 2018; Horn and Johnson, 2012).
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Thus,

C = A⊡B

=


a11b11 + ...+ a1nbn1 a11b12 + ...+ a1nbn2 ... a11b1p + ...+ a1nbnp
a21b11 + ...+ a2nbn1 a21b12 + ...+ a2nbn2 ... a21b1p + ...+ a2nbnp

. . ... .

. . ... .

. . ... .
am1b11 + ...+ amnbn1 am1b12 + ...+ amnbn2 ... am1b1p + ...+ amnbnp



Example 5.22 Consider A =

 1 3 −1
2 1

2
0

−5 0 3

 , B =

 4 3 1
3

2 4 0
−1

5
4 3

.
Find;

(i) A⊡B.

(ii) B ⊡ A.

(iii) what do you notice?

Solution:

(i) A⊡B =

 51
5

11 −8
3

9 8 2
3

−103
5
−3 22

3

.
(ii) B ⊡ A =

 25
3

27
2
−3

10 8 −2
−36

5
7
5

46
5

.
(iii) We note that A⊡B ̸= B ⊡ A

Note: In general, A⊡B ̸= B ⊡ A, for some matrices A,B.

5.7.5 Matrices partition

The aim of matrices partition with large degrees is for scientific and
applied purposes, including ease of operations on them, and control
over them through partial matrices. Any matrix may be interpreted as a
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partitioned matrix in one or more ways, with each interpretation defined
by how its rows and columns are partitioned (Macedo and Oliveira,
2013).

Definition 5.31 A partitioned matrix is a matrix that is interpreted
as having been broken into sections called submatrices (Eves, 1980).
A matrix interpreted as a partitioned matrix can be visualized as the
original matrix with a collection of horizontal and vertical lines, which
partition it, into a collection of smaller matrices (Anton and Rorres,
2013).

Example 5.23 
1 2 2 7
1 5 6 7
3 3 4 5
3 3 6 7


can be partitioned into four 2× 2 submatrices:

A11 =

[
1 2
1 5

]
, A12 =

[
2 7
6 7

]
, A21 =

[
3 3
3 3

]
, A22 =

[
4 5
6 7

]
.

Thus, the partitioned matrix can then be written as:

A =

[
A11 A12

A21 A22

]
.

Note:

(i) The matrix A4×4 has became A2×2 after partition.

(ii) Partitioning the rows of the second matrix is the same as
partitioning the columns in the first matrix.

(iii) Whenever partitioning of matrices, it is taken into account to
obtain the largest number of zero and unary matrices for the
purpose of the operations on them.

Example 5.24 Consider
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A =


1 3 0 0 0 3
3 4 0 0 0 5
0 0 1 0 0 4
0 0 0 1 0 1
0 0 0 0 0 0
1 3 4 1 3 1

 , B =


1 0 1 2 2
0 0 5 4 1
1 2 1 3 3
3 2 2 4 1
2 2 3 4 2
0 0 2 2 1


Evaluate A⊡B.

Solution: A11 =

[
1 3
3 4

]
, A12 =

[
0 0 0
0 0 0

]
, A13 =

[
3
5

]
.

A21 =

0 0
0 0
0 0

 , A22 =

1 0 0
0 1 0
0 0 0

 , A23 =

41
0

.
A31 =

[
1 3

]
, A32 =

[
4 1 3

]
, A33 =

[
1
]
.

B11 =

[
1 0
0 1

]
, B12 =

[
1 2
5 4

]
, B13 =

[
2
1

]
.

B21 =

1 2
3 2
2 2

 , B22 =

1 3
2 4
3 4

 , B23 =

31
2

.
B31 =

[
0 0

]
, B32 =

[
2 2

]
, B33 =

[
1
]
.

So the product is equal toA11 A12 A13

A21 A22 A23

A31 A32 A33

⊡

 b11 B12 B13

B21 B22 B23

B31 B32 B33

 =

A11B11 +A12B21 +A13B31 A11B12 +A12B22 +A13B32 A11B13 +A12B23 +A13B33

A21B11 +A22B21 +A23B31 A21B12 +A22B22 +A23B32 A21B13 +A22B23 +A23B33

A31B11 +A32B21 +A33B31 A31B12 +A32B22 +A33B32 A31B13 +A23B32 +A33B33


To obtain the desired result, 3× 9 = 27 small matrix multiplication

operations are required.
Thus, A⊡B =

[
1 0
3 0

] [
22 20
33 32

] [
8
15

]
1 2
3 2
0 0

 9 11
4 6
0 0

 72
0

[
14 16

] [
33 44

] [
25
]

 =


1 0 22 20 8
3 0 33 32 15
1 2 9 11 7
3 2 4 6 2
14 16 33 44 25


Example 5.25 Find the product of the following:
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1 0 1 0
0 3 0 2
0 0 2 0
4 3 0 5

⊡


3 5
0 4
1 3
6 1

.
Solution: After dividing the two matrices into submatrices - and

after performing the operations, we find that:[
A11 A21

A21 A22

]
⊡

[
B11

B21

]
=

[
A11 ⊡B11 ⊞ A12 ⊡B21

A21 ⊡B11 ⊞ A22 ⊡B21

]
. where,

A11 ⊡B11 =

[
1 0
0 3

]
⊡

[
3 4
0 5

]
=

[
3 4
0 15

]
.

A12 ⊡B21 =

[
1 0
0 2

]
⊡

[
1 3
6 1

]
=

[
1 3
12 2

]
.

A22 ⊡B11 =

[
0 0
4 3

]
⊡

[
3 4
0 5

]
=

[
0 0
12 31

]
.

A22 ⊡B21 =

[
2 0
0 5

]
⊡

[
1 3
6 1

]
=

[
2 6
30 5

]
.

Thereby,

A11 ⊡B11 ⊞ A12 ⊡B21 =

[
3 4
0 15

]
⊞

[
1 3
12 2

]
=

[
4 7
12 17

]
.

A21 ⊡B11 ⊞ A22 ⊡B21 =

[
0 0
12 31

]
⊞

[
2 6
30 5

]
=

[
2 6
42 36

]
.

Thus, the matrix product is
[

4 7
12 17

]
[

2 6
42 36

]
 =


4 7
12 17
2 6
42 36

.
5.8 Vectors

Vectors were introduced in geometry and physics for quantities that
have both a magnitude and a direction, such as displacements, forces
and velocity. Such quantities are represented by geometric vectors in
the same way as distances, masses and time are represented by real
numbers. The term vector is also used, in some contexts, for tuples,
which are finite sequences of numbers of a fixed length (Ivanov, 2001;
Heinbockel, 2001; Itō, 1993).
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Definition 5.32 A vector is an object that has both a magnitude and
a direction. Or, a vector is a directed line segment, whose length is the
magnitude of the vector and with an arrow indicating the direction. The
direction of the vector is from its tail to its head (Hamadameen, 2022;
Ivanov, 2001; Hoffman and Kunze, 1967; Hohn, 1972; Strang, 2006).

5.8.1 Vector expression

A vector with m−dimension on the field F means an ordered set of m−
elements. Or, A⃗ = [a1, a2, ..., am], where ai ∈ F, ∀i = 1, 2, ...,m. The
component ai, i = 1, 2, ...,m.

A⃗ =
[
a1 a2 . . . am

]
is called a row vector.
While,

A⃗ =


a1
a2
.
.
.
am


is called a column vector.
Note:

(i) A matrix Am×n can be expressed as a vector in m rows and n
columns.

(ii) The laws of the operations on matrices apply to vectors as well.

Example 5.26 If x⃗1 = [1,−3, 5, 7], x⃗2 = [1,−2,−1,−5]. Find:

(i) x⃗1 ⊞ 2x⃗2.

(ii) x⃗1 ⊟ 4x⃗2.

(iii) −1
3
x⃗1 ⊡ 3x⃗2.

(i) x⃗1 ⊞ 2x⃗2 = [1,−3, 5, 7] ⊞ (2 ⊡ [1,−2,−1,−5]) = [1,−3, 5, 7] ⊞
[2,−4,−2,−10] = [3,−7, 3,−3].
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(ii) x⃗1 ⊟ 4x⃗2 = [1,−3, 5, 7] ⊞ (−4 ⊡ [1,−2,−1,−5]) = [1,−3, 5, 7] ⊞
[−4, 8, 4, 20] = [−3, 5, 9, 27].

(iii) −1
3
x⃗1 ⊡ 3x⃗2 = (−1

3
[1,−3, 5, 7]) ⊡ (3[1,−2,−1,−5]) =

[−1
3
, 1, −5

3
, −7

3
]⊡ [3,−6,−3,−15] = −1

3
× 3 + 1×−6 + −5

3
×−3 +

−7
3
×−15 = 33.

5.8.2 Linearly dependent vectors

Definition 5.33 A sequence of vectors v1, v2, ..., vm defined on the field
F are said to be linearly dependent, if there existm scalars a1, a2, ..., am
in F , not all zero, such that;

a1v1 + a2v2 + ...+ amvm = 0,
where 0 denotes the zero vector (Shilov, 1977; Shilov, 2012).

5.8.3 Linearly independent vectors

Definition 5.34 In the previous definition, if there is no such scalars
a1, a2, ..., am, the vectors v1, v2, ..., vm are said to be linearly independent
(Shilov, 1977; Shilov, 2012).

Example 5.27 Consider the vectors v1 = [2, 2,−3], v2 = [−4,−4, 6],
v3 = [3, 1,−4]. Prove that:

(i) v1, v2 are perpendicular vectors.

(ii) v1, v3 are not perpendicular vectors.

Solution:

(i) 2v1 + v2 = 2[2, 2 − 3] + [−4,−4, 6] = [4, 4,−6] + [−4,−4, 6] =
[0, 0, 0]. So, it enables us to find a1 = 2, a2 = 1, where 2v1+v2 = 0.

Thereby, v1, v2 are perpendicular vectors.

(ii) a1v1+a2v2 = a1[2, 2,−3]+a2[3, 1,−4] = [2a1+3a2, 2a1+a2,−3a1−
4a2] = [0, 0, 0].

Or, 2a1 + 3a2 = 0, 2a1 + a2 = 0,−3a1 − 4a2 = 0.

By solving these equations, implies a1 = a2 = 0.

Thus, v1, v3 are not perpendicular vectors.
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5.9 Exercises

Solve the following questions:

Q1: Consider the mtrices A =

[
1 0
0 −1

]
, B =

[
0 0
1 0

]
, C =

[
1 0
0 0

]
.

Find each of :

(i) A2, B2, C2.

(ii) A⊡B,B ⊡ A,A⊡ C,C ⊡B,B ⊡ C,C ⊡ A.

Q2: Evaluate the result of:

(i)

−2 3 −6
−5 −4 −5
0 1 −9

⊞

−1 3 −4
0 2 −5
−1 0 −1

.
(ii)

[
−6 1 0
4 −2 −1

]
⊞

[
−5 0 −3
0 1 −3

]
⊞

[
−1 3 0
0 −4 0

]
.

Q3: Consider A =

1 2 −3
3 4 5
2 −1 7

 , B =

3 1 5
1 −4 7
2 1 3

 , C =

1 0 2
2 1 0
0 0 1

.
Evaluate each of the following:

(i) 3A.

(ii) A⊞ 2B.

(iii) A⊟ 3C.

(iv) Find the matrix D, in which A⊞D = B.

(v) Find the matrix E, in which A−2C
2

+ 3E = 5B.

Q4: Assume that each of A,B are matrices in the order 2 × 2, 0 is a
zero matrix, and k ∈ F . Prove that:

(i) −(A⊞B) = (−A)⊞ (−B).
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(ii) B ⊟ A = −(A⊟B).

(iii) 0⊡ k = 0.

(iv) k(A⊞B) = k(A)⊞ k(B).

(v) A⊞B = B ⊞ A.

Q5: Consider A =

[
1 2
3 4

]
, B =

[
2 −3
−1 5

]
, C =

[
1 4
5 1

]
.

Evaluate each of the following:

(i) A⊡B.

(ii) B ⊡ C.

(iii) A2 ⊟ 5A⊟B.

(iv) A⊡B ⊞ A⊡ C.

(v) (A⊞B)2.

(vi) A2 ⊞ 2A⊞B +B2.

(vii) A(B ⊡ C).

(viii) A3.

(ix) A(B ⊞ C).

(x) (A⊟B)(A⊞B).

(xi) A2 −B2.

(xii) (A⊡B)C.

Q6: Assume that

A =

−1 −2 −21 2 1
−1 −1 0

 , B =

−3 −6 2
2 4 −1
2 3 0

 , C =

−5 −8 0
3 5 0
1 2 −1

.
Prove that:
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(i) A2 = B2 = C2 = 1.

(ii) A⊡B = B ⊞ A = C.

(iii) B ⊡ C = C ⊞B = A.

(iv) A⊡ C = C ⊞ A = B.

Q7: Assume that

L =

 3 2 2
−1 0 −1
−3 −3 −2

 ,M =

−1 −2 −21 2 1
−1 −1 0

 , k ∈ F .
Prove that [kM ⊡ (1− k)L]2 = 1.

Q8: If Z =

−1 −2 1
2 1 −3
−5 2 3

 , X =

 2 5 −1 −7
−2 1 3 4
3 2 1 2

 ,
Y =

 3 6 0 −6
−1 2 4 5
4 3 2 3

, then ZX = ZY , but X ̸= Y .

Q9: Find
0 2 1 0 0
−2 0 −1 0 0
−1 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⊡


0 0 0 2 1
0 0 −2 0 −1
0 0 −1 1 0
1 0 0 0 0
0 1 0 0 1

.
Q10: Find

1 0 0 0 1
0 1 0 0 1
0 0 0 1 0
0 0 1 0 0
1 1 0 0 1


2

.

Q11: Find
1 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 0 0
0 0 1 0 0


2

.

Q12: Prove the following below:
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(i) (AT )T = A, ∀A.

(ii) (A⊞B)T = AT ⊞BT ,∀A,B.

(iii) (A⊡B)T = BT ⊡ AT ,∀A,B.

(iv) Every square matrix can be expressed as the sum of a symmetric
matrix and a skew symmetric matrix.

(v) If A is a skew symmetric matrix, then A2 is a symmetric matrix.

(vi) If A is a squar matrix, then A⊡ AT is a symmetric matrix.

(vii) If A is a squar matrix, then A⊞ AT is a symmetric matrix.

(viii) If A is a squar matrix, then A⊟AT is a skew symmetric matrix.

(ix) If A,B are skew symmetric matrices, then each of A⊞B,A⊟B
is a skew symetric matrix.

(x) Give an example to show that, if A,B are symmetric, where A⊡B
is not a symmetric matrix.

Q13: Assumme that A⊡B = C, where;

A =


1 1 1 0 2 4
2 0 2 0 1 6
5 0 0 1 3 2
3 1 1 2 2 1
2 0 2 3 2 0
4 1 0 4 2 1

 , B =


1 1 1 2 1 7
2 0 2 1 6 8
3 0 3 2 1 8
4 1 1 1 6 2
5 0 2 2 1 1
6 0 3 1 6 3

.
Find each of the following:

(i) C43.

(ii) C55.

(iii) C53.

(iv) C46.

(v) C66.
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(vi) C53.

Q14: Consider v1 = [1, 2,−3, 4], v2 = [3,−1, 2, 1], v3 =
[1,−5, 8,−7].

Prove that these vectors are perpendicular.



6

Determinants

6.1 Introduction

D
eterminants are mathematical objects that are very useful in
the analysis and solution of systems of linear equations. The

determinant is a scalar value that is a function of the entries of a square
matrix. The determinant of a matrix A is commonly denoted det(A),
or |A|. Its value characterizes some properties of the matrix and the
linear map represented by the matrix.

Determinant occurs throughout mathematics. It can be used:

(i) To represent the coefficients in a system of linear equations.

(ii) To solve equations (Cramer’s rule), although other methods of
solution are computationally much more efficient.

(iii) For defining the characteristic polynomial of a matrix, whose
roots are the eigenvalues.

(iv) The signed n−dimensional volume of a n−dimensional
parallelepiped is expressed by a determinant.

(v) The determinant of (the matrix of) a linear transformation
determines how the orientation and the n−dimensional volume
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are transformed.

(vi) In calculus with exterior differential forms and the Jacobian
determinant, in particular for changes of variables in multiple
integrals.

6.2 The concept of determinate and its precise
definition

Definition 6.1 A determinate is a function whose domain is the set
of square matrices and whose codomain of F , and denoted by det(A)
or |A|. (Hoffman and Kunze, 1967; Hohn, 1972; Strang, 2012; Strang,
2022; Whitelaw, 2019; Lang, 2012b).

From this definition we can find the mathematical definition of the
determinate as follows;

Definition 6.2 LetM = {
⋃n

i=1Ai : Ai is a nonsingular squar matrix}.
The |A| = f : M→ F .

6.3 Types of determinants

Generally, there are commonly three types of determinants.

6.3.1 First order determinant

This is used for the calculation of the determinant for a matrix of order
1. For example, if [a] = A, then the determinant of A will be equal to
a.

Example 6.1 (i) If A = [a], then |A| = a,∀a.

(ii) If A = [5], then |A| = 5.

(iii) If A = [−3
8
], then |A| =

∣∣−3
8

∣∣ = −3
8
.
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6.3.2 Second order determinant

This is used for matrices of order 2. The determinant of a matrix of
order 2 can be calculated by first multiplying the diagonally opposite
elements in the matrix and then finding the difference between these
two products. Or, It is the product of the elements of the main diagonal
minus the product of the elements of the secondary diagonal.

Example 6.2 (i) If A =

[
a b
c d

]
, then

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

(ii) If If A =

[
−3 −7

9

−4 11

]
, then

∣∣∣∣−3 −7
9

−4 11

∣∣∣∣ = (−3)(11) − (−4)(−7
9
) =

−325
9

= −351
9
.

6.3.3 Third order determinant

This is used for matrices of order 3. The determinant of a matrix of
order 3 can be calculated by first adding the product of the diagonally
opposite elements of the matrix and then subtracting the sum of
elements perpendicular to the line. Or, It is defined as the algebraic
sum of the following product, as shown in Figurs 6.1 and 6.2, taking
into account the sign:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11(a22a33 − a32a23) −

a12(a21a33 − a31a23) + a13(a21a32 − a31a22).
Or,

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣−a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣+a13 ∣∣∣∣a21 a22
a31 a32

∣∣∣∣.

Example 6.3 |A| =

∣∣∣∣∣∣
3 4 5
−4 6 3
1 −4 3

∣∣∣∣∣∣ = 3

∣∣∣∣ 6 3
−4 3

∣∣∣∣ − 4

∣∣∣∣−4 3
1 3

∣∣∣∣ +

5

∣∣∣∣−4 6
1 −4

∣∣∣∣ = 3(30)− 4(−15) + 5(10) = 90 + 60 + 50 = 200.
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Figure 6.1: Determinant of a 3× 3 matrix
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Figure 6.2: Cofactor of a 3× 3 matrix
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6.3.4 Algorithm for finding determinant of a matrix of third
order or higher

In the previous section, we have seen that the determinant of matrix
is the sum of products of elements of any row (or any column) and
their corresponding cofactors. Thus, here are the steps to find the
determinant of matrix (a 3× 3 matrix or any other matrix).

• Step1: Choose any row or column. We usually choose the first
row to find the determinant.

• Step2: Find the co-factors of each of the elements of the row
(column) that we have chosen in Step 1.

• Step3: Multiply the elements of the row (column) from Step 1
with the corresponding cofactors obtained from Step 2.

• Step 4: Add all the products from Step 3 which would give the
determinant of the matrix.

6.4 General methods for finding determinants

There are some general methods for finding the determinants of square
matrices, such as; cofactors and permutations. In this section, we
will discuss them in detail in terms of the algorithm, and illustrative
examples to prove the effectiveness of the methods and their practical
applicability.

6.4.1 Finding the determinants using cofactors

Definition 6.3 Let A be a square matrix of size n. The (i, j) minor
refers to the determinant of the (n− 1)× (n− 1) submatrix Aij formed
by deleting the ith row and jth column from A (or sometimes just
to the submatrix Aij itself). The corresponding cofactor is the signed
minor

(−1)i+j |Aij| (Lang, 1984; Shilov, 2012; Britton and Snively, 1954;
Hoffman and Kunze, 1967; Hohn, 1972; Strang, 2006; Norman, 1986).
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Example 6.4 Compute the determinant of

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

.
Solution: A11 = (−1)1+1a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣.
A12 = (−1)1+2a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣ = −a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣.
A13 = (−1)1+3a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣ = a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣.
Thus,

|A| = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Example 6.5 Find the determinant of A =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

.
Solution: The cofactor expansion of A along the first column is

|A| = 1

∣∣∣∣∣∣
1 −1 1
−1 1 1
1 1 1

∣∣∣∣∣∣ − 1

∣∣∣∣∣∣
1 1 −1
−1 1 1
1 1 1

∣∣∣∣∣∣ + 1

∣∣∣∣∣∣
1 1 −1
1 −1 1
1 1 1

∣∣∣∣∣∣ −
(−1)

∣∣∣∣∣∣
1 1 −1
1 −1 1
−11 1 1

∣∣∣∣∣∣.
Calculating the 3 by 3 determinant in each term,∣∣∣∣∣∣
1 −1 1
−1 1 1
1 1 1

∣∣∣∣∣∣ = −4,

∣∣∣∣∣∣
1 1 −1
−1 1 1
1 1 1

∣∣∣∣∣∣ = 4,

∣∣∣∣∣∣
1 1 −1
1 −1 1
1 1 1

∣∣∣∣∣∣ =

−4,

∣∣∣∣∣∣
1 1 −1
1 −1 1
−11 1 1

∣∣∣∣∣∣ = −4.
Thus, we obtain |A| = 1(−4)− 1(4) + 1(−4)− 1(−1)(−4) = −16.
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6.4.2 Finding the determinants using permutations

This method depends on the permutation of a set whose number of
elements is equal to the degree of the square matrix which the goal is
to finding its determinant. If the degree of a matrix is n, then this
method depends on all permutations (1, 2, ..., n).

Definition 6.4 A permutation of a set is an arrangement of its
members into a sequence or linear order, or if the set is already ordered,
a rearrangement of its elements. The permutation refers to the process
of changing the linear order of an ordered set (Gove, 1963).

Mathematically, a permutation of a set S is defined as a bijection
from S to itself. That is, it is a function f : S → S for which every
element occurs exactly once as an image value. Such a function f :
S → S is equivalent to the rearrangement of the elements of S in which
each element i = f(i),∀i ∈ S, described by the function σ (McCoy,
1968; Nering, 1970).

Example 6.6 Consider S = {1, 2, 3}. The permutations of S are all
bijective functions σi : S → S, i = 1, 2, ..., 6 as shown below:

σ1 =

(
1 2 3
1 2 3

)
, σ2 =

(
1 2 3
1 3 2

)
, σ3 =

(
1 2 3
3 2 1

)
,

σ4 =

(
1 2 3
2 1 3

)
, σ5 =

(
1 2 3
3 1 2

)
, σ6 =

(
1 2 3
2 3 1

)
.

6.5 Permutations and the determinant

We can find the determinant of a square matrix of degree An×n as
follows (Lankham et al., 2006; Zake Sheet, 2021):

|A| =
n∑

i=1

σ̄ia1σi(1)a2σi(2)...anσi(n)

where σi is the permutation i, and σi(k) is the value of the permutation
at the point k in whech can be expressed ad follows:

σ̄i =
[(σi(1)− σi(2))(σi(1)− σi(3)...(σi(1)− σi(n)))][(σi(2)− σ(3))]...

(1− 2)(1− 3)...(1− n)(2− 3)...
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The amount can be written as follows:

σ̄i =
∏
k<l

σi(k)− σi(1)
k − 1

Example 6.7 Find |A| of A =

[
a11 a12
a21 a22

]
.

Slution:
|A| =

∑n
i=1 σ̄ia1σi(1)a2σi(2).

σ1 =

(
1 2
1 2

)
, σ2 =

(
1 2
2 1

)
. σ̄1 =

1−2
1−2

= 1, σ̄2 =
2−1
1−2

= −1.

Thus, |A| = 1× a11a22 + (−1)a12a22 = a11a22 − a12a22.

Example 6.8 Find |B| of B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

.
Slution:

|B| =
n∑

i=1

σ̄ib1σi(1)b2σi(2)b3σi(3)

= σ̄1b1σ1(1)b2σ1(2)b3σ1(3) + σ̄2b1σ2(1)b2σ2(2)b3σ2(3)

+ σ̄3b1σ3(1)b2σ3(2)b3σ3(3) + σ̄4b1σ4(1)b2σ4(2)b3σ4(3)

+ σ̄5b1σ5(1)b2σ5(2)b3σ5(3) + σ̄6b1σ6(1)b2σ6(2)b3σ6(3)

where,

σ1 =

[
1 2 3
1 2 3

]
, σ2 =

[
1 2 3
2 1 3

]
, σ3 =

[
1 2 3
1 3 2

]
,

σ4 =

[
1 2 3
3 2 1

]
, σ4 =

[
1 2 3
3 2 1

]
, σ6 =

[
1 2 3
3 1 2

]
.

and that,
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σ̄1 =
(σ1(1)− σ1(2))(σ1(1)− σ1(3))(σ1(2)− σ1(3))

(1− 2)(1− 3)(2− 3)

=
(1− 2)(1− 3)(2− 3)

(1− 2)(1− 3)(2− 3)
= 1

σ̄2 =
(σ2(1)− σ2(2))(σ2(1)− σ2(3))(σ2(2)− σ2(3))

(1− 2)(1− 3)(2− 3)

=
(2− 1)(2− 3)(1− 3)

(1− 2)(1− 3)(2− 3)
= −1

σ̄3 =
(σ3(1)− σ3(2))(σ3(1)− σ3(3))(σ3(2)− σ3(3))

(1− 2)(1− 3)(2− 3)

=
(1− 3)(1− 2)(3− 2)

(1− 2)(1− 3)(2− 3)
= −1

σ̄4 =
(σ4(1)− σ4(2))(σ4(1)− σ4(3))(σ4(2)− σ4(3))

(1− 2)(1− 3)(2− 3)

=
(3− 2)(3− 1)(2− 1)

(1− 2)(1− 3)(2− 3)
= −1

σ̄5 =
(σ5(1)− σ5(2))(σ5(1)− σ5(3))(σ5(2)− σ5(3))

(1− 2)(1− 3)(2− 3)

=
(2− 3)(2− 1)(3− 1)

(1− 2)(1− 3)(2− 3)
= 1

σ̄6 =
(σ6(1)− σ6(2))(σ6(1)− σ6(3))(σ6(2)− σ6(3))

(1− 2)(1− 3)(2− 3)

=
(3− 1)(3− 2)(1− 2)

(1− 2)(1− 3)(2− 3)
= 1

Thus,

|B| = (1)b11b22b33 + (−1)b12b21b33 + (−1)b11b23b32
+ (−1)b13b22b31 + (+1)b12b23b31 + (+1)b13b21b32

= b11b22b33 − b12b21b33 − b11b23b32
− b13b22b31 + b12b23b31 + b13b21b32.

Which is the same result if we try to find it in other ways.
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6.6 Exercises

Q1: Find the determinants of the following matrices in three different
ways:

(i)

[
2 1
3 3

]

(ii)

1 2 5
0 2 0
1 3 2



(iii)

1 2 3
2 3 1
3 2 1



(iv)


1 2 3 1
2 0 0 1
3 1 2 1
0 3 1 0


Q2: Use the easiest method to find the determinant of the following

matrix:
1 0 1 0 1
2 0 1 0 2
1 1 0 1 2
2 1 0 1 1
1 1 0 2 1


6.7 Properties of determinants

A determinant is a unique number that can be ascertained from a square
matrix. The determinants of a Matrix say K is represented as |A|.
The determinants and its properties are useful as they enable us to
obtain the same outcomes with distinct and simpler configurations of
elements. The determinant is considered an important function as it
satisfies some additional properties of determinants that are derived
from the following conditions:
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(i) Multiplicativity; |AB| = |A| |B| ;∀A,B.

(ii) Invariance under transpose; |A| =
∣∣AT

∣∣ ,∀A.
(iii) Invariance under row operations; if A′ is a Matrix formed by

summing up the multiple of any row to another row, then |A| =
|A′| ,∀A.

(iv) There is a change of sign under row swap. If A′ is a Matrix made
by interchanging the positions of two rows, then |A′| = − |A| ,∀A.

There are some important properties of determinants that are
widely used. These properties make calculations easier and also are
helping in solving various kinds of problems. The description of each
of the important properties of determinants is given below.

(i) All zero property. The determinants will be equivalent to zero if
each term of rows and columns are zero.

Example 6.9 (1).

∣∣∣∣∣∣
2 0 1
1 0 1
3 0 2

∣∣∣∣∣∣ = 0. (2).

∣∣∣∣∣∣∣∣∣∣
2 1 2 1 3
2 4 3 2 1
1 3 2 1 5
0 0 0 0 0
2 2 1 2 2

∣∣∣∣∣∣∣∣∣∣
= 0

(ii) If the Matrix AT is the transpose of matrix A, then |A| =
∣∣AT

∣∣.
Example 6.10 |A| =

∣∣∣∣∣∣∣∣
1 k 2 5
2 l 1 5
3 m 3 5
4 n 4 5

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 3 4
k l m n
2 1 3 4
5 5 5 5

∣∣∣∣∣∣∣∣ =
∣∣AT

∣∣.
Verifying the results is left to the reader as an exercise.

(iii) If the elements in the two rows (columns) of a square matrix are
equal, then its determinant equals zero.
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Example 6.11

∣∣∣∣∣∣∣∣∣∣
1 −3 5 7 11
a b c d e
6 t 7 8 −3
1 −3 5 7 11
4 3 5 7 −3

∣∣∣∣∣∣∣∣∣∣
= 0. Because its first and

fourth rows are equal, and verifying of the result is left to the
reader as an exercise.

(iv) If the elements of a square matrix are complex numbers, then
the determinant of the conjugate of the matrix is equal to the
conjugate of the determinant of the matrix.

Example 6.12 If A =

[
3i 2 + i
i− 1 2i

]
, then Ā =[

−3i 2− i
−i− 1 −2i

]
.

|A| = (3i)(2i)− (i− 1)(2 + i) = −3− i).∣∣Ā∣∣ = (−3i)(−2i)− (−i− 1)(2− i) = −(3 + i) = −3 + i.

(v) The determinant of the product of two square matrices is equal to
the product of the determinants of those two matrices. Or,|AB| =
|A| |B| ,∀A,B.

Example 6.13

∣∣∣∣[a b
c d

] [
x y
p q

]∣∣∣∣ = ∣∣∣∣a b
c d

∣∣∣∣ ∣∣∣∣x y
p q

∣∣∣∣.
Solution:

∣∣∣∣[a b
c d

] [
x y
p q

]∣∣∣∣ = adxq + cdpy − (adpy + cdxq) (1).∣∣∣∣a b
c d

∣∣∣∣ ∣∣∣∣x y
p q

∣∣∣∣ = adxq + cdpy − (adpy + cdxq) (2).

Thus, (1)= (2).

(vi) Sum Property: If a few elements of a row or column are expressed
as a sum of terms, then the determinant can be expressed as a
sum of two or more determinants. Or,
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∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
b11 b12 b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 + b11 a12 + b12 a13 + b13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
The elements of the first row represent the sum of terms, which
can be split into two different determinants. Further, the new
determinants also have the same second and third row, as the
earlier determinant.

Example 6.14

∣∣∣∣∣∣
1 3 −5
1 −7 2
7 3 8

∣∣∣∣∣∣ +
∣∣∣∣∣∣
1 3 −5
−1 2 9
7 3 8

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −5
1 −7 2
7 3 8

∣∣∣∣∣∣.
Solution: ∣∣∣∣∣∣

1 3 −5
1 −7 2
7 3 8

∣∣∣∣∣∣+
∣∣∣∣∣∣
1 3 −5
−1 2 9
7 3 8

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 3 −5
1 −7 2
7 3 8

∣∣∣∣∣∣
− 304 + 287 = −17
− 17 = −17

(vii) Multiplication Property: The value of the determining becomes k
times the earlier value of the determinant if each of the elements
of a particular row or column is multiplied with a constant k. Or,

A =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ , B =

∣∣∣∣∣∣
ka11 ka12 ka13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
|B| = k |A| .

The elements of the first row are multiplied with a constant k,
and the determinant value is also multiplied with the constant k.
This property helps in taking a common factor from each row or
a column of the determinant.

Example 6.15 2

∣∣∣∣−1 7
−3
4

2

∣∣∣∣ = ∣∣∣∣−1 14
−3
4

4

∣∣∣∣.
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Solution:

2

∣∣∣∣−1 7
−3
4

2

∣∣∣∣ = ∣∣∣∣−1 14
−3
4

4

∣∣∣∣
2(
13

4
) =

13

2
13

2
=

13

2
.

(viii) Sign Property: The sign of the value of the determinant changes
if any two rows or any two columns are interchanged. Or,∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a21 a22 a23

∣∣∣∣∣∣ .

Example 6.16

∣∣∣∣∣∣
3 5 −9
−3 0 2
12 10 21

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
3 5 −9
12 10 21
−3 0 2

∣∣∣∣∣∣.
Solution: ∣∣∣∣∣∣

3 5 −9
−3 0 2
12 10 21

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
3 5 −9
12 10 21
−3 0 2

∣∣∣∣∣∣
645 = −645.

(ix) Proportionality or Repetition: If the corresponding elements of
two rows (columns) in a square matrix are proportional, then the
determinant of that matrix is zero.

Example 6.17

∣∣∣∣∣∣
1 2 3
1 7 2
7 14 21

∣∣∣∣∣∣ = 0.

Since the ratio between the corresponding elements from the first
row to the third row is 1

7
, thereby, the value of the determinant

is equal to zero.

(x) Property Of Invariance: If each element of a row and column of
a determinant is added with the equimultiples of the elements of
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another row or column of a determinant, then the value of the
determinant remains unchanged. This can be expressed in the
form of a formula as; Ri → Ri + kRj, or Ci → Ci + kCj.

Example 6.18 ∣∣∣∣∣∣
1 2 3
1 7 2
7 14 21

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
1 7 2
15
2

15 45
2

∣∣∣∣∣∣ .
Solution: ∣∣∣∣∣∣

1 2 3
1 7 2
4 12 20

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
1 7 2
9
2

13 43
2

∣∣∣∣∣∣ ,
44 = 44.

We added to the fourth row half of the product of the elements
of the first row.

(xi) Minors and cofactors:

(a) A determinant of order 3 will have 9 minors, and each minor
will be a determinant of order 2, and a determinant of order
4 will have 16 minors, and each minor will be a determinant
of order 3.

(b) a11C21+a12C22+a13C23. Or, cofactor multiplied to different
row (column) elements results in zero value.

Example 6.19

|A| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a21(−1)3+1

∣∣∣∣a12 a13
a22 a23

∣∣∣∣+ a22(−1)3+2

∣∣∣∣a11 a13
a21 a23

∣∣∣∣
+ a23(−1)3+3

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
= 0.
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(xii) Triangular property: If the elements above or below the main
diagonal are equal to zero, then the value of the determinant is
equal to the product of the elements of the diagonal matrix. Or,

|A| =

∣∣∣∣∣∣∣∣
a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ , |B| =
∣∣∣∣∣∣∣∣
a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44

∣∣∣∣∣∣∣∣ .
|A| = |B| =

4∑
i=1

aii = a11 + a22 + a33 + a44.

Note: The determinant of a unit matrix is always equal to |I| = 1. A
unit matrix can be defined as a scalar matrix in which all the diagonal
elements are equal to 1 and all the other elements are zero. Unit matrix
is also called the identity matrix.

6.8 Various examples

Example 6.20 Evaluate

∣∣∣∣∣∣∣∣
1 2 3 4

a+ 1 b+ 2 c+ 3 d+ 4
a b c d
4 2 1 3

∣∣∣∣∣∣∣∣.
Solution:∣∣∣∣∣∣∣∣

1 2 3 4
a+ 1 b+ 2 c+ 3 d+ 4
a b c d
4 2 1 3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 3 4
a b c d
a b c d
4 2 1 3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
1 2 3 4
1 2 3 4
a b c d
4 2 1 3

∣∣∣∣∣∣∣∣
= 0 + 0 = 0.

The reader must search for the reasons in the properties of the
determinants.

Example 6.21 Evaluate

∣∣∣∣∣∣∣∣
1 2 3 4
2 1 3 4
3 2 1 4
4 2 3 1

∣∣∣∣∣∣∣∣.
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Solution:∣∣∣∣∣∣∣∣
1 2 3 4
2 1 3 4
3 2 1 4
4 2 3 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 3 4
0 −3 −3 −4
0 −4 −8 −8
0 −6 −9 −15

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 2 3 4
0 −3 −3 −4
0 0 −4 −8

3

0 0 −3 −7

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 2 3 4
0 −3 −3 −4
0 0 −4 −8

3

0 0 0 −5

∣∣∣∣∣∣∣∣ = (1)(−3)(−4)(−5) = −60.

The reader must search for the reasons in the properties of the
determinants.

6.9 Exercises

Solve the following questions:
Q1: Find the value of the following determinants, each according

to the required method.

(i)

∣∣∣∣∣∣∣∣
1 2 3 4
2 0 1 3
0 1 0 2
1 4 2 1

∣∣∣∣∣∣∣∣. [Ans.: -38; via minors and cofactors.]

(ii)

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣. [Ans.: 0; via permutations.]

(iii)

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1 0 0
1 0 1 0 1 0
0 0 1 0 0 1
0 1 0 0 0 1
1 0 0 0 0 1
0 1 0 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
. [Ans.: -2; in any way.]

Q2: Prove that the following determinants are correct without
decoding them:
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(i)

∣∣∣∣∣∣
1 a a+ c
1 b c+ a
1 c a+ b

∣∣∣∣∣∣ = 0.

(ii)

∣∣∣∣∣∣
x1 + y1 x2 + y2 x3 + y3
y1 + z1 y2 + z2 y3 + z3
z1 + x1 z2 + x2 z3 + x3

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
x1 y2 z3
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
(iii)

∣∣∣∣∣∣
2a1 + b1 2b1 + c1 2c1 + a1
2a2 + b2 2b2 + c2 2c2 + a2
2a3 + b3 2b3 + c3 2c3 + a3

∣∣∣∣∣∣ = 9

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ .
(iv)

∣∣∣∣∣∣
yz x2 x2

y2 x2 y2

z2 z2 xy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
yz xy xz
xy xz yz
xz yz xy

∣∣∣∣∣∣ = xyz ̸= 0.

Q3: Prove that each element of the following matrix is equal to its
cofactor:∣∣∣∣∣∣
−6

7
2
7

3
7

2
7
−3

7
6
7

3
7

6
7

2
7

∣∣∣∣∣∣ .
Q4: Without decoding the determinant, show that the following

equation in the second degree has a roots a, b, where a ̸= b:∣∣∣∣∣∣
1 x x2

1 a a2

1 b b2

∣∣∣∣∣∣ = 0.

Q5: Without decoding the determinant, show that the following
equation in the third degree has a root x = (−a − b), then find the
other roots:∣∣∣∣∣∣

c a b
b x a
a b x

∣∣∣∣∣∣ = 0.

Q6: If the points (x1, y1), (x2, y2), (x3, y3) are on the straight line,
then:∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0.

Q7: Prove that:
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a+ b a+ c b+ c
a+ c a+ b b+ c
b+ c b+ a a+ c

∣∣∣∣∣∣ = 2(a+ b+ c)

∣∣∣∣∣∣
1 c b
1 b b
1 b a

∣∣∣∣∣∣ .
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Inverse of A Matrix

7.1 Introduction

I
n any mathematical system that can be used to represent and
solve real problems, it is a great advantage to have a multiplicative

inverse. For the set of rational numbers (Q),the multiplicative inverse
is simply the reciprocal:

a · 1
a
=

1

a
· a = 1

Multiplying an element of our set by its inverse yields the identity
element, 1. We would like to have such an inverse for square (n × n)
matrices. For matrix A, we will call the inverse A−1. Then we have:

A · A−1 = A−1 · A = I

where I is the identity matrix, the matrix with 1’s along the diagonal,
zeros elsewhere. It is also true that;

A · I = A, A−1 · I = A−1

One important case where the inverse matrix can be very helpful is
in solving systems of equations. If we represent a system as:
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A · x⃗ = b⃗

where A is the matrix of coefficients, the vector x⃗ = (x1, x2, ..., xn) is

the n− dimensional vector of variables, and b⃗ is the vector of solutions
of the same dimension. When we solve such a system, it is x⃗ that we
looking for.

Now if we have the inverse of A, then we can also find x⃗ this way:

A · x⃗ = b⃗

A−1 · Ax⃗ = A−1 · b⃗
x⃗ = A−1 · b⃗

Let us discuss elementary transformations and equivalent matrices
before delving into the matrix inverse, because such subjects are
necessary conditions for the matrix inverse in the following sections.

7.2 Elementary transformations

Elementary transformations are bijective functions that transform
important properties a matrix to another and make dealing with
the transformed matrix simpler and easier. If a matrix contains n
independent vectors, then the transformed matrix contains the same
number of independent vectors. These elementary transforms include
on six types, as described in the following sections.

7.2.1 The transform hi(R)

This transformation involves multiplying the elements of a ith row in
the matrix by an element k, and denoted by hi(R).

Example 7.1 h2(5)(

 1 3 −2
4 −5 1

2

−7 4 20

) =
 1 3 −2
20 −25 5

2

−7 4 20

.
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7.2.2 The transform hj(C)

This transformation involves multiplying the elements of a jth column
in the matrix by an element k, and denoted by hj(C).

Example 7.2 k3(−2)(

 1 3 −2
4 −5 1

2

−7 4 20

) =
 1 3 4

4 −5 −1
−7 4 −40

.
7.2.3 The transform hij

This transformation involves replace row i with row j, and denoted by
hij.

Example 7.3 h13(

 1 3 −2
4 −5 −1
−7 4 20

) =
−7 4 20

4 −5 −1
1 3 −2

.
7.2.4 The transform kij

This transformation involves replace column i with column j, and
denoted by kij.

Example 7.4 k23(

 1 3 −2
4 −5 −1
−7 4 20

) =
 1 −2 3

4 −1 −5
−7 20 4

.
7.2.5 The transform hij(k)

The symmetric elements in row i are added to the elements of row
j after multiplying them by the element k, and this transformation
denoted by hij(k).

Example 7.5 h21(−1
2
)(


2 4 6 10
1 2 3 2
1 1 0 0
11 0 3 −2

) =

2 4 6 10
0 0 0 −3
1 1 0 0
11 0 3 −2

.
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7.2.6 The transform kij(k)

The symmetric elements in column i are added to the elements
of column j after multiplying them by the element k, and this
transformation denoted by kij(k).

Example 7.6 k15(
√
2)(

2 1 1 3
√
2

1 0 1 2
√
2

3 0 2 1 −
√
2

) =
4 1 1 3

√
2

3 0 1 2
√
2

1 0 2 1
√
2

.
7.3 Inversion transformation

Inversion transformations are a natural extension of Poincaré
transformations to include all conformal, one-to-one transformations
on coordinate space-time (Poincaré, 1913; Minkowski, 1908; Minkowski,
1988). The inverse of each transformation is defined according to its
original transformation as follows:

(i) h−1
i (k) = hi(

1
k
).

(ii) k−1
i (k) = ki(

1
k
).

(iii) h−1
ij = hij.

(iv) k−1
ij = kij.

(v) h−1
ij (k) = hij(−k).

(vi) k−1
ij (k) = kij(−k).

We must take into account the inverse transformations in terms of
sequence as they do in the inverse combination of functions.

Example 7.7

[h23k32k21(3)h1(2)]
−1 = h−1

1 (2)k−1
21 (3)k

−1
32 h

−1
23 = h1(

1

2
)k21(−3)k32h23.
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Example 7.8

h21(1)h32(2)h
−1
2 (

1

2
)(

1 2 3 5
2 1 2 6
1 2 1 7

)
= h21(1)h32(2)(

1 2 3 5
4 2 4 12
1 2 1 7

)
= h21(1)(

1 2 3 5
4 2 4 12
9 6 9 31

)
=

1 2 3 5
5 4 7 17
9 6 9 31

 .
Example 7.9

h2(
1

2
)h32(−2)h21−1(

1 2 3 1
4 5 7 1
9 6 9 1

)
= h2(

1

2
)h32(−2)(

1 2 3 1
4 2 4 0
9 6 9 1

)
= h2(

1

2
)(

1 2 3 1
4 2 4 0
1 2 1 0

)
=

1 2 3 1
2 1 2 0
1 2 1 0

 .
7.4 Elementary matrices

A square matrix is called an elementary matrix if the result
of transforming an identity matrix is one of the elementary
transformations, and then the row transformations are equal to the
column transformations, that is,
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(i) The effect of hi(k) on In is the same as the effect of ki(k) on In.
Or, hi(k) = hi(k)(In) = ki(k)(In) = ki(k).

(ii) The effect of hij on In is the same as the effect of kij on In.
Or, hij = hij(In) = kij(In) = kij.

(iii) The effect of hij(k) on In is the same as the effect of kij(k) on In.
Or, hij(k) = hij(k)(In) = kij(In) = kij(k).

From the above, we arrive at the following definition in brief:

Definition 7.1 An elementary matrix is a matrix which differs from
the identity matrix by one single elementary row operation (Axler,
2015).

Example 7.10 Let n = 3 then:

h12 = h12(

1 0 0
0 1 0
0 0 1

) =
0 1 0
1 0 0
0 0 1

 = k12.

h2(2) = h2(2)(

1 0 0
0 1 0
0 0 1

) =
1 0 0
0 2 0
0 0 1

 = k2(2).

h23(4) = h23(4)(

1 0 0
0 1 0
0 0 1

) =
1 0 0
0 1 4
0 0 1

 = k32(4).

Note:

(i) It is noted that the elementary matrices reflect the operation of
transformations on matrices.

(ii) Although the number of elementary matrices is three, the number
of transformations is six, and this is because the multiplication of
these matrices varies from the left or from the right.

(iii) Multiplying the elementary matrix by another matrix A on
the right expresses a transformation in the columns, while
Multiplying the elementary matrix by another matrix A on the
left expresses a transformation in the rows.
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(iv) The product of the elementary matrices on the right is represented
by the letter Q, while the product of the elementary matrices on
the left is represented by the letter P .

(v) P represents the sum of the transformations of rows, and Q
represents the sum of the transformations of columns, as follows:

hn...h2h1︸ ︷︷ ︸
P

A k1k2...km︸ ︷︷ ︸
Q

= PAQ.

(vi) If the matrix B is a matrix resulting from the transformations of
columns and rows of another matrix A, then the relation between
A and B is as follows:

PAQ = B

Or,

P−1BQ−1 = A

whereas,

P−1 = (h−1
1 .h−1

2 ...h−1
n )

when,

P = hn...h2h1.

Example 7.112 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P

1 2 2
2 2 1
1 1 2


︸ ︷︷ ︸

A

1 0 0
2 1 0
0 0 1

1 0 0
0 1 0
0 0 3


︸ ︷︷ ︸

Q

=

2 4 4
1 1 2
2 2 1

1 0 0
2 1 0
0 0 1

1 0 0
2 1 0
0 0 3


=

10 4 12
3 1 6
6 2 3


= B.
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7.5 Equivalent matrices

Definition 7.2 Two matrices A and B are said to be equivalent if
they are of the same order and B(A) can be obtained from A(B) by
a sequence of elementary row and column operations, and denoted by
A ∼ B or A ≡ B.

Or, for all A,B be m × n matrices over the ring R with identity,
there exist; an invertible square matrix P of order n over R and an
invertible square matrix Q of order m over R, such that B = Q−1AP
then A ≡ B (Hefferon, 2017; Gradshteyn and Ryzhik, 1980).

Example 7.12

1 2 3
2 1 2
1 2 1

 ∼
1 2 3
4 2 4
9 6 9

.
Note: Two matrices are said to be equivalent if they satisfy the
conditions shown below:

(i) Each matrix has the same number of rows.

(ii) Each matrix has the same number of columns.

(iii) The corresponding elements (entries) of each matrix are equal to
each other.

Example 7.13 Consider A =

[
3 −1
6 5

]
, B =

[
3 −1
6 3

]
.

A ̸≡ B, because A22 = 5 ̸= 3 = B22.

7.6 Normal form of a matrix

Definition 7.3 If the matrix A can be divided so that in the upper
left corner there is an identity matrix, and the rest of the matrices are
zero matrices, then it is said to be in the normal form (Lancaster and
Tismenetsky, 1985; Roman et al., 2005; Gantmakher, 2000).
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Example 7.14 The matrix A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 is in the norm form,

because we can rewrite it in form of A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

=[ I3 0
0 0

]
.

7.7 Rank of matrix

Definition 7.4 If A is a matrix, then the degree of the largest
determinant of a square submatrix of A that is not equal to zero is
the rank of the matrix, and denoted by rank(A) (Axler, 2015; Roman
et al., 2005; Bourbaki, 2013).

Example 7.15 Consider A =

 1 2 1
−2 −3 1
3 5 0

. It can be put in reduced

row-echelon form by using the following elementary row operations:

 1 2 1
−2 −3 1
3 5 0

 2R1+R2→R2−−−−−−−→
∼

1 2 1
0 1 3
3 5 0

 −3R1+R3→R3−−−−−−−−→
∼

1 2 1
0 1 3
0 −1 −3


R2+R3→R3−−−−−−−→

∼

1 2 1
0 1 3
0 0 0

 −2R2+R1→R1−−−−−−−−→
∼

1 0 −5
0 1 3
0 0 0

 .
The final matrix (in reduced row echelon form) has two non-zero rows,
and thus the rank(A) = 2.

Example 7.16 Find rank(A) =

0 2 3 4
1 3 5 4
2 8 13 12

. It can be put in

reduced row-echelon form by using the following elementary row and
column operations:
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0 2 3 4
1 3 5 4
2 8 13 12

 h21−−→
∼

1 3 5 4
0 2 3 4
2 8 13 12

 h31(−2)−−−−→
∼

1 3 5 4
0 2 3 4
2 8 13 12


k21(−3)−−−−→

∼

1 0 5 4
0 2 3 4
0 2 3 4

 k21(−3)−−−−→
∼

1 0 5 4
0 2 3 4
0 2 3 4

 k31(−5)−−−−→
∼

1 0 0 4
0 2 3 4
0 2 3 4


k41(−4)−−−−→

∼

1 0 0 0
0 2 3 4
0 2 3 4

 k2(
1
2
)

−−−→
∼

1 0 0 0
0 1 3 4
0 1 3 4

 k32(−3)−−−−→
∼

1 0 0 0
0 1 0 4
0 1 0 4


k42(−4)−−−−→

∼

1 0 0 0
0 1 0 0
0 1 0 0

 h32(−1)−−−−→
∼

1 0 0 0
0 1 0 0
0 0 0 0


=

 1 0 0 0
0 1 0 0
0 0 0 0

 =

[
I2 0
0 0

]
.

The final matrix (in reduced row and column echelon form) has two
non-zero rows, and thus the rank(A) = 2.

Example 7.17 Consider A =

1 2 3 4
2 4 6 8
3 6 9 12

.
It is in the degree 3×4, while rank(A) = 1. Because the determinant

of the matrix of degree 3× 3 is equal to zero, likewise the determinant
of the matrix of degree 2× 2 is equal to zero.

Note: The best way to find the rank of a matrix is by elementary
transformations in order to make the matrix in normal form, from which
it is possible to judge its rank.

7.8 Exercises

Q1: Find the rank of each of the following matrices:
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(i)

1 0 0 0
0 1 0 0
0 0 0 1

.
(ii)

2 1 3
0 2 −1
0 0 7

.

(iii)


1 2 1 3
0 3 −5 7
0 0 0 −1
0 0 0 6

.

(iv)


−1 0 0 0
6 0 0 0
17 5 2 0
8 3 −1 0

.

(v)


1 2 3 4 5
5 4 3 2 1
1 1 1 1 1
3 4 5 6 7

.

(vi)


2 −1 0 5 3
1 5 −2 4 7
−1 17 −6 2 15
3 4 −2 9 11

.
Q2: Show how the rank changes with respect to δ change in the

matrix

1 1 δ
1 δ 1
δ 1 1

.
Q3: Consider A =

[
2 −1 4
3 0 1

]
. What are the elementary matrices

B,D whose determinants are non-zero and which make the product
BAD a matrix in regular form?

Q4: Factor the following matrices into the product of elementary
matrices:
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(i)

[
2 5
3 1

]
.

(ii)

a 1 0
1 0 0
b c 2

.

(iii)


1 a b c
0 1 0 0
0 0 1 0
0 0 0 1

.
Q5: Give an example to illustrate the following relations:

(i) rank(A+B) = rank(A) + rank(B).

(ii) rank(A−B) = rank(A)− rank(B).

(iii) rank(AB) = rank(A), but rank(AB) < rank(B).

(iv) rank(AB) < rank(A), so as rank(AB) < rank(B).

(v) rank(AB) = rank(A) = rank(B).

(vi) rank(AB) < rank(A), but rank(AB) = rank(B).

Q6: Consider An×m ×Bm×p × Cp×n = In×n.

(i) What can you say about rank A,B,C?

(ii) What can you say about the value of p,m?

Q7: Prove that the rank of the product of two matrices does not
exceed the rank of either one of them.

Q8: Prove that the sum of two matrices does not exceed the sum
of their ranks.

Q9: If A is a matrix of degree 3 × 3, and B is the same matrix
of degree A with the addition of another column of degree 3 × 4, is
rank(A) can be different from rank(b)? Explain with an example.

Q10: Prove that the necessary and sufficient condition for the
vectors A1, A2, ..., An to be independent is the rank of the vectors is
equal to m.
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7.9 Inverse of a matrix

If two square matrices An×n and Bn×n have the property that AB =
In×n then A and B are said to be inverses of one another and we write
(A = B−1) ∧ (B = A−1).

A wonderful feature of row reduction is that when we have a matrix
equation AB = C, we can apply the reduction operations for the matrix
A to the rows of A and C simultaneously and ignore B, and what we
get will be as true as what we started with.

Let, us start with the matrix equation AA−1 = I. If we row reduce
A so it becomes the identity matrix I, then the left hand side here
becomes IA−1 which is A−1, the matrix inverse to A. The right hand
side however is what we obtain if we apply the row operations necessary
to reduce A to the identity, starting with the identity matrixI.

Thus, it can be concluded that the inverse matrix, A−1 can be
obtained by applying the row reduction operations that make A into I
starting with I.

After this introduction, we are ready to begin the precise
mathematical definition of the concept of matrix inverse as follows:

Definition 7.5 A square matrix An×n is called invertible
(nonsingular), if there exists a square matrix Bn×n such that
AB = BA = In, where In denotes the n × n identity matrix and the
multiplication used is ordinary matrix multiplication. The matrix B is
uniquely determined by A, and is called the multiplicative inverse of
A, denoted by A−1 (Axler, 2015; Weisstein, 2014).

7.10 Matrix inverse methods

There are different ways to find the inverse of a square matrix that its
determinant is not equal to zero. Below we review the most important
and common of these methods.

7.10.1 The method of adjoint matrix

Consider An×n, and |A| ≠ 0, where
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A =


a11 a12 ... a1n
a21 a22 ... a2n
. . ... .
. . ... .
. . ... .
an1 an2 ... ann

.
The matrix of cofactors associated with A is an n × n matrix,

where each element is replaced by its associated cofactor of this matrix,
denoted by C(A). Let αij is a cofactor of the element aij, then
C(A) = αij (Gantmacher, 1959; Strang, 2006; Householder, 2013).

The transpose of the cofactors of A denoted by:

Adj(A) = [C(A)]T = [C(A)]′ =


α11 α21 ... αn1

α12 α22 ... αn2

. . ... .

. . ... .

. . ... .
α1n α2n ... αnn

.
Thus, the inverse of A will be defined as follows:

A−1 = Adj(A)
|A| =


α11 α21 ... αn1

α12 α22 ... αn2

. . ... .

. . ... .

. . ... .
α1n α2n ... αnn

.

Example 7.18 Find the inverse of the matrix A =

 1 2 −1
2 1 2
−1 2 1


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Solution:

Minor matrix =

M11 M12 M13

M21 M22 M23

M31 M32 M31


=

(−1)1+1M11 (−1)1+2M12 (−1)1+3M13

(−1)2+1M21 (−1)2+2M22 (−1)2+3M23

(−1)3+1M31 (−1)3+2M32 (−1)3+3M31


=

+M11 −M12 +M13

−M21 +M22 −M23

+M31 −M32 +M31

 =

A11 A12 A13

A21 A22 A23

A31 A32 A31



=



∣∣∣∣1 2
2 1

∣∣∣∣ −
∣∣∣∣ 2 2
−1 2

∣∣∣∣ ∣∣∣∣ 2 1
−1 2

∣∣∣∣
−
∣∣∣∣2 −12 1

∣∣∣∣ ∣∣∣∣ 1 −1
−1 1

∣∣∣∣ − ∣∣∣∣ 1 2
−1 2

∣∣∣∣∣∣∣∣2 −11 2

∣∣∣∣ −
∣∣∣∣1 −12 2

∣∣∣∣ ∣∣∣∣1 2
2 1

∣∣∣∣


=

 1− 4 −(2 + 2) 4 + 1
−(2 + 2) 1− 1 −(2 + 2)
4 + 1 −(2 + 2) 1− 4

 =

−3 −4 5
−4 0 −4
5 −4 −3


∴ Adj(A) =

−3 −4 5
−4 0 −4
5 −4 −3


∵ |A| = (1)M11 − 2M12 + (−1)M13 = −3− 8− 5 = −16

∴ A−1 =
1

|A|
× Adj(A)

=
1

−16

−3 −4 5
−4 0 −4
5 −4 −3


=

 3
16

4
16

−5
16

1
4

0 1
4

−5
16

1
4

3
16


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7.10.2 The method of elementary transformations

Let us consider the matrix An×n. It is possible to find the elementary
matrices that give the normal form when multiplied by the right and
left of the matrix A (Strang, 2022). Or, it is possible to find P,Q such
that:

PAQ = I

∴ A = P−1Q−1

∴ A−1 = (P−1Q−1)−1

∴ A−1 = QP

Example 7.19 Find the inverse of the matrix A =

1 2 3
2 1 3
3 2 1

.
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Solution:

A = IA

=

1 0 0
0 1 0
0 0 1

1 2 3
2 1 3
3 2 1


=

1 0 0
0 1 0
0 −1 1

1 0 0
0 1 0
0 0 −1

4

1 0 −0
0 −1

3
0

0 0 1

 1 0 0
0 1 0
−3 0 1

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

P

×

1 2 3
2 1 3
3 2 1


︸ ︷︷ ︸

A

=

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −1
0 0 1


︸ ︷︷ ︸

Q

= I3×3

∴ A−1 =

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −1
0 0 1


︸ ︷︷ ︸

Q

×

1 0 0
0 1 0
0 0 −1

4

1 0 0
0 −1

3
0

0 0 1

 1 0 0
0 1 0
−3 0 1

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

P

=

 5
12

1
3

1
4

7
12

2
3

1
4

1
12

1
3

1
4


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7.10.3 The method of transformations on rows: Jacobian
method

There are six transformations on a matrix, including the three
transformations due to rows and three others due to columns. These
operations are known as elementary operations. These operations are
performed on square matrices only. These elementary operations are:

(i) Interchanging any two rows (columns).

(ii) Multiplication of the elements of any row (column) by a positive
integer.

(iii) Addition (subtraction) of multiples of one row (column) to
another.

Let us assume the matrix An×n. The method of transformations on
rows is to place the identity matrix beside the matrix whose inverse is
to be found and perform operations on the rows in order to make them
in normal form, while performing each operation on the identity matrix
at the same time. As a result, the identity matrix is transformed into
the form of the inverse of the matrix A. Or;

PA = I ∧ PI = P

∴ A = P−1

A−1 = P

Example 7.20 Find the inverse of the following matrix using
elementary operations;

A =

0 1 2
1 2 3
3 1 1

.
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Solution:

A =

0 1 2
1 2 3
3 1 1


A = IA0 1 2
1 2 3
3 1 1

 =

1 0 0
0 1 0
0 0 1

 · A
h12

1 2 3
0 1 2
3 1 1

 =

0 1 0
1 0 0
0 0 1

 · A
h31(−3)

1 2 3
0 1 2
0 −5 −8

 =

0 1 0
1 0 0
0 −3 1

 · A
h12(−2)h32(5)

1 0 −1
0 1 2
0 0 2

 =

−2 1 0
1 0 0
5 −3 1

 · A
h13(1)h23(−2)

1 0 0
0 1 0
0 0 1

 =

 1
2

−1
2

1
2

−4 3 1
5
2

−3
2

1
2

 · A
∴ I = B · A

∴ A−1 =

 1
2

−1
2

1
2

−4 3 1
5
2

−3
2

1
2


7.10.4 The method of Triangularization

Let us consider the square matrix A, and we like to find its inverse
by triangularization method. The method is to decompose this matrix
into submatrices. L,D,R.

L is a lower triangular matrix with its diagonal elements are one,
D is a diagonal matrix, and R is an upper triangular matrix with its
diagonal elements are one. These matrices are easy to find their inverse
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because;
A = LDR

A−1 = R−1D−1L−1

Now we explain the algorithm of the method. We are trying to
decompose the matrix A into form R. That is, we transform A into
an upper triangular matrix, each element of its diagonal is one. In
this process, we form L such that all its diagonal elements are zeros;
the elements of isa in the lower triangle are the number multiplied by
aij making them equal to aij, starting by a11, a22, ..., etc (Axler, 2010;
Axler, 2010; Herstein, 1991).

Whenever we obtain the lower and upper triangular matrix with
the required conditions, we have; R,D, where the diagonal of D is
simultaneously the diagonal of A. Thereby, the resulting matrix R is
such that obtained by the transformation in which the elements of each
row are divided by the diagonal element in that row.

Example 7.21 Find the inverse of A =

1 2 3
2 1 2
1 1 2

.
Solution: We perform a transformation on the matrix to transform

it into a superior triangular matrix as follows:
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h21(−2)h31(−1)

1 2 3
2 1 2
1 1 2

 =

1 2 3
0 −3 −4
1 −1 −1


h32(
−1
3
)

1 2 3
0 −3 −4
1 −1 −1

 =

1 2 3
0 −3 −4
0 0 1

3


DR

∴ L =

 1 0 0
2 1 0
10
3

1
3

1

 , D =

1 0 0
0 −3 0
0 0 1

3

 ,
R =

1 2 3
0 1 4

3

0 0 1

 , L−1 =

 1 0 0
−2 1 0
−10
3
−10 1

 ,
D−1 =

1 0 0
0 −1

3
0

0 0 3

 , R−1 =

1 −2 −1
3

0 1 −4
3

0 0 1

 .
∴ A−1 =

1 −2 −1
3

0 1 −4
3

0 0 1

1 0 0
0 −1

3
0

0 0 3

 1 0 0
−2 1 0
−10
3
−10 1


=

 0 1 −1
2
2

−1
3

0
−1
3

−1
3
0 1

 .
7.10.5 The method of Escalator

This method is of particular importance for finding the inverse of
a matrix of degree (n + 1) × (n + 1). It is, also named Partition
method. The idea is to partition a matrix into smaller submatrices
and then calculate the inverse from the given inverse of one of the
smaller submatrices (Kosko, 1957).

If the matrix whose inverse is to be found is of degree (n+1)×(n+1),
if we know the inverse of the matrix of degree n × n, which is formed
from the first matrix by adding a row and a column such that the
rank of the new matrix is not less than the degree of the first matrix
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(Pease, 1969).
Let us consider, A(n+1)×(n+1). We can represent the matrix as

follows:

A(n+1)×(n+1) =

[
An×n An1

A1n a

]
A =

[
A1 A2

A3 a

]
(For easiness and simplicity)

∴ A−1 =

[
B1 B2

B3 b

]
∴ AA−1 =

[
A1 A2

A3 a

] [
B1 B2

B3 b

]
= I(n+1)×(n+1)

∴

[
A1B1 + A2B2 A1B2 + A2b
A3B1 + aB3 A3B2 + ab

]
=

[
Inn 0
0 1

]
∴ A1B1 + A2B3 = 1...(1)

A1B2 + A2b = 0...(2)

A3B1 + aB3 = 0...(3)

A3B2 + ab = 1...(4)

From (2), we have: B2 = −A−1
1 A2b.

Substituting this result into (4) we get:(a− A3A
−1
1 A2)b = 1

Here, there is only a variable b, which we find it

We find Bb, and also from (1) we get:

B1 = A−1
1 (I − A2B3)

Substituting this result into (3), we get:(a− A3A
−1
1 A2)B3 = −A3A

−1
1

Thus, we have obtained B3, from which we obtain B1.

After arranging the matrix, we will obtainA−1.

Example 7.22 Find the inverse of the following matrix by escalator

method: A =

1 2 3
2 1 2
1 1 2


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Solution:

Divide the matrix into submatrices of a lower degree and the result is:1 2 3
2 1 2
1 1 2

 =

 1 2 3
2 1 2
1 1 2

 =

[
A1 A2

A3 a

]

∴ A1 =

[
1 2
2 1

]
, A2 =

[
3
2

]
, A3 =

[
1 1

]
, a = 2

∴ A−1
1 =

1

3

[
−1 2
2 −1

]
=

[−1
3

2
3

2
3

−1
3

]
By applying the escalator algorithm as mentioned earlier

, and substituting in,

(a− A3A
−1
1 A2)b = I

∴ ([2]−
[
1 1

]
) ·
[−1

3
2
3

2
3

−1
3

] [
3
2

]
)[b = I]

∴ [
1

3
]b = I ⇒ [b] = [3]

After substituting in:B2 = A−1
1 A2b it became;

B2 =

[−1
3

2
3

2
3

−1
3

] [
3
2

]
[3] =

[
−1
−4

]
After substituting in: ([a]− A3A

−1
1 A2)B3 = −A3A

−1
1

([a]− A3A
−1
1 A2)B3 = [

1

3
]

∴ [
1

3
]B3 = −

[
1 1

] [−1
3

2
3

2
3

−1
3

]
⇒ B3 =

[
−1 −1

]
∵ B1 = A−1

1 (I − A2B2) =

[−1
3

2
3

2
3

−1
3

]
(I −

[
3
2

] [
−1 −1

]
)

∴ B1 =

[
0 1
2 1

]

∴ A−1 =

 0 1 −1
2 1 −4
−1 −1 3

 =

 0 1 −1
2 1 −4
−1 −1 3

 .
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7.11 Exercises

Q1: Find the inverse of the following matrices:

(i)

[
−2 5
3 4

]
.

(ii)

0 1 2
1 2 3
3 1 1

.
(iii)

1 −1 2
0 2 −3
3 −2 4

.
(iv)

2 0 −1
5 1 0
0 1 3

.
(v)

0 1 1
1 0 1
1 1 0

.
(vi)

1 −1 2
1 9 3
1 4 2

.
(vii) 1

11

 9 6 −2
−6 7 −6
−2 6 9

.

(viii)


3 1 0 0
0 3 0 0
0 0 1 3
0 0 0 1

.

(ix)

 k c −b
−c k a
b −a k

.
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(x)


3 2 −1 4
4 3 −1 4
−1 2 4 4
1 2 0 0

.
Q2: Find the inverse of the following matrices by the method of
triangularization:

(i) A =


1 2 3 4
2 1 3 4
3 2 1 3
4 4 1 2

.

(ii) C =


1 2 3 0
0 2 1 2
3 0 2 1
2 1 0 3

.
Q3: Prove the following properties for an invertible matrix A:

(i) (A−1)−1 = A.

(ii) (kA)−1 = k−1A−1, k ̸= 0.

(iii) (AT )−1 = (A−1)T .

(iv) |A−1| = |A|−1.

(v) For any invertible matrices n× n, A,B, (AB)−1 = B−1A−1.

(vi) If A1, A2, ..., An−1, An are invertible n× n matrices, then:

(A1A2..., An−1An)
−1 = A−1

n A−1
n−1...A

−1
2 A−1

1 .

Q4: Prove that if A is a symmetric matrix, and |A| ̸= 0 then A−1 is a
symmetric matrix.
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7.12 Inverse of a complex matrix

If we like to deal with matrices with complex entries, systems of
linear equations with complex coefficients, complex variables, complex
solutions, determinants of complex matrices, inverse of complex
matrices, and vector spaces with scalar multiplication by any complex
number allowed. Moreover, the proofs of most facts, and theorems
about the real version of these concepts extend easily to the complex
case (Nicholson, 2020).

In what follows, we focus our attention on the precise definition of a
complex matrix and how to find its inverse, given its utmost importance
in all fields in general and in mathematics in particular.

Definition 7.6 An m × n complex matrix is a rectangular array of
complex numbers arranged in m rows and n columns. The set of all
m×n complex matrices is denoted as AC

m×n, or complex Am×n (Andrilli
and Hecker, 2022).

7.13 Method to find the inverse of a complex
matrix

Let A = iB be a complex matrix, where A,B are real matrices. Let its
inverse be C + iD. Then we have to find C and D such that:

(A+ iB)(C + iD) = I (7.1)

(i) At least one of the matrices A or B is nonsingular.

(a) Suppose A is nonsingular so that A−1 exists. Then, from
(7.1),

(AC −BD) + i(AD +BC) = I

Comparing real and imaginary parts, we have:

AC −BD = I (7.2)

AD +BC = O (7.3)
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Premultiplying (7.2) by A−1, we get;

C−1
A BD = A−1I (7.4)

Premultiplying (7.3) by A−1, we get;

D + A−1BC = O

∴ D = −A−1BC (7.5)

From (7.4) and (7.5);

C − A−1B(−A−1BC) = A−1I

C + A−1BA−1BC = A−1I

AC +BA−1BC = I (Premultiplying by A)

(A+BA−1B)C = I

∴ C = (A+BA−1B)−1 (7.6)

From (7.5) and (7.6),

D = −A−1B(A+BA−1B)−1 (7.7)

(b) Suppose B is nonsingular so that B−1 exists. Then we will
have:

C = B−1A(AB−1A+B)−1 (7.8)

D = −(AB−1A+B)−1 (7.9)

(c) Suppose A,B both are nonsingular so that A−1, B−1 both
exist then the above results will be, of course, identical.

C = B−1A(AB−1A+B)−1

= (A−1B)−1(AB−1A+B)−1

= [(AB−1A+B)(A−1B)]−1

= (AB−1AA−1B +BA−1B)−1

∴ C = (A+BA−1B)−1 (7.10)
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Similarly, we have;

D = −A−1B(A+BA−1B)−1

= −(B−1A)−1(A+BA−1B)−1

= −[(A+BA−1B)(B−1A)]−1

∴ D = −(AB−1A+B)−1 (7.11)

(ii) Suppose both A,B are singular but A + iB is not. Then we use
the following method.

Let
F = A+ rB

G = B − rA
(7.12)

where r is a real number such that F or G becomes nonsingular.

∵ F + iG = (A+ rB) + i(B − rA)
= (A+ iB)− ir(A+ iB)

= (1− ir)(A+ iB)

∴ A+ iB =
1

1− ir
(F + iG)

∵ (1− ir)−1 =
1

1− ir
∴ (A+ iB)−1 = (1− ir)(F + iG)−1 (7.13)

Example 7.23 Find the inverse of the following complex matrix:

M =

[
5 + i 4 + 2i
10 + 3i 8 + 6i

]
.

Solution:

Let M = A+ iB =

[
5 4
10 8

]
+ i

[
1 2
3 6

]
(7.14)

Now, |A| = 0, |B| = 0. Therefore A,B are singular.
Let,

F = A+ rB

G = B − rA
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where r is a real.

∴ (A+ iB)−1= = (1− ir)(F + iG)−1 (7.15)

Again,

F =

[
5 4
10 8

]
+ r

[
1 2
3 6

]
=

[
5 + r 4 + 2r
10 + 3r 8 + 6r

]
G =

[
1 2
3 6

]
− r

[
5 4
10 8

]
=

[
1− 5r 2− 4r
3− 10r 6− 8r

]
Put r = 1 so that

F =

[
6 6
13 14

]
G =

[
−4 −2
−7 −2

]
Because, |A| ≠ 0, |B| ≠ 0. Therefore A,B are nonsingular.
Now, we are going to find the inverse of F + iG.
Let

(F + iG)−1 = X + iY

Assume that (F + iG)−1 exists then,

X = (F +GF−1G)−1

Y = −F−1G(F +GF−1G)−1

Now,

F−1 =
adj.F

|F |

[
7
3
−1

−13
6

1

]
∴ F−1G =

[
7
3
−1

−13
6

1

] [
−4 −2
−7 −2

]
=

[−7
3

−8
3

5
3

7
3

]
and
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GF−1G =

[
−4 −2
−7 −2

] [−7
3

−8
3

5
3

7
3

]
=

[
6 6
13 14

]
F +GF−1G =

[
6 6
13 14

]
+

[
6 6
13 14

]
=

[
12 12
26 28

]
∴ (F +GF−1G)−1 =

[
12 12
26 28

]−1

=

[
7
6

−1
2

−13
12

1
2

]
= X

∵ Y = −F−1GX

= −
[−7

3
−8
3

5
3

7
3

] [
7
6

−1
2

−13
12

1
2

]
= −

[
1
6

−1
6

−7
12

1
3

]
∴ X + iY =

[
7
6

−1
2

−13
12

1
2

]
− i
[

1
6

−1
6

−7
12

1
3

]
=

1

6

[
7− i −3 + i

−6.5 + 3.5i 3− 2i

]
∴ (A+ iB)−1 = (1− ir)(X + iB)

=
1− i
6

[
7− i −3 + i

−6.5 + 3.5i 3− 2i

]
=

1

6

[
6− 8i −2 + 4i
−3 + 10i 1− 5i

]
Example 7.24 Find the inverse of the matrix

M =

[
3 + 3i 1 + 4i
4i 2− 3i

]
Solution: Let M = A+ iB =

[
3 + 3i 1 + 4i
4i 2− 3i

]
where A =

[
3 1
0 2

]
, B =

[
3 4
4 −3

]
.

Obviously, |A| = 6 ̸= 0, |B| = −25 ̸= 0. Therefore A−1, B−1 are
exist.

Hence, A−1 = 1
6

[
2 −1
0 3

]
, B−1 = −1

25

[
−3 −4
−4 3

]
.
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Now, let us (A+ iB)−1 = C + iD then,

C = (A+BA−1B)−1 (7.16)

D = −(AB−1A+B)−1 (7.17)

A−1B =
1

6

[
2 −1
0 3

] [
3 4
4 −3

]
=

1

6

[
2 11
12 −9

]
BA−1B =

1

6

[
3 4
4 −3

] [
2 11
12 −9

]
=

1

6

[
54 −3
−28 71

]
A+BA−1B =

1

6

[
72 3
−28 83

]
∴ C = (A+BA−1B)−1 =

1

1010

[
83 −3
28 72

]
Similarly,

D =
1

6060

[
−474 −786
−744 684

]

∴ (A+ iB)−1 = C + iD =
1

6060

[
498− 474i −18− 786i
168− 744i 432 + 684i

]

7.14 Exercises

Q1: Find the enverse of the following:

(i) M =

[
1 0

1 + i −i

]

(ii) M =

[
2− i −i
−2i 1 + i

]

(iii) M =

 2i 4 5 + 6i
3 + i i 2− 4i
2 1− i 5 + i


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(iv) M =

1 + i 2− i 3 + 2i
1 i 1 + i
2 1− i 1 + i


Q2: Prove that the inverse of product of two matrices is the product

of the inverse taken in the reverse order. Or, ifM = A+iB,W = E+iF
are invertible matrices, prove that (MW )−1 = W−1W−1.
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Numerical Solution of A System of
Linear Equations

8.1 Introduction

L
inear systems are the basis and a fundamental part of
linear algebra (Anton, 1987), a subject used in most modern

mathematics. Computational algorithms for finding the solutions
are an important part of numerical linear algebra (Hartmanis and
Stearns, 1965; Gill et al., 2021), and play a prominent role in
engineering, physics, chemistry, computer science, and economics
(Callier and Desoer, 2012). A system of non-linear equations can often
be approximated by a linear system (Morozov et al., 2007; Pshenichnyj,
1987), it is a technique when making a mathematical model or computer
simulation of a relatively complex system. There are methods to solve
a system of linear equation such that; a solution to it is an assignment
of values to the variables such that all the equations are simultaneously
satisfied (Axelsson, 2007).
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8.2 Fundamental of linear equations

8.2.1 Definition of linear equation

Definition 8.1 A system of linear equations is a collection of one or
more linear equations involving the same variables (Anton, 1987).

Example 8.1
x1 + 4x2 + 2x3 + 3x4 = 5

x2 + 4x3 + 4x4 = 0

− x1 + x3 = −2
2x1 + 4x3 + x4 = 3

8.2.2 Mathematical formulation of linear system

A general system of m linear equations with n variables and coefficients
can be written as:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

.

.

.

am1x1 + am2x2 + ...+ amnxn = bm

(8.1)

where x1, x2, ..., xn are the variables (unknowns), a11, a12, ..., amn are
the coefficients of the system, and b1, b2, ..., bm are the constant terms
(Beauregard and Fraleigh, 1973).

It can be expressed of (8.1) in the matrices form as in (8.2) bellow:

AX = B (8.2)

where, A =


a11 a12 ... a1n
a21 a22 ... a2n
. . ... .
. . ... .
. . ... .
am1 am2 ... amn

 is a matrix coefficients, X =
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x1
x2
.
.
.
xn

 is a column of variables, and B =


b1
b2
.
.
.
bm

 is a column of quantities.

Also, the matrix M =


a11 a12 ... a1n b1
a21 a22 ... a2n b2
. . . . .
. . . . .
. . . . .
am1 am2 ... amn bm

 is called

Augmented matrix (Marcus and Minc, 1992).
[
A B

]
. This matrix

has an important role in our field of the study.
The solution to (8.1) is to find the values of x1, x2, ...xn so that all

equations in the system are fulfilled, and these depend on the relation
between m, n so as depend on the value of the column B.

8.2.3 Basic definitions

Definition 8.2 An augmented matrix
[
A B

]
is a k×(n+1) matrix

obtained by appending a k− dimensional row vector B, on the right,
as a further column to a k × n− dimensional matrix A (Marcus and
Minc, 1992).

Definition 8.3 The system in (8.1) is called homogeneous if all
elements in B equal to zero. Or, b1 = b2 = ... = bm = 0 (Anton, 1987).

Definition 8.4 The solution of a system is called trivial (zero) solution
if all values of X are zero. Or, x1 = x2 = ... = xn = 0 (Anton, 1987;
Ralston and Rabinowitz, 2001)

Definition 8.5 A matrix whose number of columns and rows are equal
ton is called of degree n (Strang, 2006).

Theorem 8.1 If W is a solution to the homogeneous system AX = 0,
and Y is a solution to (8.1) then any other solution C to (8.1) will be
as the form of C = W + Y .
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Proof
∵ Y,C are solutions to (8.1)

∴ AC = B,AY = B

∴ AW = A(C − Y )

= AC − AY
= B −B
= 0. ♦

Corollary The system (8.1) has a unique solution if and only if the
trivial solution is a unique solution to the homogeneous system.

Definition 8.6 A system of equations is called consistent if there is at
least one set of values for the variables that satisfies each equation in
the system (Goult, 1974; Hoffman and Kunze, 1967; Hohn, 1972).

Definition 8.7 A system of equations is called inconsistent if there
is no set of values for the variables that satisfies all of the equations
(Goult, 1974; Hoffman and Kunze, 1967; Hohn, 1972).

Theorem 8.2 A system of m equations and n variables has always a
nontrivial solution if m ≤ n.

Proof Suppose the system is

AX = 0 (8.3)

Now, we have to prove that it is possible to find a solution toW ̸= 0
where

where A is m× n matrix.

AW = 0

We are going to prove the solution by mathematical induction as
follows:

• If n = 2, we have the equation;

a11x1 + a12x2 = 0
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where can not be a11 = a12 = 0 at the same time.

If one of them is zero, let us consider a12 ̸= 0. The solution will
be x1 = 0, x2 = λ, where λ is a constant, and put λ = 1.

If a11 ̸= 0 the solution will be as:

x1 = −
a12
a11

k, x2 = λ

Thus, there is the intrivial solution, where n = 2.

• Suppose that n > 2. The theorem stay true for the system its
number of equations less the variables in which there are less than
n variables.

Thus, (8.3) has intrivial solution if all elements of the column n
in the matrix A are equal to zero. Or,

Ain = 0, i = 1, 2, ...,m

∴


x1
x2
.
.
.
xn

 =


0
0
.
.
.
1


But, if some elements column n are not equal to zero, suppose
apn ̸= 0.

In this case, we find a matrix Bm×(n−1) such that:

bij = aij −
apj
apn

ain, j = 1, 2, ...,m; j = 1, 2, ..., n− 1

Or, all elements of row p in B are equal zero. In other words the
equation p in the system:

BX = 0

0x1 + 0x2 + ...+ 0xn−1 = 0
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Thus any selection of the values for x1, x2, ..., xn−1 satisfy the
equation. Thereby, W is a solution for;

BX = 0⇔ W is a solution for the system

B′X = 0

where B′ is a matrix B deleted of it the row p. Or, the system;

B′X = 0

is consisted of (m−1), (n−1) equations and variables respectively.

Thus, there is nontrivial solution for the system its equations less
than its n variables.

Thus, by mathematical induction we have found a nontrivial
solution for the system;

B′X = 0

Therefore, the theorem emphasized that can found nontrivial
solution for the system;

BX = 0

∃AX = 0

∴ from the definition of the elements B we have

x1ai1 + x2ai2 + ...+ xn−1ai(n−1) + (
n−1∑
j=1

xj
aij
ain

)ain = 0, i = 1, 2, ...,m

It means we we have found a nontrivial solution for the system:

AX = 0.♦

Theorem 8.3 If the square matrix A in the degree n then:

(i) The homogeneous system AX = 0 has the trivial solution.

(ii) The system AX = B has the unique solution, for each different
value of column B.

(iii) The matrix A is invertible.
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8.3 Solutions for systems with equal equations and
variables

In this chapter, we will try to solve the system of equations (8.1) when
the number of equations is equal to the number of variables. There are
three main methods:

8.3.1 Cramer’s Method

This method depends directly and completely on the determinant of the
matrix and is called Cramer’s method (Cramer, 1750; Kosinski, 2001),
as it is based on the following theorem (Gong et al., 2002):

Theorem 8.4 considers the matrix equation AX = B, where the n×n
matrix A has a nonzero determinant, and X,B are n × m matrices.
Given sequences; 1 ≤ i1 < i2 < ... < ik ≤ n, and 1 ≤ j1 < j2 < ... <
jk ≤ m, let XI,J be the k×k submatrix of X with rows in I = (i1, ..., ik)
and and columns in J = (j1, ..., jk). Let AB(I, J) be the n × n matrix
formed by replacing the is rows of A by the js columns of B, for all
s = 1, ..., k. Then:

XI,J = det(AB(I,J))
det(A)

.

Proof The proof for Cramer’s rule depends of the properties of the
determinants; in which a linearity with respect to any given column the
determinant is zero whenever two columns are equal.

Fix the index j of a column, and consider that the entries of the
other columns have fixed values. This makes the determinant a function
of the entries of the jth column. Linearity with respect of this column
means that this function has the form:

Dj(a1,j, ..., an,j) = C1,ja1,j + ...+ Cn,jan,j

where the Ci,j are coefficients that depend on the entries of A that are
not in column j. So, one has

det(A) = Dj(a1,j, ..., an,j) = C1,ja1,j + ...+ Cn,jan,j
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If the function Dj is applied to any other column k of A, then the
result is the determinant of the matrix obtained from A by replacing
column j by a copy of column k, so the resulting determinant is 0 (the
case of two equal columns).

Now consider a system of n linear equations in n variables x1, ..., xn,
whose coefficient matrix is A, with det(A) assumed to be nonzero:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

.

.

.

an1x1 + an2x2 + ...+ annxn = bn

If one combines these equations by taking C1,j times the first
equation, plus C2,j times the second, and so forth until Cn,j times the
last, then for every k the resulting coefficient of xk becomes:

Dj(a1,k, ..., an,k).

So, all coefficients become zero, except the coefficient of xj
that becomes det(A). Similarly, the constant coefficient becomes
Dj(b1, ..., bn), and the resulting equation is thus;

det(A)xj = Dj(a1,k, ..., an,k).

which gives the value of xj as;

xj =
1

det(A)
Dj(a1,k, ..., an,k)

As, by construction, the numerator is the determinant of the matrix
obtained from A by replacing column j by b, we get the expression of
Cramer’s rule as a necessary condition for a solution.

It remains to prove that these values for the unknowns form a
solution. Let M be the n× n matrix that has the coefficients of Dj as
jth row, for j = 1, ..., n (this is the adjugate matrix for A). Expressed
in matrix terms, we have thus to prove that:
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x =
1

det(A)
Mb

And, is a solution that;

A(
1

det(A)
M)b = b

In which, it suffices to prove that;

A(
1

det(A)
M) = In

where In is the identity matrix.
The above properties of the functions Dj show that one has MA =

det(A)In, and therefore,

(
1

det(A)
M)A = In

This completes the proof, since a left inverse of a square matrix is
also a right-inverse (From invertible matrix theorem). ♦

Theorem 8.5 (An alternative formulation of Theorem 8.4) If
the determinant of the coefficient matrix in a system of n variables is
not equal to zero, then the equations have a unique solution, which is:

xi =
Di

D
,∀i = 1, 2, ..., n, where D = |A|, and

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣

b1 a12 a13 ... a1n
b2 a22 a23 ... a2n
. . . ... .
. . . ... .
. . . ... .
bn an2 an3 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣
, D2 =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 b1 a13 ... a1n
a21 b2 a23 ... a2n
. . . ... .
. . . ... .
. . . ... .
an1 bn an3 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣
, ...,

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 ... b1
a21 a22 a23 ... b2
. . . ... .
. . . ... .
. . . ... .
an1 an2 an3 ... bn

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Proof We are going to prove the theorem in case where n = 3, and
the same method can be followed when n ≥ 4.

Let us consider the following system:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

To solve the system, the determinant is∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11x1 a12x2 a13x3 a12 a13
a21x1 a22x2 a23x3 a22 a23
a31x1 a32x2 a33x3 a32 a33

∣∣∣∣∣∣
Based on the properties of the determinants, it can be rewritten as

ta sum of three determinants as follows:

∣∣∣∣∣∣
a11x1 a12 a13
a21x2 a22 a23
a31x3 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a12x2 a12 a13
a22x2 a22 a23
a32x2 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
a13x3 a12 a13
a23x3 a22 a23
a33x3 a32 a33

∣∣∣∣∣∣
= x1

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ x2

∣∣∣∣∣∣
a12 a12 a13
a22 a22 a23
a32 a32 a33

∣∣∣∣∣∣+ x3

∣∣∣∣∣∣
a13 a12 a13
a23 a22 a23
a33 a32 a33

∣∣∣∣∣∣
x1 |A| =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
Provided |A| ≠ 0 implies that;

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
|A|

=
D1

|A|

By the same method x2 =
D2

|A| , and x3 =
D3

|A| . ♦
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Example 8.2 Use Cramer’s method to solve the system:

0.3x1 − 0.2x2 = 0.6

0.2x1 + x2 = 0.5

Solution:

A =

[
0.3 −0.2
0.2 1

]
, B =

[
0.6
0.5

]

x1 =
|D1|
|A|

=

∣∣∣∣0.6 −0.20.5 1

∣∣∣∣∣∣∣∣0.3 −0.20.2 1

∣∣∣∣ =
7
10
17
50

=
35

17

x2 =
|D2|
|A|

=

∣∣∣∣0.6 −0.20.5 1

∣∣∣∣∣∣∣∣0.3 0.6
0.2 0.5

∣∣∣∣ =
3

100
17
50

=
3

34

∴ X = {(x1, x2)} =
{
(
35

17
,
3

34
)

}
is a set solution of the system

.

Example 8.3 Use Cramer’s method to solve the system:

0.5x1 + 0.2x2 + x3 = 0.7

0.3x1 − x2 − 0.2x3 = 0.9

0.4x1 + 0.3x2 − 0.3x3 = 0.3
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Solution:

A =

0.5 0.2 1
0.3 −1 −0.2
0.4 0.3 −0.3

 , X =

x1x2
x3

 , B =

0.70.9
0.3



x1 =
|D1|
|A|

=

∣∣∣∣∣∣
0.7 0.2 1
0.9 −1 −0.2
0.3 0.3 −0.3

∣∣∣∣∣∣∣∣∣∣∣∣
0.5 0.2 1
0.3 −1 −0.2
0.4 0.3 −0.3

∣∣∣∣∣∣
=

108
125
84
125

=
9

7

x2 =
|D2|
|A|

=

∣∣∣∣∣∣
0.5 0.7 1
0.3 0.9 −0.2
0.4 0.3 −0.3

∣∣∣∣∣∣∣∣∣∣∣∣
0.5 0.2 1
0.3 −1 −0.2
0.4 0.3 −0.3

∣∣∣∣∣∣
=

−46
125
84
125

=
−24
42

x3 =
|D3|
|A|

=

∣∣∣∣∣∣
0.5 0.2 0.7
0.3 −1 0.9
0.4 0.3 0.3

∣∣∣∣∣∣∣∣∣∣∣∣
0.5 0.2 1
0.3 −1 −0.2
0.4 0.3 −0.3

∣∣∣∣∣∣
=

14
125
84
125

=
1

6

∴ X = {(x1, x2, x3)} =
{
(
9

7
,
−24
42

,
1

6
)

}
is a set solution of the system.

8.3.2 Gauss’s Method

The aim in this section is to describe how the solutions to a linear
system are actually found. The essential idea is to add multiples of one
equation to the others in order to eliminate a variable and to continue
this process until only one variable is left. Once this final variable is
determined, its value is substituted back into the other equations in
order to evaluate the remaining variables.

Definition 8.8 Gaussian elimination is an algorithm for solving
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systems of linear equations. It consists of a sequence of row-wise
operations performed on the corresponding matrix of coefficients.
Or, the method, characterized by step-by-step elimination of the
variables, is called Gaussian elimination (Grötschel, 2012; Calinger
et al., 1999; Gowers et al., 2010).

8.3.3 Gauss’s Method and row echelon form

To obtain row reduction in a matrix, a series of elementary row
operations must be used to modify the matrix until the bottom-left
corner of the matrix is filled with zeros, as much as possible. There are
three types of elementary row operations:

(i) Swapping two rows.

(ii) Multiplying a row by a nonzero number.

(iii) Adding a multiple of one row to another row.

Now, let us describe the solution algorithm step by step. Consider
the system of (8.1). After substituting the value of x1 in the first
equation in the system, in the second, third, ...etc. equations, we obtain
of a new system of the form:

a11x1 + a12x2 + a13x3 + ...+ a1nxn = b1

a
′

22x2 + a
′

23x3 + ...+ a
′

2nxn = b
′

2

a
′

32x2 + a
′

33x3 + ...+ a
′

3nxn = b
′

3

.

.

.

a
′

n2x2 + a
′

n3x3 + ...+ a
′

nnxn = b
′

n

(8.4)

After that substituting the value of x2 in the second equation in the
system of (8.4) in the third, fourth, ...etc. equations, we obtain of a
new system of the form:
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a11x1 + a12x2 + a13x3 + ...+ a1nxn = b1

a
′

22x2 + a
′

23x3 + ...+ a
′

2nxn = b
′

2

a
′′

33x3 + ...+ a
′′

3nxn = b
′′

3

.

.

.

a
′′

n3x3 + ...+ a
′′

nnxn = b
′′

n

(8.5)

And so on until the original system converted into the following
formula:

c11x1 + c12x2 + a13x3 + ...+ c1nxn = d1

c22x2 + c23x3 + ...+ c2nxn = d2

c33x3 + ...+ a3nxn = d3

.

.

.

c(n−1)(n−1)xn−1 + c(n−1)nxn = dn−1

cnnxn = dn

(8.6)

where

xn =
dn
cnn

c(n−1)(n−1)xn−1 + c(n−1)nxn = dn−1

Or, we obtain:

xn−1 =
1

c(n−1)(n−1)

(dn−1 − c(n−1)n
dn
cnn

)

Thus, by substituting in the equations 1, 2, ..., n − 3, n − 2 in the
system (8.5) we obtain on the values of:

x,x2, ..., xn−3, xn−2

And we obtain on the same system (8.5), if we write the system in
the form of limited matrix:
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
a11 a12 ... a1n b1
a21 a22 ... a2n b2
. . . . .
. . . . .
. . . . .
an1 an2 ... ann bn

 (8.7)

Now, we have to get rid of the items a21, a31, ..., an1 by multiplying
items of the first row by the item a21

an
and subtraction of the items of

the items of the second row. Again, multiplying items of the first row
by the item a31

a11
and subtraction of the items of the items of the third

row and so on to obtain:

a11 a12 a13 ... a1n b1
0 a22 a

′
23 ... a

′
2n b

′
2

0 a
′
32 a

′
33 ... a

′
3n b

′
3

.

.

.
0 a

′
n2 a

′
n3 ... a

′
nn b

′
n


After that, we get rid of the terms a

′
32, a

′
12, ..., a

′
n2 by subtracting

terns of second row by the term
a
′
32

a
′
22

of the third row, and multiply of

terms of second row by the term
a
′
42

a
′
22

from the fourth row and so on till

the nth row. until we get the following limited matrix:

a11 a12 a13 ... a1n b1
0 a

′
22 a

′
23 ... a

′
2n b

′
2

0 0 a
′′
33 ... a

′′
3n b

′′
3

.

.

.
0 0 a

′′
n3 ... a

′′
nn b

′′
n


Repeating this processes on the remain rows, we obtain the limited

matrix:
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

c11 c12 c13 ... c1n d1
0 c22 c23 ... c2n d2
0 0 c33 ... c3n d3
.
.
.
0 0 0 ... cnn dn


where xn = dn

cnn
, and substituting this value in the equations n1, n2, 1 in

the last system, in which it is equivalence to the system (8.1), we can
find the remain variables.

Example 8.4 Solve the given set of equations by using Gauss
elimination method:

x− y + z = 4

x− 4y + 2z = 8

x+ 2y + 8z = 12

Solution: After converting the equations in matrix form, the system
will be as follows:  1 −1 1 4

1 −4 2 8
1 2 8 12


By (R2 −R1 → R2) ∧ (R3 −R1 → R− 3), we get: 1 −1 1 4

0 −3 1 4
0 3 7 7


By R3 +R2 → R3, the system became to echelon form: 1 −1 1 4

0 −3 1 4
0 0 8 12


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Thus,
x− y + z = 4

− 3y + z = 4

8z = 12

From the third equation z = 3
2
, substituting the value of z in the

second equation implies y = −5
6
, and substituting the values of y, z in

the first equation, the value of x = 5
3
. Thus, the set solution of the

system is {(x, y, z)} =
{
(5
3
, −5

6
, 3
2
)
}
.

Example 8.5 Consider the following linear system and solve it by
Gaussian eliminations:

2x1 + x2 − x3 + 2x4 = 5

4x1 + 5x2 − 3x3 + 6x4 = 9

− 2x1 + 5x2 − 2x3 + 6x4 = 4

4x1 + 11x2 − 4x3 + 8x4 = 2
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Solution:

AX = B
2 1 −1 2 5
4 5 −3 6 9
−2 5 −2 6 4
4 11 −4 8 2

 h21(−2),h31(1),h41(2)−−−−−−−−−−−−→
∼


2 1 −1 2 5
0 3 −1 2 −1
0 6 −3 8 9
0 9 −2 4 −8

 h32(−2),h42(−3)−−−−−−−−−→
∼


2 1 −1 2 5
0 3 −1 2 −1
0 0 −1 4 11
0 0 1 −2 −5

 h43(1)−−−→
∼


2 1 −1 2 5
0 3 −1 2 −1
0 0 −1 4 11
0 0 0 2 6

 ≡
2x1 + x2 − x3 + 2x4 = 5

3x2 − x3 + 2x4 = −1
− x3 + 4x4 = 11

2x4 = 6

Solving by back substitution, we obtain, the set solution X =
{(x1, x2, x3, x4)} = {(1,−2, 1, 3)}.

Note: It is likely to be a11 = 0. To avoid this situation, we choose
the equation in which ai1 is as large as possible in which we need to
divide by ai1. This operation in the Gaussian method with replacing
between rows is called partial pivoting.

Example 8.6 Use Gaussian elimination method to solve the following
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linear system:
x1 + 2x2 + x3 = 0

3x1 − x2 − 2x3 = 9

4x1 + 3x2 − 3x3 = 2

Solution: After replacing between the first and third grows, we have: 4 3 −3 3
1 2 1 0
3 −1 −2 9


And utilizing Gaussian eliminations, the obtained solution will be:

X = {(x1, x2, x3)} = {(3,−2, 1)}.

8.3.4 Coefficient matrix partition (LU) method

To solve the system:
AX = B (8.8)

We partition the coefficient matrix A into an upper triangular
matrix U , and a lower triangular matrix L in which A = LU and Lii =
1, i = 1, 2, ..., n (Lang, 1984; Lang, 2002; Fraleigh, 2003; Nering, 1970).
When substituting in A into the system (8.8), we get on the equivalent
system:

LUX = B (8.9)

By putting UX = Y in (8.9), the resulted equation will be:

LY = B (8.10)

By solving system (8.10 ), we find the value of Y , and after finding
it, we can solve the system:

UX = Y (8.11)

It is equivalent to solving the system (8.8).
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Example 8.7 Solve the following system by coefficient matrix
partition method:

2x1 − 2x2 + 3x3 = 3

− 2x1 + 5x2 + x3 = 5

2x1 − 8x2 + 2x3 = 7

Solution:  2 −2 3
−2 5 1
2 −8 2

x1x2
x3

 =

35
7


∴ A =

 2 −2 3
−2 5 1
2 −8 2

 , X =

x1x2
x3

 , B =

35
7

 .
After partition of A to L,U lower and upper triangular matrix

respectively, where L =

 1 0 0
−1 1 0
1 −2 1

 , U =

2 −2 3
0 3 4
0 0 7

, we solve

the system:  1 0 0
−1 1 0
1 −2 1

y1y2
y3

 =

35
7


y1 = 3, y2 = 8, y3 = 20

∴ Y =

 3
8
20

 .
Now, we have to solve the following System:
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2 −2 3
0 3 4
0 0 7

x1x2
x3

 =

 3
8
20


x3 =

20

7
, x2 =

−8
7
, x1 =

−55
14

∴ X =

−55
14
−8
7
20
7

 .
Thus, the set solution to the original problem is X =

{
(−55

14
, −8

7
, 20

7
)
}
.

Note: The two methods Gauss and LU are equivalent.

8.3.5 Matrix Inverse Method

Solving a system of linear equations using the inverse of a matrix
requires the definition of two new matrices: X is the matrix
representing the variables of the system, and B is the matrix
representing the constants. Using matrix multiplication, we may define
a system of equations with the same number of equations as variables
as:

AX = B (8.12)

To solve the system (8.12) of linear equations using an inverse matrix,
let A be the coefficient matrix, let X be the variable matrix, and let B
be the constant matrix.

∵ AX = B

∴ X = A−1B

That is, if we find the matrix that is the inverse of matrix A by
one of the methods explained in Chapter Seven, then the product of
multiplying the inverse by column B gives a column with the values of
the variables.
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Example 8.8 Solve the following system by using inverse of matrix:
1 3 2 1
2 1 7 3
−1 2 −3 4
2 −3 −3 4



x1
x2
x3
x4

 =


3
5
−4
7

 .
Solution: Using one of the legitimate methods in Chapter Seven, we
find that: 

1 3 2 1
2 1 7 3
−1 2 −3 4
2 −3 −3 4


−1

=


68
89

−52
89

−27
89

49
89

45
178

−3
178

7
178

−8
89

−19
89

25
89

1
89

−15
89

−17
178

13
178

29
178

5
89

 ,

X =


68
89

−52
89

−27
89

49
89

45
178

−3
178

7
178

−8
89

−19
89

25
89

1
89

−15
89

−17
178

13
178

29
178

5
89




3
5
−4
7

 =


395
89
−10
89
−41
89
−16
89

 .
That is, X = {(x1, x2, x3, x4)} =

{
(395
89
, −10

89
, −41

89
, −16

89
)
}
.

8.4 The methods and their operations on the
computer

In this chapter, we explained several methods for solving linear
equations so that we can choose the optimal method when solving
systems of linear equations.

Each method has its advantages because some methods are easier
and faster than others, and we noticed that:

(i) The solution to finding the inverse is the product of multiplying
the inverse by the column on the right side of the system.

(ii) The solution of using the Gaussian method is to multiply rows by
fixed quantities, then subtract them from another row, ..., and so
on.

(iii) These methods are designed primarily for use on computers.
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Table 8.1: The methods and their operations on the computer
The method Number of multiplication operations

Cramer n3(n+1)
3

Gauss n3

3

LU n3

3

Matrix inverse n3

(iv) It is very important to take into account the number of algebraic
operations that are actually used to find solutions by each
method.

(v) The most time-consuming operations are multiplication and
division.

(vi) Comparing these methods, we find that the approximate number
of multiplication operations used in each method for a system of
degree n is as shown in Table 8.1.

8.5 Exercises

Q1: Solve the following systems by Cramer’s method:

(i)
2x1 + 3x2 = 0

3x1 + 4x2 = 1

(ii)
8x1 − 4x2 + x3 = 8

3x1 + x2 − x3 = 0

2x1 + 7x2 − 4x3 = 0

(iii)
4x1 − 6x2 + 8x3 + 2x4 = 10

− 2x1 + 3x2 − 4x3 + 4x4 = 12

12x1 + 18x2 − 24x3 + 12x4 = 11

7x1 − 5x2 + 7x3 + 9x4 = 9
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Q2: Solve each of the following equations in two different methods:

(i)
x1 + 2x2 − 4x3 = −1
7x1 + 3x2 + 5x3 = 26

− 2x1 − 6x2 + 7x3 = −6

(ii)
4x1 + 5x2 − x3 = −7
− 2x1 − 9x2 + 2x3 = 8

5x2 + 7x3 = 21

Q3: Solve the following equations in three different methods:

14x1 + 3x2 + 7x3 + 3x4 = 7

13x1 + x2 + 3x3 + 5x4 = 3

18x1 + 15x2 + 12x3 + 10x4 = 12

15x1 − 12x2 + 2x3 − 10x4 = 4

Q4: Solve the following equations by LU method:

2x1 − 3x2 + x3 = 5

2x1 − x2 + 4x3 = 3

x1 + 4x2 + 2x3 = 6

Q5: Solve the following equations:

a1x1 + a2x2 + a3x3 = b1

a4x1 + a5x2 + a6x3 = b2

a7x1 + a8x2 + a9x3 = b3

where ai, bj ∈ R, i = 1, ..., 9; j = 1, 2, 3.
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Eigenvalues and Eigenvectors

9.1 Introduction

E
igenvalues are associated with eigenvectors in linear algebra.
Both terms are used in the analysis of linear transformations.

Eigenvalues are the special set of scalar values that is associated with
the set of linear equations especially in the matrix equations. The
eigenvectors are also termed as characteristic roots. It is a non-zero
vector that can be changed at most by its scalar factor after the
application of linear transformations. The corresponding factor which
scales the eigenvectors is called an eigenvalue.

The mathematical interpretation is that eigenvalues are values that
determine how separate a square matrix is from the basis vectors. When
solving the eigenvalue equation for a square matrix A , the eigenvalues
are found using the equation |A− λI| = 0, where I is the identity
matrix. These values are the eigenvalues of matrix A. Whenever, we
obtain eigenvalues of matrix A, it can calculate eigenvectors of each
eigenvalue. Eigenvectors are vectors that determinate the directions
in which the matrix A propagates when multiplied by the eigenvector
corresponding to the corresponding eigenvalue.
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9.2 Eigenvalues and eigenvectors feature

In mathematics, especially in linear algebra, linear transformations
specify the direction of the vector, it is important to know which vectors
have their directions unchanged by a given linear transformation. An
eigenvector is such a vector. Precisely, an eigenvector v of a linear
transformation T is scaled by a constant factor λ when the linear
transformation is applied to it: Tv = λv.

The corresponding eigenvalue, or characteristic root is the
multiplying factor λ. Geometrically, vectors are multi-dimensional
quantities with magnitude and direction. A linear transformation
rotates, stretches, or shears the vectors upon which it acts. Its
eigenvectors are those vectors that are only stretched, with no rotation
or shear. The corresponding eigenvalue is the factor by which an
eigenvector is stretched or squished. If the eigenvalue is negative,
the eigenvector’s direction is reversed (Faires and Burden, 2012;
Hamadameen, 2022).

9.3 Eigenvalue and eigenvector through changes
direction

Let us consider Figure 9.2. In the mapping, the blue arrow changes
direction, whereas the pink arrow does not. Here, the pink arrow is an
eigenvector because it does not change direction. Also, the length of
this arrow is not changed; its eigenvalue is 1.

9.4 Transformations and eigenvalues

Let us consider the following equation:

Y = AX (9.1)

where the square matrix An×n ∈ F, X = [x1, x2, ..., xn]
T , Y =

[y1, y2, ..., yn]
T ∈ F, and F is a real number field. The matrix A

would transform the column vector X into the column vector Y . This
transformation can take many different forms, the simplest of which is
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Figure 9.1: Eigenvalues and eigenvectors feature
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Figure 9.2: Eigenvalues and eigenvectors through changes direction
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the linear transformation, which transforms X into itself by a number
say λ of the field F, which can be expressed as follows:

AX = λX (9.2)

Definition 9.1 The value λ in which satisfies the equation:

T (λ) = |A− λI| = 0 (9.3)

it is called the eigenvalue of the matrix A (Richard, 1993; Roman
et al., 2005).

Note: The equation (9.3) is called the characteristic of eigenvalue
equation and it can be simplified as follows in the form of a polynomial:

T (λ) =
i=n∑
i=0

aiλ
i (9.4)

where ai are constants ∀i.

Definition 9.2 Based on some studies (Herstein, 1991; Herstein, 1964;
Nering, 1970; Wu, 2005), Eigenvectors can defined as following: The
vector X is defined as a corresponding eigenvector to the eigenvalue λ,
and satisfied the equation:

AX = λX ≡ (A− λI)X = 0 (9.5)

9.5 Polynomial equation of degree n in eigenvalue

Equation (9.5) can be represents as a set of homogeneous linear
equations as follows:

(a11 − λ)x1 + a12x2 + ...+ a1nxn = 0

a21x1 + (a22 − λ)x2 + ...+ a2nxn = 0

.

.

.

an1x1 + an2x2 + ...+ (ann − λ)xn = 0

(9.6)
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A nontrivial solution to system (9.6) exists if;

|A− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 ... a1n
a21 a22 − λ ... a2n
.
.
.
an1 an2 ... ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (9.7)

The system (9.7) is a polynomial equation of degree n in λ (Sarkar,
2008).

9.6 Applications of eigenvalues and eigenvectors

Applications of eigenvalues and eigenvectors enter almost all fields of
science and have a pivotal and effective role for practical and applied
conclusions. Most modern sciences use them to reach tangible practical
results. Below is the list of fields in which the applications of them are
carried out.

(i) Geometric transformations. Eigenvalues of geometric
transformations includes; scaling, unequal scaling, rotation,
horizontal shear, and hyperbolic rotation in each of; matrix,
characteristic polynomial, eigenvalues, algebraic mult, geometric
mult, and eigenvectors.

(ii) Principal component analysis.

(iii) Graphs.

(iv) Markov chains.

(v) Vibration analysis.

(vi) Tensor of moment of inertia.

(vii) Stress tensor.

(viii) Schrödinger equation.
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(ix) Wave transport.

(x) Molecular orbitals.

(xi) Geology and glaciology.

(xii) Basic reproduction number.

(xiii) Eigenfaces.

(xiv) Eigenvoices.

(xv) Antieigenvalue theory.

(xvi) Eigenoperator.

(xvii) Eigenplane.

(xviii) Eigenmoments.

(xix) Eigenvalue algorithm.

(xx) Quantum states.

(xxi) Jordan normal form.

(xxii) List of numerical-analysis software.

(xxiii) Nonlinear eigenproblem.

(xxiv) Normal eigenvalue.

(xxv) Quadratic eigenvalue problem.

(xxvi) Singular value.

(xxvii) Spectrum of a matrix

For more information, the reader can review (Trefethen and Bau,
2022; Vellekoop and Mosk, 2007; Rotter, 2017; Bender et al., 2020;
Graham and Midgley, 2000; Sneed and Folk, 1958; Knox-Robinson and
Gardoll, 1998; Evans and Benn, 2014; Diekmann et al., 1990; Diekmann
and Heesterbeek, 2000; Xirouhakis et al., 1999).
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9.7 Properties of eigenvalues

Eigenvalues have the following properties (Hartman, 2011):

(i) Eigenvectors with distinct eigenvalues are linearly independent.

(ii) Singular matrices have zero eigenvalues.

(iii) If A is a square matrix, then λ = 0 is not an eigenvalue of A.

(iv) For a scalar multiple of a matrix: If A is a square matrix and λ
is an eigenvalue of A, then, aλ is an eigenvalue of aA.

(v) For matrix powers: If A is square matrix and λ is an eigenvalue
of A, and n ≥ 0 is an integer, then λn is an eigenvalue of An.

(vi) For polynomials of matrix: If A is a square matrix, λ is an
eigenvalue of A, and p(x) is a polynomial in variable x, then
p(λ) is the eigenvalue of matrix p(A).

(vii) Inverse matrix: If A is a square matrix, and λ is an eigenvalue of
A, then λ−1 is an eigenvalue of A−1.

(viii) Transpose matrix: If A is a square matrix, and λ is an eigenvalue
of A, then λ is an eigenvalue of AT .

9.8 Eigenvalues and eigenvectors of matrices

To illustrate and explore how the eigenvalues and eigenvectors of
a matrix relate to other properties of that matrix. The goal here
is to be amazed at the many connections between mathematical
concepts (Hartman, 2011). The aim here is to show that the
linear transformations over a finite-dimensional vector space can be
represented using matrices, which is especially common in numerical
and computational applications (Jones, 2011; Herstein, 1991; Herstein,
1964; Nering, 1970; Press et al., 2007).
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9.9 Definitions of various characteristics

In this section, we will list some definitions of the various characteristics
in which they are important and necessary for the subject of our
study in this chapter, based on some reliable references (Sarkar, 2008;
Hartman, 2011; Jones, 2011; Herstein, 1991; Herstein, 1964; Nering,
1970; Press et al., 2007).

Definition 9.3 The matrix A − λI is called characteristic matrix of
given matrix A which is obtained by subtracting λ from diagonal
elements of A.

Definition 9.4 The |A− λI| when expanded will give a polynomial of
degree n in λ which is called characteristic polynomial of matrix A.

Definition 9.5 The equation |A− λI| = 0 is called characteristic
equation of matrix A.

Definition 9.6 The roots λ1, λ2, ..., λn of the characteristic equation
are called characteristic roots or eigenvalues.

Definition 9.7 Corresponding to each characteristic root λ there
corresponds nonzero vector X which satisfies the equation:
(A− λI)X = 0. The X are characteristic vectors or eigenvectors.

9.10 Eigenvalues and eigenvectors of matrices

This section deals with how finds an eigenvalues and eigenvectors
of matrices.This section deals with how finds an eigenvalues and
eigenvectors of matrices. We try to submit three examples in squar
matrices of degree 2 × 2, 3 × 3, and 4 × 4. And we left matrices of
degree n× n, n ≥ 5 as an exercises to the reader.

Example 9.1 Find the eigenvalues and eigenvectors of the following

matrix:

[
3 2
1 2

]
.
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Solution: When solve the equation:[
3− λ 2
1 2− λ

]
=

[
0
0

]
(3− λ)(2− λ)− 3 = 0

⇒ λ2 − 5λ+ 4 = 0

⇒ λ = 1, λ = 4.

∴

[
λ1
λ2

]
=

[
1
4

]
Ifλ = 1⇒

[
2 2
1 1

] [
x1
x2

]
=

[
0
0

]
⇒ k

[
1
−1

]

By the same way if λ = 4, we get k

[
2
1

]
.

Thus X = k

[
1 2
−1 1

]
, where k is constant.

Example 9.2 Find the eigenvalues of the following matrix: 4 6 10
3 10 13
−2 −6 −8

 .
Solution: When solve the equation:4− λ 6 10

3 10− λ 13
−2 −6 −8− λ

 =

00
0

 .
To find eigenvalues λi, i = 1, 2, 3, we know that λi are the roots of

|A− λI|.
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∴ |A− λI| =

∣∣∣∣∣∣
 6 6 10

3 10 13
−2 −6 −8

− λ
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 6 6 10

3 10 13
−2 −6 −8

− λ
λ 0 0
0 λ 0
0 0 λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
4− λ 6 10
3 10− λ 13
−2 −6 −8− λ

∣∣∣∣∣∣
= (4− λ)

∣∣∣∣10− λ 13
−6 −8− λ

∣∣∣∣− (6)

∣∣∣∣ 3 13
−2 −8− λ

∣∣∣∣+ 10

∣∣∣∣ 3 10− λ
−2 −6

∣∣∣∣
= (4− λ)[(10− λ)(−8− λ)− 13(−6)]︸ ︷︷ ︸

1

+(−6)[(3)(−8− λ)− 13(−2)]︸ ︷︷ ︸
2

+ 10[(3)(−6)− (10− λ)(−2)]︸ ︷︷ ︸
3

= 0...(1)

Now, from (1), the first term:

= −λ3 + 6λ2 − 6λ− 8...(1a).

Similarly, from the second term of (1), we get:

= −12 + 18λ...(1b).

Again, similarly, from the third term of (1), we get:

= 20− 20λ...(1c).

Hence,
∴ |A− λI| = −λ3 + 6λ2 − 8λ = 0

∴ λ(λ2 − 6λ+ 8) = 0

∴ λ1 = 0, λ2 = 2, λ3 = 4

∴


λ1
λ2
λ3
0

 =

[
2
4

]
.

Example 9.3 Find the eigenvalues of the following matrix:
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A =

−4 1
3

13
3

−3
2

1
2

3
2

−3 1
3

10
3

 .
Solution: For the matrix A, we have eigenvalues:λ1λ2

λ3

 =

−11
2
1
3

 .
Now, we age going to find eigenvectors corresponds with eigenvalues.
For λ1 = −1, we have:−4− (−1) 1

3
13
3

−3
2

1
2
− (−1) 3

2

−3 1
3

10
3
− (−1)

x1x2
x3

 =

00
0


⇒

−3 1
3

13
3

−3
2

3
2

3
2

−3 1
3

13
3

x1x2
x3

 =

00
0


⇒ −3x1 +

1

3
x2 +

13

3
x3 = 0

−3
2
x1 +

3

2
x2 +

3

2
x3 = 0

− 3x1 +
1

3
x2 +

13

3
x3 = 0

⇒ x⃗1 =

31
2


By the same way, for λ2 = 1

2
, we get x⃗2 =

21
2

, and for λ3 = 1
3
,

we get x⃗3 =

10
2

. Thus, the eigenvector matrix corresponding to the

eigenvalues

−11
2
1
3

 is

3 2 1
1 1 0
2 2 1

.
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Example 9.4 Find the complex eigenvalues and eigenvectors of the

matrix:

[
1 −1
1 1

]
.

Solution:

|A− λI| =
[
1 −1
1 1

]
− λ

[
1 0
0 1

]
=

[
0
0

]
=

[
1− λ −1
1 1− λ

]
=

[
0
0

]
⇒ λ2 − 2λ+ 2 = 0

⇒ λ1,2 =
2∓
√
4− 8

2
= 1∓ i

For λ = 1 + i, we have:

A− (1 + i)I2 =

[
1− (1 + i) −1

1 1− (1 + i)

]
=

[
−i −1
1 −i

]
.

Now we row reduce, noting that the second row is i times the first:[
−i −1
1 −i

]
=

R2=R2−iR1−−−−−−−→
[
−i −1
0 0

]
R1=R1÷−i−−−−−−→

[
1 −i
0 0

]
The parametric form x = iy, so an eigenvalue:

v⃗1 =

[
i
1

]
.

For λ = 1− i, we have:

A− (1− i)I2 =
[
1− (1− i) −1

1 1− (1− i)

]
=

[
i −1
1 i

]
.

Now we row reduce, noting that the second row is −i times the first:[
i −1
1 i

]
=

R2=R2+iR1−−−−−−−→
[
i −1
0 0

]
R1=R1÷i−−−−−→

[
1 i
0 0

]
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The parametric form x = −iy, so an eigenvalue:

v⃗2 =

[
−i
1

]
.

Thus, the verify to the answer will be:[
1 −1
1 1

] [
i
1

]
=

[
i− 1
i+ 1

]
= (1 + i)

[
i
1

]
.[

1 −1
1 1

] [
−i
1

]
=

[
−i− 1
−i+ 1

]
= (1 + i)

[
−i
1

]
.

Example 9.5 Find the eigenvalues and their corresponding

eigenvectors of the following matrix:


5 1 −1 0
0 2 0 3
0 0 2 1
0 0 0 3

.
Solution: By utilizing (9.2), we can find the eigenvalues:
λ1
λ2
λ3
λ4

 =


5
2
2
3

. And, their corresponding eigenvector matrix is

x⃗ =


1 −228

721
228
721

−390
1351

0 684
721

0 1170
1351

0 0 684
721

390
1351

0 0 0 390
1351

.
9.11 Conclusions from eigenvalues, eigenvectors

and Traces

(i) The eigenvalues of the upper (lower) and diagonal triangular
matrix are the same as the eigenvalues of the matrix.

(ii) The sum of the eigenvalues of the matrix is equal to the sum of the
elements on the main diagonal of the matrix. This sum is called
the Trace of the matrix, and is expressed as: as: T (A) =

∑n
i=1 λi.
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(iii) The product of the eigenvalues is the determinant path of the
matrix. Or:

|A| =
∏n

i=1 λi.

9.12 Additional properties of eigenvalues

We are going to show additional properties of the eigenvalues that
have been presented in the previous sections, through inserting and
submitting the following theorems in what follows.

Theorem 9.1 If λ1, λ2, ..., λn are the eigenvalues of the matrix A, then
λk1, λ

k
2, ..., λ

k
n are the eigenvalues of the matrix Ak. Furthermore, each

eigenvalue of the matrix is an eigenvalue of the matrix Ak.

Proof Suppose that λ,X are eigenvalue and eigenvector of the matrix
respectively, then:

AX = λX

Now, by multiplying each side of the equation from left by the
matrix A, we get:

A2X = λAX

= λ(λX)

= λ2X

That means λ2 is the eigenvalue of the matrix A2, and the
corresponding eigenvalue is the same λ.

Now, by using the mathematical induction. We assume that the
theorem is true for r = k. Or,

ArX = λrX

Again, by multiplying both sides from the left of the matrix A, we
get:
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AArX = AλrX

∴ Ar+1X = λrAX

= λr(λX)

= λr+1X

That means λr+1 is the eigenvalue of the matrix Ar+1. In addition,
X is the eigenvector of the matrix Ar+1.

Thus, and based on the mathematical induction, the theorem is true
for all value of k. ♦

Corollary (Cayley-Hamilton theorem)
Each square matrix satisfies its characteristic equation.

Note: Necessary clarification before proof
The Cayley-Hamilton theorem states that every square matrix over

a commutative ring (the real or complex numbers) satisfies its own
characteristic equation. If A is a given n×n matrix and In is the n×n
identity matrix, then the characteristic polynomial of A is defined as:
pA(λ) = |λIn − A|, where || is the deterministic operation, and λ is a
variable for a scalar element of the base ring F (Atiyah, 2018). Since
the entries of the matrix |λIn − A| are (linear or constant) polynomials
in λ, the determinant is also a degree-n monic polynomial in λ, so that:

pA(λ) = λn + cn−1λ
n−1 + ...+ c1λ+ c0.

Or,

pA(A) = An + cn−1A
n−1 + ...+ c1A+ c0In.

The Cayley–Hamilton theorem states that this polynomial
expression (Hamilton, 2008; Cayley, 1858b) is equal to the zero matrix,
which is to say that; pA(A) = 0 that is, the polynomial pA is an
annihilating polynomial for A. The theorem allows An to be expressed
as a linear combination of the lower matrix powers of A. When the
ring is a field F , the Cayley–Hamilton theorem is equivalent to the
statement that the minimal polynomial of a square matrix divides its
characteristic polynomial.



Eigenvalues and Eigenvectors 237

Proof For a generic 2×2 matrix,

[
a b
c d

]
the characteristic polynomial

is given by:
pλ = λ2 − (a+ d)λ+ (ad− bc),

so the Cayley-Hamilton theorem states that:

p(A) = A2 − (a+ d)A+ (ad− bc)I2 =
[
0 0
0 0

]
.

∵ A2 − (a+ d)A+ (ad− bc)I2

=

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
−
[
a(a+ d) b(a+ d)
c(a+ d) d(a+ d)

]
+ (ad− bc)I2

=

[
bc− ad 0

0 bc− ad+ (ad− bc)I2

]
=

[
0 0
0 0

]
. ♦

Example 9.6 For 1 × 1 matrix A = (a) apply the Cayley-Hamilton
theorem.

Solution:
p(λ) = λ− a
∴ p(A) = a− a(1) = 0.

It is trivial solution.

Example 9.7 For 2×2 matrix A =

[
1 2
3 4

]
apply the Cayley-Hamilton

theorem.
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Solution:
|λI2 − A|

=

∣∣∣∣λ− 1 −2
−3 λ− 4

∣∣∣∣
= (λ− 1)(λ− 4)− (−2)(−3)
= λ2 − 5λ− 2

∴ p(X2)− 5X − 2I2

p(A) = A2 − 5A− 2I2 =

[
0 0
0 0

]
For verifying;

A2 − 5A− 2I2

=

[
7 10
15 22

]
−
[
5 10
15 22

]
−
[
2 0
0 2

]
=

[
0 0
0 0

]
Theorem 9.2 If matrix A is real and symmetric, then all of its
eigenvalues and their corresponding eigenvectors are real as well.

Proof Let A be a real symmetric matrix and λ be a complex
eigenvalue of A. Here, there exists a complex vector x such that;

Ax = λx, x ̸= 0. (9.8)

Based on the definition of eigenvalues. We take the complex
conjugates of both sides. Since A is real matrix, then Ā = A. Thus;

Ax̄ = λ̄x̄ (9.9)

The transpose of both sides of (9.9). As A is symmetric, we get:

x̄TA = (λ̄x̄)T (9.10)

∴ (λ̄x̄)Tx = x̄TAx = x̄Tλx = λx̄Tx (9.11)
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x̄Tx = x̄1x1 + x̄2x2 + ...+ x̄nxn+ > 0, x ̸= 0 (9.12)

Thus, if we divide both sides of (9.11) by x̄Tx, we have λ = λ̄.
That means, λ is real. ♦

Theorem 9.3 All eigenvalues of Hermitian matrix are real.

Proof Suppose that λ is an eigenvalue of a Hermitian matrix A, and
x is an eigenvector corresponding to the eigenvalue λ.

Ax = λx (9.13)

Multiplying both sides of (9.13) by x̄T from the left, we obtain:

x̄T (Ax) = x̄T (λx)

= λx̄Tx

= λ ∥x∥
(9.14)

On the other hand, we have;

x̄T (Ax) = (Ax)T x̄ = xTAT x̄ (9.15)

The first equality of (9.15) follows because u · v of the vectors u, v
is commutative. Thereby, we have;

u · v = uTv = vTu = v · u (9.16)

When applying the fact of (9.16) with u = x̄, v = Ax we get;

xTAT x̄ = λ ∥x∥ (9.17)

Taking the complex conjugate of (9.17), we obtain:

x̄T ĀTx = λ̄ ∥x∥ (9.18)

Keep in the mind that; since ∥x∥ is a real number, hence x̄ =
x, ¯∥x∥ = ∥x∥. Besides, since A is a Hermitian matrix, hence ĀT = A.
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λ̄ ∥x∥ = x̄T [from(9.18)]

= x̄Tλx[from(9.13)]

= λ ∥x∥
(9.19)

Since x is an eigenvector, hence x is not the zero vector and the
length ∥x∥ ≠ 0. Thus, when we divide by the length ∥x∥, the result
will be:

λ = λ̄ (9.20)

From (9.20), we have proved that the λ is a real number. ♦
In the 1930s, the mathematician Semyon Aranovich Gerschgorin

stated a theorem has been known by the Gerschgorin circle theorem
may be used to bound the spectrum of a square matrix (Li and
Zhang, 2019; Varga, 2010; Varga, 1962; Horn and Johnson, 2012; Gloub
and Van Loan, 1996). But before starting the theorem, we need the
following definition:

Definition 9.8 Let A be a complex n×n matrix, with entries aii. For
i ∈ {1, 2, ..., n}, and let Ri be the sum of the absolute values of the
non-diagonal entries in the ith row:

Ri =
∑

j ̸=i |aij|. Let D(aij, Ri) ⊆ C be a closed disc centered at
aii with radius Ri. Such a disc is called a Gerschgorin disc (Li and
Zhang, 2019; Varga, 2010).

Theorem 9.4 (Gerschgorin theorem) Every eigenvalue of A lies
within at least one of the Gerschgorin discs D(aii, Ri). Or an
alternative: Every eigenvalue of the matrix A lies in at least one of
the circles whose center is aii and whose radii are ri =

∑n
j=1 |aij| ; j ̸=

i, i = 1, 2, ..., n.

Proof If λ is an eigenvalue of the matrix A then there is at least one
its corresponding nonzero eigenvector x, such that:

Ax = λx (9.21)

Now, suppose that xp ∈ x is the maximum absolute value, such the
x can be expressed as:
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x =
[
x1 x2 ... xp−1 ... xp+1 ... xn

]T
(9.22)

Dividing (9.22) by xp where |xi| ≤ 1,∀i ∧ i ̸= p. Thus in (9.21), we
notice p:

n∑
j=1

apjxj = λxp = λ (9.23)

∴
∣∣λ−1pp

∣∣ = ∣∣∣∣∣
n∑

j=1

apjxj−1pp

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

j=1

apjxj

∣∣∣∣∣ , j ̸= p

≤

∣∣∣∣∣
n∑

j=1

apj

∣∣∣∣∣ |xj|
≤

∣∣∣∣∣
n∑

j=1

apj

∣∣∣∣∣ , j ̸= p. ♦

(9.24)

Theorem 9.5 For any real symmetric matrix there exists a matrix Q
such that Q−1AQ is a diagonal matrix and has the same eigenvalues of
matrix A (The matrix Q−1AQ is called a matrix similar to A).

Proof If a matrix A is similar to a diagonal matrix Q−1AQ, then the
eigenvalues are known, and the theorem has been proved according to
studies (Horn, 1985; Horn and Johnson, 2012; Srivastava and Sahami,
2009; Nearing et al., 2003). ♦

Theorem 9.6 Any similar transformation P−1AP applied to the
matrix A does not change its eigenvalue.

Proof Suppose that λ, x are eigenvalue and eigenvector of the matrix
A respectively. Thus, we get:

Ax = λx

PAx = λPx
(9.25)
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If, we assume that Px = y then we have:

x = P−1y (9.26)

Now, substituting (9.26) in (9.25), we get:

PAP−1y = λy (9.27)

Thus, we conclude that λ, y are the eigenvalue and eigenvector of
the matrix P−1AP correspondingly. ♦

Theorem 9.7 For any square matrix A there is a similarity matrix
P where the matrix A is transformed into a triangle similarity matrix
T = P−1AP .

Proof Based on Theorems (9.5 & 9.6). Besides, by using some
algebraic steps on the matrix A, we can find a similar matrix P to
get P−1AP = T . ♦

9.13 Methods for finding eigenvalues

There are two main methods for finding the eigenvalues of square
matrices, and in this section we will deal them in some detail with
real examples.

9.13.1 LU method

It is a method of converting any square matrix whose eigenvalues
are real numbers into a triangular matrix as defined and described in
chapter 5, as we can see in (5.5.11& 5.5.12).

The matrix A can be converted into submatrices LU as follows:
Let us assume that;

A1 = UL (9.28)

It should be noticed that the eigenvalue of A1 in (9.28) is the same
of the matrix A, because;

A1 = UR = RAR−1 (9.29)
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The matrix in (9.29) is a similar of the matrix A. Again, after some
steps we can convert A1 into LU , and the result will be as follows;

A2 = UL (9.30)

We continue these successive steps until obtain on triangular
matrices A3, A4, ...An in which their eigenvalues are the diagonal
elements, where they are the same eigenvalues of A, as we emphasized
that in Section 9.11.

Example 9.8 Use LU method to find the eigenvalues of the following
matrix:−2 2 −3

2 1 6
−1 −6 0

.
Solution:

∵

−2 2 −3
2 1 6
−1 −6 0

 =

 1 0 0
−1 1 0
1
2
−1 1

−2 2 −3
0 3 −9
0 0 15

2

 ,
∴ L =

 1 0 0
−1 1 0
1
2
−1 1

 , U =

−2 2 −3
0 3 −9
0 0 15

2

 .
∴ A1 = UR =

−11
2

5 −3
15
2

12 9
−15

4
15
2
−15

2

 .
(9.31)

After we partition A1 into L and U , and repeat the same steps in
(9.31) we have:
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A2 =

−73
10

263
100

−3
93
25

31
100

−491
100

−27
25

frac54 −79
50

 .
.

.

.

∴ A10 =

 116
25

319
100

−3
71
100

−27
10

− 7
25

− 37
500

frac307100 −297
100

 .
.

.

.

∴ A30
∼=

5 16
5

−3
0 −3 0
0 0 −− 3

 .

(9.32)

Thus, in (9.32), we find that:

∴

λ1λ2
λ3

 =

 5
−3
−3

 .
9.13.2 Jacobi method

The Jacobi eigenvalue algorithm is an iterative method for the
calculation of the eigenvalues and eigenvectors of a real symmetric
matrix, namely in the numerical lineal algebra, and the process known
as diagonalization (Jacobi, 1846; Golub and Van de Vorst, 2000).

The Jacobi eigenvalue method repeatedly performs rotations until
the matrix becomes almost diagonal. Then the elements in the diagonal
are approximations of the real eigenvalues of the undertaken matrix
(Schönhage, 1964).

In this method, we consider a real symmetric matrix A, and
transform it into a diagonal matrix QTAQ (Press et al., 1992;
Rutishauser, 1966; Saad, 2023) by eliminating all the non-diagonal
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elements one by one through the following algorithm (Sameh, 1971;
Shroff, 1990; Veselić, 1979):

(i) To get rid of the element apq, we find the matrix Q, in which
Qii = 1, i ̸= p, q. And for the remained elements Qij = 0 except
QTQ = I.

(ii) Put Qpp = Qqq = cos(Q), Qpq = −sin(Q), qqp = sin(Q) where
Q = 1

2
tan−1( 2apq

app−aqq
).

(iii) Computing the matrix A1 = QTAQ at the zero position of (p, q).

(iv) Change p = p+1, q = q+1 and find the matrix Q1 with the same
properties of the above matrix Q.

(v) Computing the matrix A2 = QT
1A1Q1 at the zero position of

(p+ 1, q + 1).

(vi) It should be noticed that the value of zero position at (p, q) in the
matrix A1 ,ay be changed its value from zero in the matrix A2.

(vii) Repeating the same steps for the other positions to get rid of the
non-diagonal elements till obtain on the matrix Ann−1

2
.

(viii) Keep in mind may be we have to repeat all the above steps to
obtain the last matrix Ann−1

2
.

Example 9.9 Find the eigenvalues of the following symmetric matrix

by Jacobi method:


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 .
Solution: By applying Jacobi method, we want to rid of a21 = 7,

we have:
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Q =
1

2
tan−1(

2apq
app − aqq

)

=
1

2
tan−1(

(2)(7)

5− 10
)

= −1829

52

∴ sin(Q) =
317

549
, cos(Q) = −1201

1471

(9.33)

Thereby, the matrix will be:

Q =


cos(1829

52
) − sin(−1829

52
) 0 0

sin(−1829
52

) cos(1829
52

) 0 0
0 0 1 0
0 0 0 1

 =


1201
1471

317
549

0 0
−317

549
1201
1471

0 0
0 0 1 0
0 0 0 1


∴ A1 = QAQ−1

=


1201
1471

317
549

0 0
−317

549
1201
1471

0 0
0 0 1 0
0 0 0 1



10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10




1201
1471

−317
549

0 0
317
549

1201
1471

0 0
0 0 1 0
0 0 0 1



=


2897
194

0 2559
256

2314
269

0 538
8029

373
1335

187
4633

2559
256

373
1335

10 9
2314
269

187
4633

9 10

 .

(9.34)

Now, we are going to rid from a31 = 2559
256
∈ A1. By the same way

we obtain:
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A2 =


11381
500

552
3023

0 3179
258

552
3023

67
1000

2331
10000

107
1949

0 2331
10000

3020
1391

1099
617

3179
258

103
1883

1099
617

1


.

.

.

∴ A18 =


7239
239

0 0 0
0 51

5000
0 0

0 0 446
529

0
0 0 0 3453

895



(9.35)

Thus, from (9.35), we find that, the eigenvalues of the matrix A are:
λ1
λ2
λ3
λ4

 =


7239
239
51

5000
446
529
3453
895

 ∼=

30.2887
0.0102
0.8431
3.8581

 .
9.14 Exercises

Solve the following questions:
Q1: Find the eigenvalues of the following matrices and what do you

notice? Which observation do I mention?

(i)

[
a b
d b

]
, ∀a, b, c, d ∈ R.

(ii)

[
a b
d b

]
, ∀a, b, c, d ∈ C.

(iii)

[
a b
d b

]
, ∀a, b, c, d ∈ C.

(iv)

1 0 0
0 2 3
4 0 0

.
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(v)

[
− sinα cosα
sinα − cosα

]
.

(vi)

[
cosα sinα
− sinα cosα

]
.

(vii)

1 7 3
7 4 5
3 5 2

.
(viii)

[
1 7
7 1

]
.

(ix)

2 −2 3
1 4 5
2 1 −3

.

(x)


1 −2 1 −1
1 1 −2 3
4 1 −5 8
5 −7 2 −1

.
Q2: Consider a matrix A and its eigenvalues λ1, λ2, ..., λn. Prove

that:

(i) AT has the same eigenvalues of A.

(ii) The eigenvalues of kA are kλi,∀i, and k is constant.

(iii) A−1 has the eigenvalues 1
λ1
, 1
λ2
, ..., 1

λn
.

(iv) The eigenvalues of an nonsingular matrix are not zeros.

Q3: Prove that |(A− λI)−1| = 1
|A−λI| .

Q4: If λi, i = 1, 2, ..., k is an eigenvalue of the matrix An×n repeated
k times, then rank of the A− λiI ≥ n− k.

Q5: Prove that the characteristic equation of the orthogonal matrix
(QTQ = I)Q is the inverse equation γ(λ) = |λI −Q| = ∓λnγ( 1

λ
).

Q6: Assume that QT = Q−1, where QT is the transpose of the
matrix Q, and Q−1 is the inverse of Q, where QT = Q−1. Prove that
QTQ = QQT = I.
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Permutations and Combinations

10.1 Introduction

C
oncepts of permutations and combinations are of a great
importance in the various sciences in general and in mathematics

in particular.
Their study requires a systematic, academic, and mathematical

study to show their effective role in several fields. For example, and not
limited, whenever studying statistics; it is imperative for the researcher
to be equipped with them in order to be a productive scientific,
theoretical, and practical researcher in order to produce tangible and
realistic results. Because in the study of statistics, we want to find the
number of methods in which an event can occur, and the number of
ways in which the elements of the set taken in the space of possibilities
can be arranged. In addition to the number of different sets that can
be composed of a certain number of things.

Due to the importance of rolling the permutations and combination,
we can identify some fields in which these two concepts have their roles,
which will be discussed in the following sections.
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10.2 Permutations and combinations and their
formulations

In this section, we delve into the basic concepts of permutation and
combination, their role in mathematics and the fields in which they
appear, in addition to the basic principle of the arithmetic.

10.2.1 Basic principle of the arithmetic

The basic principle of arithmetic is based on non-empty sets, and
depending on the elements in these sets. We can find the number
of ways in which we select the elements in the sets taken for arithmetic
in the process. To illustrate, let us assume the following hypothesis:

Assume that there are A1, A2, ..., Ak sets under taken and each one
contains of n1, n2, ..., nk elements respectively. The number of ways to
select an element in Ai, i = 1, 2, ..., k is n1.n2...nk.

Example 10.1 There are eight departments in a faculty, and each
department chooses a representative in a committee. If the number
of teaching staffs in these departments is 33, 23, 22, 28, 13, 6, 5, 4,
respectively. In how many ways can the representatives in the
committee for the departments be chosen?

Solution: It can be chosen the representative in a committee for the
first department in 33 ways, in 23 ways for the second department, and
so on for the remain departments respectively. Thereby, the number of
chosen of the representatives of a committee for the departments is;

33 · 23 · 22 · 28 · 13 · 6 · 5 · 4 = 729368640 ways.

Now, let us ask this following question. Suppose we have a set
containing of n elements, and we want to order the elements of this set.
In how many ways can we order the elements of the set mathematically?
Of course, to order these elements, we choose an element to be the first,
then we choose another element to be the second, ...etc. And each order
in this kind is called permutation. Thus, in what follows we have to
dive of the concept of permutation.
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10.2.2 Permutation

Definition 10.1 A permutation of a set is an arrangement of its
members into a sequence or linear order, or if the set is already ordered,
a rearrangement of its elements. Or, it is refers to the act or process of
changing the linear order of an ordered set (Landau, 1994; Gold, 1984;
McCoy, 1968; Nering, 1970; Heath, 2013).

Example 10.2 A string of length n has n! permutation. What is a
permutation of letters A,B,C from a group of letters takes all of them,
regardless of their meaning in the logic of the language?

Solution: The permutation of string A,B,C is,
ABC,ACB,BAC,BCA,CBA,CAB. Or, the permutation is
3! = 3 · 2 · 1 = 6, as shown in Figure 10.1.

Example 10.3 Write the different permutations of the numbers
1, 2, 3, 4 taken all of them at every permutation.

Solution: The number of permutations are 4 · 3 · 2 · 1 = 24.
As shown below:

4123, 4132, 4231, 4312, 4321, 1423,

1432, 1243, 1234, 1342, 1324, 2413,

2431, 2143, 2134, 2341, 4312, 3412,

3421, 3142, 3124, 3241, 3214, 2314.

Example 10.4 Write the different permutations of the letters
x, y, z, w, in which two letters are taken from it at a time.

Solution: The number of permutations are 4 · 3 = 12.
As shown below:

xw, yw, zw, xy,

xz, xw, xy, yz,

wy, xz, yz, wz.

Definition 10.2 The factorial of a n ∈ N, denoted by n! is the product
of all positive integers less than or equal to n. Or;

n! = n · (n− 1) · (n− 2) · ... · 3 · 2 · 1 =
∏n

k=1 k (Graham et al., 1994).
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Figure 10.1: Permutations
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Example 10.5

1! = 1

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6

.

.

.

k! = k · (k − 1) · (k − 3) · ... · 3 · 2 · 1

Definition 10.3 The factorial of zero is one, and expressed
mathematically as; 0! = 1 (Goldenberg and Carter, 2017; Dorf, 2003;
Hamkins, 2020).

Definition 10.4 For all non-positive n, it can be defined a function
Γ in which Γ(n + 1) = nΓ(n) = n! = limm→∞

mnm!
(n+1)(n+2)...(n+m)

. The

function called Gamma function (Farrell and Ross, 2013; Beals and
Wong, 2010).

Example 10.6 If (1
2
)! =

√
π
2

then find Γ(1
2
),Γ(−1

2
).

Solution: Based on Definition 10.4, we have;

(
1

2
)! = Γ(

1

2
+ 1) =

1

2
Γ(

1

2
)

=

√
π

2

∴ Γ(
1

2
) =
√
π.

∵ Γ(n+ 1) = nΓ(n),

∴ Γ(
−1
2

+ 1) = −1

2
Γ(
−1
2
)

=
√
π

∴ Γ(
−1
2
) = −2

√
π.

Theorem 10.1 The number of permutations of n different objects
taken at a time is given by n!.
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Proof Permutation of n elements in a systematic and specific way.
We choose an element to be the first, and thus there are n ways to
choose it.

Now, there are n−1 remained of objects and there are (n−1) ways
to select it.

Repeating this procedure for the element k of the objectives, it can
be (n− k + 1) of ways to chosen it.

Thus, we concussion based on the basic principle of the arithmetic
there are;

n! = n · (n−1) · (n−2) · ... ·3 ·2 ·1 permutations for n of elements. ♦

Example 10.7 There is a family of eight people who want to know
the number of ways to arrange themselves in a:

(i) Straight line.

(ii) Round table.

Solution: (i) The number of arrange of eight people on a straight line
is;

8! = 8 · 7 · ... · 3 · 2 · 1 = 40320.
(ii) To arrange the family in a circular manner, it must fixed one of

its members and arrange the rest of the members with respect to him.
Thus, the process can be accomplished as follows;

7! = 5040.

Theorem 10.2 The number of permutations of n different objects
taken k at a time is given by:

P n
k = n!

(n−k)!
= n(n− 1)(n− 2)...(n− k + 1).
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Proof
P n
k = nP n−1

k−1

= n
(n− 1)!

((n− 1)− (k − 1))!

=
n!

(n− k)!
= P n

k

Continuing this process we get;

P n
k = nP n−1

k−1 = n(n− 1)P n−2
k−2

= n(n− 1)(n− 2)P n−3
k−3 ...(n− (k − 1))P n−k

0

= n(n− 1)(n− 2)...(n− k + 1)

∴ P n
k = P n−1

k + kP n−1
k−1

=
(n− 1)!

((n− 1)− k)!
+ k

(n− 1)!

(n− k)!

=
(n− 1)!

(n− 1− k)!
+ k

(n− 1)!

(n− k)!

=
(n− 1)!(n− k)

(n− 1− k)!(n− k)
+ k

(n− 1)!

(n− k)!

=
(n− 1)!(n− k)

(n− k)!
k
(n− 1)!

(n− k)!

=
(n− 1)!((n− k) + 1)

(n− k)!

=
n(n− 1)!

(n− k)!

=
n!

(n− k)!
= P n

k . ♦

It can generalize Theorem 10.2 to the general form (Brualdi, 2004)
as follows:

Theorem 10.3 (Generalized theorem) A set consisting of n
elements is partition to k subsets containing n1 of similar elements, n2
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of others similar elements, ..., nk of others similar elements respectively
such that: n =

∑k
i=1 ni. Then, the number of permutations given by:

P n
n1,n2,...,nk

= n!
n1!n2!...nk!

=
(
∑k

i=1 n1)!∏k
i=1 ni!

.

Proof It is possible to prove this generalized theorem as a corollary
of Theorem 10.2, and based on the aforementioned reference. ♦

Example 10.8 If you are given an eight-letter word, in how many
ways can it be a five-letter word, regardless of the meanings of the
component words?

Solution: Due to the requirements of the problem, the matter is
permutation of five words out of eight words. Thereby;

P 8
5 =

8!

(8− 5)!
=

8!

3!
= 6720.

Example 10.9 Howmany numbers can you make of 0, 1, 2, 3, ..., 9 such
that start from 5 and have four digits?

Solution: We exclude the number 5 because we will put it with
every number we make, so what remains is the formation of numbers
of 4 digits. Thus;

P 9
4 =

9!

(9− 4)!
=

9!

5!
= 3024.

Example 10.10 How many distinct permutations can be formed from
the word ”committee”?

Solution: The ninth permutations which consist of letters c, o, m,
i, t, and e can be obtained as follows:

P 9
1!,1!,2!,1!,2!,2! =

9!

1!1!2!1!2!2!
= 45360.

Note: P n
k =

(
n
k

)
= n!

(n−k)
.

10.2.3 Basic properties of permutations

Permutations refer to the arrangement of objects, where the order of
arrangement is important. The following are some basic properties of
permutations:
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(i) Identity Permutation: This is a permutation which leaves all
elements in their original place. For example, for the set 1, 2, 3,
the identity permutation is (1, 2, 3).

(ii) Permutation of n different things taken k at a time: The
number of permutations of n different things taken k at a time,
denoted by P n

k , is given by P n
k = n!

(n−k)!
, where ! denotes factorial.

(iii) Permutation of n things not all different: If there are p
objects of one kind, q objects of second kind, r objects of third
kind, and so on, then the number of permutations of these objects
given by P n

p,q,r,... =
n!

p!q!r!...
.

(iv) Permutation with Repetition: If we are allowed to repeat
objects, then the number of permutations of n objects taken k at
a time is nk.

(v) Number of Circular Permutations: If there are n different
things to be arranged in a circle, then the number of permutations
is (n− 1)!.

10.2.4 Combination

Definition 10.5 A combination is a selection of items from a set that
has distinct members, such that the order of selection does not matter.
Mathematically, If a set has n elements, the number of k−combinations,

denoted by C(n, k) = Cn
k =

(
n
k

)
=

{
n!

(n−k)!k!
= n(n−1)...(n−k+1)

k(k−1)...3·2·1 ,∀k ≤ n

0,∀n < k

(Mazur, 2022; Ryser, 1963; Brualdi, 2004).

Note: The formulation of the combination can be derived from
the fact that each k− combination of a set A of n members has k!
permutations. So, P n

k = Cn
k · k!. Or Cn

k =
Pn
k

k!
(Reichl, 2016). Thereby,

the set of all k−combinations of a set A is often denoted by
(
A
k

)
.

Example 10.11 The number of ways in which 3 square objects can
be selected from a set of 5 distinct square objects, without regard to
their order.
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Solution: The number of combinations are 10 ways, as shown in
Figure 10.2.

C5
3 =

5!

3!(5− 3)!
=

5 · 4 · 3!
3!2!

= 5 · 2 = 10.

Theorem 10.4 Consider a set A contains n of elements. The number
of combinations that can be formed from n elements taken k each time,
regardless order is Cn

k = n!
k!(n−k)!

.
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Figure 10.2: Combinations
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Proof

Cn
k =

n(n− 1)(n− 2)...(n− k + 1)

k!
= x...(1)

Cn
k−1 =

n(n− 1)(n− 2)...(n+ 1)

(k − 1)!

= x...(2)

∵ (1) + (2)

=
n(n− 1)(n− 2)...(n− k + 1)

k!

+
n(n− 1)(n− 2)...(n+ 1)

(k − 1)!

= 2x

=
k![n(n− 1)(n− 2)...(k + 1)]

k!(n− k)!

+
(n− k)![n(n− 1)(n− 2)...(n− k + 1)]

k!(n− k)!
∵ k![n(n− 1)(n− 2)...(k + 1)] = 1 · 2 · 3 · ... · k
∴ k![(k + 1)(k + 2)...(n− 2)(n− 1)n]

= n!

∵ [n(n− 1)(n− 2)...(n+ 1)](k − 1)!

= 1 · 2 · 2 · ... · (n− k)
∴ (n− k)![(n− k + 1)(n− k + 2)...(n− 2)(n− 1)n]

= n!

∴ 2x =
n!

(n− k)!k!
+

n!

k!(n− k)!

=
2n!

(n− k)!k!

∴ Cn
k =

n!

k!(n− k)!
. ♦

It can generalize Theorem 10.4 to the general form (Mazur, 2022;
Brualdi, 2004; Ryser, 1963) as follows:
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Theorem 10.5 (Generalized theorem) Assume that a set A
consists of n elements is partition to k subsets A1, A2, ..., Ak containing
of n1, n2, ..., nk elements respectively such that: n =

∑k
i=1 ni. Then, the

number of combinations given by:(
n
n1

)(
n−n1

n2

)(
n−n1−n2

n3

)
...
(
n−n1−n2−n3−...nk

nk

)
=

(
n

n1,n2,...,nk

)
=

Cn
n1,n2,...,nk

= n!
n1!n2!...nk!

.

Proof It is possible to prove this generalized theorem as a corollary of
Theorem 10.4, and based on the aforementioned references, as follows:

By the product rule the total number of combinations is;

C(n, n1)C(n− n1, n2)C(n− n1 − n2, n3)...C(n− n1 − n2 − ...− nk, nk)

∵ the n1 objects of type one can be placed in the n positions in C(n, n1)

ways leaving n− n1 positions.

∵ then n2 objects of type two can be placed in the n− n1 positions in

C(n− n1, n2) ways leaving n− n1 − n2 positions.

Continuous in this fashion, until nk objects of type k can be placed in the

C(n− n1 − n2 − ...− nk, nk) ways, the product can be obtained as follows:

n!

n1!(n− n1)!
· (n− n1)!

n2!(n− n1 − n2)!
· ... · (n− n1 − ...− nk−1)!

nk!0!

=
n!

n1!n2!...nk!
= Cn

n1,n2,...,nk
. ♦

Example 10.12 Prove that
(
n
k

)
=
(

n
n−k

)
.

Solution:(
n

k

)
=

n!

k!(n− k)!

=
n(n− 1)(n− 2)...(k + 1)k(k − 1)...3 · 2 · 1

k(k − 1)(k − 2)...3 · 2 · 1(n− 1)!

=
n(n− 1)(n− 2)...(k + 1)

(n− k)!
=

P n
n−k

n− k

=

(
n

n− k

)
.
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Example 10.13 In how many ways can three committees, each of
which consists of five people, be elected from twenty-five people, so
that no person is on more than one committee?

Solution: The number of ways to elect the first committee:(
25

5

)
=

25!

5!(25− 5)!
=

25!

5!20!
.

If five people are elected, twenty people remain, and from them the
second committee consisting of five people is elected as follows:(

20

5

)
=

20!

5!15!
.

As for the third committee, it will be elected as follows:(
15

5

)
=

15!

5!10!
.

Thus, the number of electing three committees are:

(
25

5

)(
20

5

)(
15

5

)
=

25!

5!20!
· 20!

5!15!
· 15!

5!10!
=

25!

(5!)310!
= 2473653742560.

Or, the committees can be elected in 2 trillions, 473 billions, 653
millions, 742 thousands, and 560 ways.

Example 10.14 In how many ways can a set of children’s toy balls be
chosen that contains eight balls from among thirty red balls and ten
black balls, so that the set formed contains:

(i) Only three red balls.

(ii) At least on five red balls and two black balls.

Solution:

(i) The number of ways to choose three red balls from thirty is
(
30
3

)
.

The number of ways to choose five black balls from ten is
(
10
5

)
.

Thus, the number of ways to chosen the balls is:(
30

3

)(
10

5

)
=

30!

3!(30− 3)!
· 10!

5!(10− 5)!
.
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(ii) The chosen set balls contains of five red balls and three black
balls, or contained of six red balls and two black balls is:

(a) In the first case:
(
10
3

)(
30
5

)
= 10!

3!7!
· 30!
5!25!

.

(b) In the second case:
(
10
2

)(
30
6

)
= 10!

2!8!
· 30!
6!24!

.

Thus, the number of possible ways are:(
10

3

)(
30

5

)
+

(
10

2

)(
30

6

)
=

10!

3!7!
· 30!

5!25!
+

10!

2!8!
· 30!

6!24!
.

Example 10.15 It is intended to form four committees of twelve
people, such that the first committee includes seven people, the second
includes five people, the third includes three people, and the fourth
includes three people. What are the number of ways in which these
committees can be selected?

Solution: Assume that X is the set of twelve people such that;
X = {X1, X2, X3, X4}, where Xi, i = 1, 2, 3, 4 contains of 7, 5, 3, 3

people respectively. thus, the number of ways to form the committees
are: (

12

7, 5, 3, 3

)
=

12!

7!5!3!31
= 22.

10.2.5 Basic properties of combinations

(i) The relationship between combinations and
permutations is direct relationship:(
n
k

)
= n!

k!(n−k)!
= Pk

n

k!
,∀k ≤ n.

(ii) Identity: Symmetry of Combinations:
(
n
k

)
=
(

n
n−k

)
,∀k ≤ n.

(iii) Recursive Relationship in Combinations:
(
n−1
k

)
+
(
n−1
k−1

)
=(

n
k

)
, 0 < k < n.

(iv) Identity: Summation of Combinations:
∑n

k=0

(
n
k

)
= 2n.
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(v) Identity: Alternating Sum of Combinations:∑n
k=0(−1)k

(
n
k

)
= 0.

(vi)
(
n
0

)
=
(
n
n

)
= 1.

10.2.6 Difference between combination and permutations

In general terms, where combination means selection, permutation
means arrangement. Let us check out some of the general points of
differences between combination and permutation, as shown in Table
10.1.

Table 10.1: Difference between combination and permutations
(i) Combination Permutation
(1) It is a way of selecting

items from a large group
of available objects, where
the order of selection is not
considered.

Permutation refers to the
different ways of arranging
objects, in a sequential
order.

(2) Order in combination is
irrelevant.

Order in permutation is
relevant.

(3) It does not signify the
arrangement of objects.

It signifies the arrangement
of objects.

(4) From a single permutation
we can derive a single
combination.

From a single combination
we can derive multiple
permutations.

(5) These can be considered as
unordered set.

These are the ordered
elements.

10.3 Binomial theorem

The binomial theorem in its special cases was known since at least
the 4th century BC when Greek mathematician Euclid mentioned
the special case of the binomial theorem for exponent n = 2, 3
(Coolidge, 1949; Martzloff, 2007). In 6th century AD, the Indian
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mathematicians probably knew how to express this as a combinations,
and a clear statement of this rule can be found in the 12th century text
Lilavati by Bhaskara (Biggs, 1979).

Binomial theorem had been known in its formulation for the
first time, and its table in a book by Al-Karaji, as quoted in the
book named Al-Buhair published by Al-Samawal(Yadegari, 1980; Katz,
1998a; Rashed, 2013). Al-Karaji described the triangular pattern of the
binomial coefficients, and provided a mathematical proof of both the
binomial theorem and Pascal’s triangle, using a form of mathematical
induction (O’Connor and Robertson, 1999).

Many researchers and scientists left traces in formulating and
developing the binomial theory (Coolidge, 1949; Landau, 2007;
Martzloff, 2007; Kline, 1990; Katz, 1998b; Bourbaki, 2008; Stillwell and
Stillwell, 1989) until it was formulated in its current form, as we discuss,
state, and prove in the following theorem.

Theorem 10.6 (Binomial theorem) If a, b ∈ R, and n ∈ N then:

n∑
k=0

(
n

k

)
an−kbk

= an + nan−1b+
n(n− 1)

2!
an−2b2

+
n(n− 1)(n− 2)...(n− k + 1)

n!
an−kbk + ...+ bn

=
n∑

k=0

(
n

k

)
akbn−k.

Proof We will prove the theorem using mathematical induction.
(1) If n = 1 then:
(a+ b)1 =

(
1
0

)
a1b0 +

(
1
1

)
a0b1 = a+ b.

(2) Assume that the statement is true for n = l. Thus:
(a+ b)l =

∑l
k=0

(
l
k

)
al−kbk.
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(3) Multiplying both sides by (a+ b), we get:

(a+ b)l(a+ b) =
l∑

k=0

(
l

k

)
al−kbk(a+ b)

(a+ b)l+1 = (a+ b)
l∑

k=0

(
l

k

)
al−kbk

Now, by adding the similar terms on the right side, we get:

(a+ b)l+1 = (a+ b)
l∑

k=0

(
l

k

)
al−kbk

= al+1 +

((
l + 1

1

)
alb

)
+

((
l

2

)
+

(
l

1

))
al−1b2

+ ...+

((
l

k

)
+

(
l

k − 1

))
al+1−kbk + ...+ bl+1

∵

(
l

1

)
+ 1 =

(
l + 1

1

)
,

(
l

k

)
+

(
l

k − 1

)
=

(
l + 1

k

)
∴ (a+ b)l+1 = al+1 +

(
l + 1

1

)
alb+

(
l + 1

2

)
al+1−2b2

+ ...+

(
l + 1

k

)
al+1−kbk + bl+1

=
l+1∑
k=0

(
l + 1

k

)
al+1−kbk

Since the statement is true for l+1 hence it is true for all n. Thus, the
theorem has been proved. ♦

The binomial theorem can be generalized such that n is any number
in the following theorem (Bell, 1986; Clarke, 1966; Spiegel et al., 2009;
Anderson et al., 1983; Weltner et al., 2014; Knuth, 2014; Knuth, 2005).

Theorem 10.7 (General Binomial Theorem) If a, b ∈ R, and for
any n then:

(a+ b)n = [a(1 + b
a
)]n = an(1 + b

n
)n.



Permutations and Combinations 267

Proof

By putting x =
b

a

∴ (1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3

+ ...+
n(n− 1)(n− 2)...(n− k + 1)

k!
xk + ...

The above expansion is correct in the following cases:
(i) n ∈ Z+, ∀x,
(ii) |x| < 1,∀n,

(iii) n > −1, x = 1,
(iv) n > 0, x = −1.

The condition |x| < 1remains that the term:

n(n− 1)(n− 2)...(n− k + 1)

k!
xk approaches zero whenever k big enough.

Now, let us start the proof.

Let f(x) = (1 + x)n = a0 + a1x+ a2x
2 + ...+ akx

k...+∞ (1)

f(0) = 1

Differentiating (1) with respect to x on both sides, we get:

f ′(x) = n(1 + x)n−1 = a1 + 2a2x+ 3a3x
2 + 4a3....+ kakx

k−1 + ...(2)

Put x = 0,we get a1 = n

Differentiating (2) with respect to x on both sides, we get:

n(n− 1)(1 + x)n−2 = 2a2 + 6a3x+ 12a4x
2 + ...+ k(k − 1)akx

k−2 + ...(3)

Put x = 0,we get a2 =
n(n− 1)

2!
Differentiating (3) with respect to x on both sides, we get:

n(n− 1)(n− 2)(1 + x)n−3

= 6a3 + 24a4x+ ...+ k(k − 1)(k − 2)akx
k−3 + ...

Put x = 0,we get a3 =
n(n− 1)(n− 2)

3!
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By the same method, we get:

a4 =
n(n− 1)(n− 2)(n− 3)

4!
, and so on

∴ ak =
n(n− 1)(n− 2)...(n− k + 1)

k!
.

Putting the values of a0, a1, a2, ...ak obtained in (1), we get:

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + ...

+
n(n− 1)(n− 2)...(n− k + 1)

k!
xk + ... ♦

Example 10.16 Evaluate
(−2

7

)
.

Solution:

∵

(
n

k

)
=

n!

(n− k)!
= n(n− 1)(n− 2)...(n− k + 1)

∴

(
−2
7

)
=

(−2)(−3)...(−8)
7!

=
(−8)7!

7!
= −8.

Note: If n ∈ Z+ then
(−n

k

)
= (−1)k

(
n+k−1

k

)
.

Example 10.17 Work out (1 + x)−3.
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Solution: We have to know what
(−3

k

)
gives, for various of k?

∵

(
−3
k

)
= (−1)k

(
3 + k − 1

k

)
= (−1)k

(
k + 2

k

)
= (−1)k (k + 2)(k + 1)

2

=


(−1)0 · 2 · 1

2
= 1, if k = 0

(−1)1 · 3 · 2
2
= −3, if k = 1

(−1)2 · 4 · 3
2
= 6, if k = 2

In general, we conclude that:

(1 + x)−3 = 1− 3x+ 6x2 − ...+ (−1)k (k + 2)(k + 1)

2
xn + ...

Example 10.18 Write down the first four terms of the binomial
expansion of 1

1+x
.

Solution:

∵ (1 + x)n = 1n + n1n−1x1 +
n(n− 1)

2!
1n−2x2

+
n(n− 1)(n− 2)

3!
1n−3x3 + ...+

n(n− 1)(n− 2)...(n− k)
k!

1n−kxk + ...

= 1 + x+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3

+ ...+
n(n− 1)(n− 2)...(n− k)

k!
xk + ...

Since n /∈ Z+ , hence this is an infinite series, valid when |x| < 1

By rewriting
1

1 + x
= (1 + x)−1 and this is an expression of the term;

(1 + x)n, with n = −1

∴ (1 + x)−1 = 1 + (−1)x+ (−1)(−2)
2!

x2 +
(−1)(−2)(−3)

3!
x3 + ...

= 1− x+ x2 − x3 + ..., which is an infinite series, valid when |x| < 1

Thus, the first four terms of the expansion are: 1− x+ x2 − x3.
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Example 10.19 In the binomial expansion of (1+bx)−5, the coefficient
of x is −15. Find the value of the constant b, and the coefficient of x2.

Solution:

Since n ∈ R , hence we have the expansion:

(1 + bx)n = 1 + n(bx) +
n(n− 1)

2!
(bx)2 +

n(n− 1)(n− 2)

3!
(bx)3

+ ...+
n(n− 1)(n− 2)...(n− k)

k!
(bx)k + ...

Since n /∈ Z+, hence this is an infinite series valid

, when |bx| < 1, or |x| < 1

|b|
.

∵ (1 + bx)−5 = 1 + (−5)(bx) + (−5)(−6)
2!

(bx)2 + ...

∴ −5b = −15,
∴ b = 3.

To find the coefficient of x2

, we can substitute the value of b back into the expansion to get:

+
(−5)(−6)

2!
(3x)2 + ... = +135x2 + ...

Thus, the coefficient of x2 is 135, and b = 3.

Example 10.20 Write down the first four terms of the binomial
expansion of 1

(4+3x)2
, stating the range of the values of x for which

the expansion is valid.



Permutations and Combinations 271

Solution:

Since n ∈ R , hence we have the expansion:

(a+ bx)n = [a(1 +
b

a
x)]n = an((1 +

b

a
x)n

= an[1 + n(
b

a
x) +

n(n− 1)

2!
(
b

a
x)2 +

n(n− 1)(n− 2)

3!
(
b

a
x)3 + ...]

Since n /∈ Z+, hence this is an infinite series valid

, when

∣∣∣∣ bax
∣∣∣∣ < 1, or |x| <

∣∣∣a
b

∣∣∣ .
∵

1

(4 + 3x)2
= 4−2(1 +

3

4
x)−2 =

1

16
(1 +

3

4
x)−2

∴ (1 +
3

4
x)−2 = 1 + (−2)(3

4
x) +

(−2)(−3)
2!

(
3

4
x)2

+
(−2)(−3)(−4)

3!
(
3

4
x)3 + ...

= 1− 3

2
x+ 3(

3

4
)2x2 − 4(

3

4
)3x3 + ...

= 1− 3

2
x+

27

16
x2 − 27

16
x3 + ...

Thus, the first four terms of the binomial expansion of

1

(4 + 3x)2
are:

1

16
[1− 3

2
x+

27

16
x2 − 27

16
x3 + ...]

=
1

16
− 3

32
x+

27

256
x2 − 27

256
x3 + ...

The expansion is valid for

∣∣∣∣34x
∣∣∣∣ < 1, or,− 4

3
< x <

4

3
.

Example 10.21 What is the coefficient x4y5 in (xy)9?
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Solution:

The general form of term is

(
9

k

)
x9−kyk

Putting k = 5 we find that the coefficient of x4y5 is:(
9

5

)
= 126

Example 10.22 Prove that:(
n
0

)
+
(
n
1

)
+
(
n
2

)
+ ...+

(
n
n

)
= 2n.

Solution:

∵ (a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Assume that a = b = 1 we get that:

2n = (1 + 1)n

=
n∑

k=0

(
n

k

)
1n−k1k

=
n∑

k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ ...+

(
n

n

)
.

Example 10.23 Evaluate
√
5 by using binomial expansion.

Solution:

∵ 5 = 4 + 1,

∴
√
5 =
√
4 + 1

= 2(1 +
1

4
)
1
2

= 2[1 + (
1

2
)(
1

4
) +

(1
2
)(−1

2
)

2!
(
1

4
)2 +

(1
2
)(−1

2
)(−3

4
)

3!
(
1

4
)3 + ...]

= 2(1 + 0.125− 0.0078125 + 0.00048828 + ...)

= 2(1.11767578 + ...)

∴
√
5 ≈ 2.23535156.
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10.4 Multinomial theorem

The multinomial theorem describes how to expand a power of a sum in
terms of powers of the terms in that sum. It is the generalization of the
binomial theorem from binomials to multinomials (Goodman, 2001).
The Multinomial Theorem provides a formula to expand a power of a
sum of any number of terms. It tells us how to express the power of
a sum as a sum of products of the terms, where each product has a
specific coefficient (Merris, 2003).

Definition 10.6 The multinomial theorem provides an easy way to
expand the power of a sum of variables. As multinomial is just another
word for polynomial, this could also be called the polynomial theorem
(Spiegel, 1968; Knuth, 2014).

Theorem 10.8 (Multinomial theorem) For a positive integer k,
and nonnegative integer n, the multinomial form given by;

(x1 + x2 + ... + xk)
n =

∑
b1+b2+...+bk=n

(
n

b1,b2,...,bk

)∏k
j=1 x

bj
j , where(

n
b1,b2,...,bk

)
gives as

(
n

b1,b2,...,bk

)
= n!

b1!b2!...bk!
.

Proof We are going to prove this theorem by mathematical induction
in k.
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(i)
If k = 1

∴ L.H.S. = (x1 + x2 + ...+ xn)
n

= (x1)
n

= xn1 ...(1).

Similarily,∑
b1+b2+...+bk=n

(b1, b2, ..., bk)
k∏

j=1

x
bj
j

Thus, we see, b1 = n

∴ R.H.S. =
∑
b1=n

(
n

b1

) 1∏
j=1

x
bj
j

=
∑
n

(
n

n

)
xb11

=
n!

n!
(x1)

b1

= xn1 ...(2)

From (1)&(2) L.H.S. = R.H.S.

Thus, the theorem is true for k = 1.

(ii) Assume that the multinomial theorem is true for K = m, where
m is a positive integer. Thus, we have:

(x1 + x2 + ...+ xm)
n =

∑
b1+b2+...+bm=n

(
n

b1, b2, ..., bm

) m∏
j=1

x
bj
j .

(iii) Now, we have to prove the validity of the theorem in case of
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k = m+ 1.

We have, L. H. S. = (x1 + x2 + ...+ xm + xm+1)
n

Now, let us assume that xm + xm+1 is a single term,

∵ bm + bm+1 is a single term too.

Let us assume bm + bm+1 =M.

Thereby, the number of terms is

m+ 1− 1 = m

Thus, we can write the multinomial theorem as

(x1 + x2 + ...+ xm−1 + (xm + xm+1))
n

=
∑

b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

)

=
m−1∏
j=1

x
bj
j=1 · (xm + xm+1)

M

Let us write the expansion of (xm + xm+1)
M

by using the binomial theorem:

(xm + xm+1)
M

=
∑

m+M−bm=M

(
M

bm,M − bm

)
xbmm xm+1M − bm

∵ bm + bm+1 =M,

∴ bm+1 =M − bm
∴ (xm + xm+1)

M

=
∑

bm+bm+1=M

(
M

bm, bm+1

)
xbmm xm+1bm+1

Now, substitute this value in the expansion, then we get:

(x1 + x2 + ...+ xm−1 + (xm + xm+1))
n
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=
∑

b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

)

·
m−1∏
j=1

x
bj
j · (xm + xm+1)

M

=
∑

b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

)

·
m−1∏
j=1

x
bj
j ·

∑
bm+bm+1=M

(
M

bm, bm+1

)
xbmm x

bm+1

m+1

∴ (x1 + x2 + ...+ xm−1 + (xm + xm+1))
n

=
∑

b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

) ∑
bm+bm+1

=M

(
M

bm, bm+1

)
·
n−1∏
j=1

x
bj
j x

bm
m x

bm+1

m+1

Now, we will find the value of:∑
b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

)
·
∑

bm+bm+1

=M

(
M

bm, bm+1

)
by expanding both these sigmas.∑

b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

) ∑
bm+bm+1=M

(
M

bm, bm+1

)
=

∑
b1+b2+...+bm−1+M=n

n!

b1!b2!...bm−1!M !
·

∑
bm+bm+1=M

M !

bm!bm+1!

=
∑

b1+b2+...+bm+bm+1=n

n!

b1!b2!...bm−1!M !
· M !

bm!bm+1!

=
∑

b1+b2+...+bm+bm+1=n

n!

b1!b2!...bm!bm+1!
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=
∑

b1+b2+...+bm+bm+1=n

(
n

b1, b2, ..., bm, bm+1

)
Now, we can write as:
m−1∏
j=1

x
bj
j x

bm
m x

bm+1

m+1 = xb11 · xb22 · ...x
bm−1

m−1 · xbmm · x
bm+1

m+1

=
m+1∏
j=1

x
bj
j

Now, substituting all the values in the expansion, we get:

(x1 + x2 + ...+ xm−1 + (xm + xm+1))
n

=
∑

b1+b2+...+bm−1+M=n

(
n

b1, b2, ..., bm−1,M

) ∑
bm+bm+1=M

(
M

bm, bm+1

)

·
m−1∏
j=1

x
bj
j x

bm
m x

bm+1

m+1

∴ (x1 + x2 + ...+ xm + xm+1)
n

=
∑

b1+b2+...+bm+bm+1=n

(
n

b1, b2, ..., bm, bm+1

)
·
m+1∏
j=1

x
bj
j

Now, if we substitute k = m+ 1

in R. H S. of the multinomial theorem, then;

R. H. S. =
∑

b1+b2+...+bk=n

(
n

b1, b2, ..., bk

) k∏
j=1

x
bj
j

=
∑

b1+b2+...+bm+bm+1=n

(
n

b1, b2, ..., bm, bm+1

)m+1∏
j=1

x
bj
j

∴ L. H. S. = R. H. S.

Thereby, the theorem is true for all k = m+ 1

Thus, the multinomial theorem is true for all natural number k.

Hence, the theorem is proved based on (i), (ii), and (iii). ♦

Example 10.24 Find expansion of (x+ y + z + w)4.
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Solution:

(x+ y + z + w)4 =
∑

b1+b2+b3+b4=4

(
4

b1, b2, b3, b4

) 4∏
j=1

x
bj
j

The values of bj shown in Table 10.2 respectively,j = 1, 2, 3, 4.

Table 10.2: Values of bj ; j = 1, 2, 3, 4

b1 b2 b3 b4
1 1 1 1
0 0 0 2
0 0 3 0
3 0 0 1
2 1 0 1
2 0 0 2
1 2 0 1
1 0 1 2
0 1 0 3
0 2 0 2
0 1 2 1

(x+ y + z + w)4 =

(
4

1, 1, 1, 1

)
xyzw +

(
4

0, 0, 0, 2

)
w2

+

(
4

0, 0, 3, 0

)
z3 +

(
4

3, 0, 0, 1

)
x3w +

(
4

2, 1, 0, 1

)
x2yw3

+

(
4

2, 0, 0, 2

)
x2w2 +

(
4

1, 2, 0, 1

)
xy2w +

(
4

1, 0, 1, 2

)
xzw2

+

(
4

0, 1, 0, 3

)
yw3 +

(
4

0, 2, 0, 2

)
y2w2 +

(
4

0, 1, 2, 1

)
yz2w

∴ (x+ y + z + w)4 = 24xyzw + 12w2 + 4z3 + 4x3w

+ 12x2yw + 6x2zw2 + 12xy2w + 6xzw2 + 4yw3 + 6y2w2 + 12yz2w.

Example 10.25 What is a coefficient of x2y3z in the expansion (x +
y + l + z)6?
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Solution:

∵ n = 6, b1 = 2, b2 = 3, b3 = 0, b4 = 1

∴ the coefficient of

(
6

2, 3, 0, 1

)
=

6!

2!3!0!1!
= 60.

Example 10.26 Find the total terms in the expansion of (x1 + x2 +
x3 + x4)

5.
Solution:

∵ n = 5, k = 4,

∴ The total terms is Cn+k−1
k−1 = C5+4−1

4−1 = C7
3

∴ C7
3 =

8!

3!5!
= 56.

Hence, the number of terms of the given expansion is 56

Example 10.27 Find the coefficient of x2y3z4w in the expansion of
(x− y − z + w)10.

Solution:

∵ (x− y − z + w)10

=
∑

b1+b2+b3+b4=10

(
10

b1, b2, b3, b4

)
(x)b1(−y)b2(−z)b3(w)b4 ,

∵ b1 = 2, b2 = 3, b3 = 4, b4 = 1,

∴ the coefficient of x2y3z4w in the expansion of (x− y − z + w)10 is

10!

2!3!4!1!
(−1)3(−1)4 = −12600.

Example 10.28 Determine the coefficient of x5 in the expansion (2−
x+ 3x2)6.
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Solution:

The general term in the expansion of:

(2− x+ 3x2)6 =
6!

r!s!t!
2r(−x)s(3x2)t; r + s+ t = 6

=
6!

r!s!t!
2r(−1)s(3)txs+2t

For the coefficient of x5,we must have:

s+ 2t = 5, but, we have r + s+ t = 6

∴ (s+ 2t = 5) ∧ (r + s+ t = 6); 0 ≤ r, s, t ≤ 6.

Now, if:

t = 0⇒ r = 1, s = 5,
t = 1⇒ r = 2, s = 3,
t = 2⇒ r = 3, s = 1.

Thus, the three containing x5 and coefficient of:

x5 =
6!

1!5!0!
21(−1)530 + 6!

2!3!1!
22(−1)331 + 6!

3!1!2!
21(−1)132

= −5052
Thus, the coefficient of x5 of expansion (2− x− 3x2)6 is − 5052.

Example 10.29 Find the coefficient of x2y3 in the expansion (1+x+
y)10.

Solution:

Given the expansion is (1 + x+ y)10.

∴ (1 + x+ y)10 =
∑

p+q+r=10

n!

p!q!r!
(1)p(x)q(y)r

For the coefficient of x2y3 = 15x2y3.

∴ p = 5, q = 2, r = 3.

Thus, the coefficient of: x2y3

=
10!

5!2!3!
= 2520.
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10.5 Harmonic series

Definition 10.7 For all n ∈ Z+, then
∑∞

n=1
1
n

is called harmonic
series, and denoted by Hn (Rice, 2011; Kullman, 2001; Bernoulli, 1689;
Bernoulli and Bernoulli, 1713).

10.5.1 Properties of harmonic series

In this subsection we review some properties of harmonic series. Let us
consider the harmonic series:

Hn = 1 +
1

2
+

1

3
+ ...+

1

n

=
n∑

k=1

1

k

characterized by the following main properties:

(i) Hn → ∞ whenever n → ∞ (Kifowit and Stamps, 2006; Rice,
2011).

(ii) For the harmonic seriesH2m ≥ 1+m
2
,m > 0 (Kifowit and Stamps,

2006; Roy, 2007). Knuth1

(iii) For the harmonic series:

H2m+1 = H2m +
1

2m+1
+

1

2m+1
+ ...+

1

2m+1

> H2m +
1

2m+1
+

1

2m+1
+ ...+

1

2m+1

= H2m +
1

2

Or, whenever adding one to m, then the right hand side will be
increasing at least by half (Bressoud, 2022; Kifowit and Stamps,
2006; Knuth, 2005).
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(iv) Approximate value of the harmonic series: The Approximation
value of Hn given as follows;

Hn = ln(n) + γ +
1

2n
− ϵn

where γ ≃ 0.5772 is the Euler–Mascheroni constant, and

0 ≤ ϵn ≤
1

8n2
which approaches zero as n goes to infinity.

(Bressoud, 2022; Boas Jr and Wrench Jr, 1971). That is, the
harmonic series has the nature and properties of a logarithm
(Cormen et al., 2022).

(v) The harmonic series can be generalized as follows (Selin, 2013;
Smith and Mikami, 1914; Kitagawa, 2022; Lovelace, 1842):

H(x)
n = 1 +

1

2x
+

1

3x
+ ...+

1

nx

Assume that 1 < x ∈ R,
∴
∣∣H(x)

n

∣∣ < M,where M is a fixed amount.

Thus the amount is known:

H(x)
n =

1

2
|Bx|

(2π)x

x!
= ζ(x) Zeta function

,where, Bx are Bernoulli numbers, and x ∈ Ze.

If x = 2, then H(2)
n =

π2

6
.

If x = 4, then H(4)
n =

π4

90
.

10.5.2 Summation by fragmentation

Suppose we want to gathering a certain amount in the form of
∑

k akbb.
In such case, we appeal to the method of fragmenting. This method
is useful when the terms

∑
k ak,

∑
k(bk+1− bk) are in their simple form

(Rudin et al., 1964; Browder, 2012; Malik and Arora, 1992). Or;∑
1≤k<n

(ak+1 − ak)bk = anbn − a1b1 −
∑

1≤k<n

ak+1(bk+1 − bk).
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10.6 Exercises

Solve the following questions:
Q1: In how many different ways can five people sit on five chairs?
Q2: In how many ways can the positions of department head,

secretary and accountant be filled in the board of directors consisting
of seven people?

Q3: How many four-digit numbers can be formed from the numbers
2, 3, 4, 5, 6?

Q4: How many three-digit numbers can be formed from the
numbers 1, 2, , 4, 5, 6, 7, 8, 9, Provided that repetition is not permitted?

Q5: How many five-digit numbers starting with odd can be formed
from the numbers 1, 2, 3, 4, 5, 6?

Q6: Evaluate the following permutations:

(i) P 6
0 .

(ii) P 9
2 .

(iii) P n
2 , 2 < n ∈ N.

Q7: How many arrangements can be made of four types of flowers,
each consisting of two flowers?

Q8: What is the relationship between P n
r , P

n
n−r?

Q9: Prove that the following relationships:

(i)
(
n
r

)
+
(

n
r−1

)
=
(
n+1
r

)
.

(ii)
(
n
0

)
−
(
n
1

)
+
(
n
2

)
−
(
n
3

)
...+ (−1)n

(
n
n

)
= 0.

(iii)
∑n

i=1

(
n
i

)
=
(
n+1
i+1

)
−
(

1
i+1

)
.

(iv)
∑

k≤n

(
r
k

)
(−1)k

(−r+n
n

)
= (−1)n

(
r−1
n

)
.

(v)
(
n
m

)
= (−1)n−m

(−(m+1)
n−m

)
.

(vi) r
(
r−1
k

)
= (r − k)

(
r
k

)
, k ∈ N.
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Q10: Find the values of a0, a1, a2, ... in the;
n! = a0 + a1n+ a2n(n− 1) + a3n(n− 1)(n− 2) + ...,∀n ∈ Z+.
Q11: Find the value of n in the following equalities:

(i)
(

n
n−2

)
= 10.

(ii)
(
n
15

)
=
(
n
11

)
.

Q12: How many different words, regardless of their meanings, can be
formed from the word “Dilan” ? by taking it;

(i) one at a time,

(ii) three of time.

Q13: There is a social event attended by 15 men and 20 women.
They want to seat 7 of the attendees at a table to the right of which
there are 4 chairs and to the left of it are 3 chairs.

(i) If only women are seated on the right and only men on the left,
in how many ways can the attendees sit?

(ii) If a certain woman sits in the first chair on the right, and if a
certain man sits in the first chair on the left, in how many ways
can the attendees sit?

Q14: John owns three types of pens, and Kennedy owns nine types
of pens. Find the number of ways in which John and Kennedy can
permuting pens with each other, provided that each of them keeps the
original number of pens that they had with them.

Q15: Find the number of ways in which selecting seven balls,
provided three balls red from a box including six red balls, and five
white balls.

Q16: Evaluate (28)1
3
+ (1.01)1

5
+ (1.01)1

2
.

Q17: Find the coefficient of x3y4 in the following expansions:

(i) (x+ 2y)7.

(ii) (x3 + y2)3.

(iii) (x− y4)4.
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Q18: Find the expansion of:

(i) (x− y + 2z)5.

(ii) (1 + x+ y + z)3.

Q19: Find the coefficient of x2y3z4 in the expansion (x− y − z)4.
Q20: Prove that mn =

∑
n1+n2+...+nm

(
n

n1,n2,...,nm

)
.

Q21: Prove that the number of terms of the expansion
(a1 + a2 + ...+ am)

n is
(
n+m−1

n

)
= (n+m−1)!

n!(n−m)!
.

Q22: A patient’s weight decreased from 80kg to 60kg within 25
days, and if the weight after t of days is W (t) = 160(7

8
)

t
25 . Find

W (1),W (2), and W (10).
Q23: Prove the following equalities:

(i) (x+ y)r =
∑

k

(
r
k

)
x(x− kz)k−1(y + kz)r−k, r ∈ Z+.

(ii) H2m ≤ 1 +m.

(iii)
∣∣∣H(r)

n

∣∣∣ < M,∀n.

(iv)
∑

1≤k≤nHk = (n+ 1)Hn − n.

Q24: Consider the finite geometric series:

S(x) = 1 + x+ x2 + x3 + ...+ xn

can be evaluated by using (1− x)S(x). Prove that:

(i) S(x) = 1−xn+1

1−x
, x ̸= 1.

(ii) S(1) = n+ 1.

Q25: Express of the summation:

1 +
1

3
+

1

5
+ ...+

1

2n+ 1
in terms of harmonic numbers.

Q26: If Beta function defined as follows:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y ∈ R+

Prove that:
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(i) β(k, 1) = β(1, k) = 1
k
.

(ii)
∑

k β(k, 1) = Hk.

(iii) β(x+ 1, y) + β(x, y + 1) = β(x, y).

(iv) β(x, y) = Γ(x)Γ(y)
Γ(x+y)

, where Γ(x) =
∫∞
0
e−yyx−1dy, x > 0

(v) β(1
2
, 1
2
) = π.



Bibliography

Abramowitz, M. and Stegun, I. A. (1948). Handbook of mathematical
functions with formulas, graphs, and mathematical tables. Vol. 55.
US Government printing office.

Abramowitz, M., Stegun, I. A. and Romer, R. H. (1988). ‘Handbook of
mathematical functions with formulas, graphs, and mathematical
tables’.

Adams, R. A. and Essex, C. (2018). Calculus: a complete course.
Pearson.

Ahlfors, L. V. (1979). Complex analysis.

Aigner, M. and Ziegler, G. M. (1999). Proofs from the book. Berlin.
Germany. 1: 2.

Akritas, A. G., Strzebonski, A. W. and Vigklas, P. S. (2008). Improving
the performance of the continued fractions method using new
bounds of positive roots. Nonlinear Analysis: Modelling and
Control. 13(3): 265–279.

Aliabadi, M. and Darafsheh, M. (2015). On maximal and minimal linear
matching property. arXiv preprint arXiv:1508.00937. .



288 BIBLIOGRAPHY

Alston, S. (1959). Householder. dandelin, lobatchevskii or graeffe.
American Mathematical Monthly. .

Anderson, J. C. et al. (1983). Data and formulae: for engineering
students. Pergamon Press.

Anderson, R. B. (1979). Proving programs correct. Wiley.

Andreescu, T. and Andrica, D. (2006). Complex Numbers from A to...
Z. Springer.

Andrilli, S. and Hecker, D. (2022). Elementary linear algebra. Academic
Press.

Anton, H. (1987). Elementary linear algebra 9th edition.. . .

Anton, H. and Rorres, C. (2013). Elementary linear algebra:
applications version. John Wiley & Sons.

Apostol, T. (1981). Mathematical analysis. Addison-Wesley.

Apostol, T. M. (1967). One-variable calculus, with an introduction to
linear algebra. (No Title). .

Apostol, T. M. (1974). ‘Mathematical analysis addison’.

Apostol, T. M. and Ablow, C. M. (1958). Mathematical analysis.
Physics Today. 11(7): 32.

Arfken, G. (1985). ‘Mathematical methods for physicists. 3rd edn
academic press’.

Arruda, M. A. Z. (2007). Trends in sample preparation. Nova
Publishers.

Atiyah, M. (2018). Introduction to commutative algebra. CRC Press.

Atkinson, K. (1991). An introduction to numerical analysis. John wiley
& sons.

Avriel, M. (1976). Nonlinear programming: Analysis and methods.
printice-hall. Inc, Englewood Cliffs, New Jersey. .



BIBLIOGRAPHY 289

Axelsson, O. (2007). Solution of linear systems of equations: iterative
methods. In Sparse Matrix Techniques: Copenhagen 1976
Advanced Course Held at the Technical University of Denmark
Copenhagen, August 9–12, 1976. Springer. 1–51.

Axler, S. (2010). College Algebra. Wiley Global Education.

Axler, S. (2015). Linear algebra done right. Springer.

Ayres, J. F. (1962). Theory and problems of matrices. McGraw-Hill.

Bak, J., Newman, D. J. and Newman, D. J. (2010). Complex analysis.
Vol. 8. Springer.

Baker, R. J. (2019). CMOS: circuit design, layout, and simulation. John
Wiley & Sons.

Balfour, A. and Beveridge, W. (1972). Basic Numerical Analysis with
Algol. Heinemann Educational Publishers.

Ballantine, J. P. (1959). Complex roots of real polynomials. The
American Mathematical Monthly. 66(5): 411–414.

Barbeau, E. J. (2003). Polynomials. Springer Science & Business Media.

Barnett, R. A., Ziegler, M. R., Byleen, K. E. and Stocker, C. J.
(2019). Finite mathematics for business, economics, life sciences,
and social sciences. Pearson.

Basu, S. (2021). Strictly real fundamental theorem of algebra using
polynomial interlacing. Bulletin of the Australian Mathematical
Society. 104(2): 249–255.

Bather, J. A. (1994). Mathematical induction. . .

Beachy, J. A. and Blair, W. D. (2006). Abstract algebra , waveland pr.
Inc. .

Beals, R. and Wong, R. (2010). Special functions: a graduate text. Vol.
126. Cambridge University Press.



290 BIBLIOGRAPHY

Beauregard, R. A. and Fraleigh, J. B. (1973). A first course in linear
algebra: with optional introduction to groups, rings, and fields.
Houghton Mifflin.

Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics.
258–277.

Bell, E. T. (1986). Men of mathematics. Simon and Schuster.

Bellman, R. (1997). Introduction to matrix analysis. SIAM.

Bender, N., Yamilov, A., Yılmaz, H. and Cao, H. (2020). Fluctuations
and correlations of transmission eigenchannels in diffusive media.
Physical Review Letters. 125(16): 165901.

Berggren, J. L., Berggren, J. L. et al. (1986). Episodes in the
mathematics of medieval Islam. Vol. 2003. Springer.

Bernoulli, J. (1689). Propositiones arithmeticae de seriebus infinitis
earumque summa finita [arithmetical propositions about infinite
series and their finite sums]. basel. J. Conrad. .

Bernoulli, J. and Bernoulli, J. (1713). Ars conjectandi: opus
posthumum: accedit Tractatus de seriebus infinitis; et Epistola
gallice scripta de ludo pilae reticularis. Impensis Thurnisiorum.

Besenyei, A. (2012). A brief history of the mean value theorem. Talk
slides. 12.

Bessis, D., Itzykson, C. and Zuber, J. B. (1980). Quantum field
theory techniques in graphical enumeration. Advances in Applied
Mathematics. 1(2): 109–157.

Best, G. C. (1949). Notes on the graeffe method of root squaring. The
American Mathematical Monthly. 56(2): 91–94.
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Brézin, É., Kazakov, V., Serban, D., Wiegmann, P. and Zabrodin,
A. (2006). Applications of random matrices in physics. Vol. 221.
Springer Science & Business Media.

Britannica, E. et al. (1993). ‘Encyclopædia britannica’.

Britton, J. R. and Snively, L. C. (1954). Algebra. Holt Reinhart and
Winston.

Browder, A. (2012). Mathematical analysis: an introduction. Springer
Science & Business Media.

Brown, J. W. and Churchill, R. V. (2009). Complex variables and
applications eighth edition. McGraw-Hill Book Company.

Brown, W. (1991). Matrices and Vector SPates. Vol. 145. CRC Press.

Brualdi, R. A. (2004). Introductory combinatorics. Pearson Education
India.

Bruce, M. and Shernock, E. (2002). ‘Stage based population projection
matrices and their biological applications’.

Burden, R. L. and Faires, J. D. (1985). ‘Numerical analysis, 2.1 the
bisection algorithm’.

Cajori, F. (1911). Horner’s method of approximation anticipated by
ruffini. . .

Calinger, R., Brown, J. E. and West, T. R. (1999). A contextual history
of mathematics: To euler. (No Title). .

Callegaro, L. (2012). Electrical impedance: principles, measurement,
and applications. CRC Press.

Callier, F. M. and Desoer, C. A. (2012). Linear system theory. Springer
Science & Business Media.

Candido, G. (1941). Le risoluzioni della equazione di quarto grado
(ferrari-eulero-lagrange). Period. Mat. 21(4): 88–106.



BIBLIOGRAPHY 293

Cardano, G. (2002). The book of my life. New York Review of Books.

Cardano, G. and Witmer, T. R. (1993). Ars magna, or, the rules of
algebra. (No Title). .

Caswell, H. (2000). Matrix population models. Vol. 1. Sinauer
Sunderland, MA.

Cauchy, A. L. B. (1828). Exercices de mathématiques. Vol. 3. De Bure
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theorem, 255-256, 260-261
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sequence, 66
series, 285
transformations, 226
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theory, 115
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partials, 40
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Independent, 119, 166
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Induction, 6
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one, 75
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Intrivial solution, 201
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equation, 248
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matrix, 217, 228
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217-218
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of A, 166, 177-178, 180, 182, 184
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of Q, 248
transformation, 168
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J
Jacobi, 244-245

eigenvalue algorithm, 244
eigenvalue method, 244
method, 245

Jacobian, 146, 182
determinant, 146
method, 182

Jacques, 132
Jordan normal form, 227

L
Linear, 80, 88, 105, 115-19, 122, 132-

133, 145, 152, 190, 197-198,
204, 208-209, 213, 215, 217-
218, 221-222, 225, 228, 236,
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equation(s), 115-119, 145, 190,
197-198, 204, 209, 217-218,
221, 225

expression, 80
function, 105
mapping, 122
maps, 132, 145
order, 152, 251
system, 145, 198, 208, 213, 215
term, 88
transformation(s), 145, 221-222,

225, 228
Linearity, 203
Linearly, 139, 228
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dependent, 139
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independent, 139, 228

Lower, 4, 57, 60-61, 63, 125, 183-184,
187, 215-216, 234, 236

bound, 4, 60-61, 63
degree, 187
diagonal matrix, 234
index, 57
matrix powers, 236
triangle, 184
triangular matrix, 125, 183-184,

215-216
List of numerical-analysis software,

227

M
Markov chains, 226
Mathematical, 1, 3-4, 6, 8-9, 27, 39,

51, 53, 165, 198, 200, 202,
235-236, 249, 273

formulation of linear system, 198
induction, 1, 3-4, 6, 8-9, 27, 39,

200, 202, 235-236, 273
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Matrices, 115-116, 120-122, 126, 128-
135, 137-138, 140, 143, 146-
147, 150, 155, 157, 165-166,
169-172, 174-177, 180, 182-
183, 188-190, 196, 198, 203,
217, 228-229, 242, 247

form, 198
of order 2, 147
of order 3, 147
over the ring R 172
partition, 134

Matrix, 115, 120- 129, 131-138, 140,
143, 145-150, 152, 155-157,
159, 161, 163, 165-167, 169-
180, 182-187, 189-190, 192,
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219, 221-222, 225-248

A, 165, 170-173, 177-178, 180,
182-184, 189, 199, 201-204,
215, 221-222, 225, 229, 232,
235, 237-244, 246, 248

Ann, 177, 180, 182, 222, 248
B, 171, 177, 201-202
Bnn, 177
I, 177
L, 215
M , 199
P , 172, 242
p(A), 228
Q, 172, 241, 245
R, 184
U , 215
addition, 132
conjugate, 127
equation, 177, 203, 221
form, 128, 133, 156, 212

inverse method, 177
inverse, 166, 177, 217, 219
multiplication, 132-133, 136, 177
of coefficients, 166, 198
of cofactors, 178
of degree, 152, 174, 176, 185
of order, 124-125, 146-147
of size, 150
of third order or higher, 150
partition, 215-216
powers, 228
products, 133, 137
resulting, 171

Molecular orbitals, 227

N
Non, 44, 83-84, 122, 123, 144, 146,

173-175, 177, 190-193, 197,
200, 202-204, 209, 221, 226-
227, 229, 240, 244-245, 248,
250, 253, 273

diagonal elements, 123, 244-245
empty sets, 250
linear eigenproblem, 227
linear, 83-84
negative integer n, 273
positive n, 253
singular equations, 197
singular matrix, 248
singular square matrix, 146
singular, 177, 190-193
square matrix, 122
trivial solution, 200, 202, 226
zero coefficients, 84
zero constant, 123
zero eigenvector, 240
zero number, 44
zero rows, 173-174
zero vector, 221
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eigenvalue, 227
form of a matrix, 172
form, 172, 174, 180, 182, 227
modes, 116

Numerical, 51, 53, 83, 86, 88, 92, 97,
103, 197, 227-228, 244

analysis software, 227
analysis, 53
linear algebra, 197, 244
methods for finding approximate

of the roots of equations, 92
methods, 83, 92, 97
solution of a system of linear

equations, 197
solution of nonlinear equations,

83
systems, 51
value, 86, 88, 103

Numerically, 97

O
Odd, 72, 110, 112, 283

degree polynomial function, 72
terms, 110, 112

Operation(s), 4, 14, 52, 53, 70, 87-88,
116, 120, 130-138, 156, 170,
172-173, 177, 182, 209, 214,
218-219, 236

on the computer, 218
of transformation, 170
on complex numbers, 14, 219
on matrices, 130

Ordered, 18-19, 138, 152, 251, 264
element, 264
pair(s), 18-19
set, 138, 152, 251

P

Partial, 40, 134, 215
matrices, 134
pivoting, 204

Partition, 134-135, 185, 215-216, 243,
255, 261

method, 185, 215-216
Partitioned, 135

matrix, 135
Partitioning, 135, 215

the columns, 135
the rows, 135

Permutation, 150, 152, 162, 249-254,
256-257, 261, 264, 283

i, 152
of n objects, 257
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of a set, 152, 251
of string, 251
refers to the different ways, 264
refers to the process, 152
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253-254, 257
of n elements, 254
of S, 152
of letters, 251
of the numbers, 251

Polar, 22-24, 28-29, 46-47
form of a complex number, 22-23
form(s), 22, 24, 28-29, 46
solution, 47
system, 24

Polarity, 49
Polarly, 46
Polynomial, 12, 53-55, 57-61, 63-64,

67-69, 72, 79-82, 85-89, 91-
92, 103, 107, 109-110, 114,
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P (x), 89
pA, 236
concept, 53
equation of degree n in

eigenvalue, 225
equation(s), 53-54, 57-60, 63-64,

79, 82, 85-87, 92, 107, 110,
226

expression, 236
factors, 57
for A, 236
functions, 53, 72
in x, 57
in degree, 89
in the nth degree, 63
in variable x, 228
in λ, 236
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of a matrix, 145, 229
of a single variable, 53
of a square matrix, 236
of degree n, 88, 229
of degree zero, 59
of degree, 58, 85
rings, 53
roots, 63
theorem, 273
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Polynomials, 51, 53-57, 68-70, 72, 84-
88, 90, 113, 228, 236

f, f1, 68-69

f, f1, . . . , fr−1, 69
in λ, 236
of matrix, 228

primarily, 218
Principal(s), 5-6, 123, 226

component analysis, 226
diagonal, 123
of mathematical induction, 6

Purely, 19, 75
imaginary number, 19
imaginary, 75

Q
Quadratic, 72, 74, 81, 227

eigenvalue problem, 227
equation(s), 72, 74, 81

Quantum states, 116, 227

R
Rank, 173-176, 185, 248

of a matrix, 173
of the product, 176

Real, 10-15, 18-19, 22, 28, 31, 40, 42,
44, 51-52, 55, 59-61, 63, 72,
75-76, 78, 84-85, 92, 97, 110,
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coefficients, 61
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examples, 242
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functions, 97
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135, 138, 156-157, 159, 170-
174, 177, 182, 190, 203, 209,
211, 214, 218

of A, 126, 203
of AT , 126

S
Schrödinger equation, 226
Secant, 103-106, 114

lines, 103

method, 103-106, 114
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form, 282
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Appendix A

Proof of the Fundamental Theorem of Algebra
Before proceeding to the proof, we need the following axiom to help

us with the proof.
Axiom: In the following p(z) will denote nth degree polynomial

p(z) = p0+p1z+p2z
2+...pnz

n, where the coefficients pi are any complex
numbers with neither p0 nor pn equal to zero (otherwise the polynomial
equivalent to one of lesser degree). We will utilize a fundamental
completeness property of real and complex numbers, namely that a
continuous function on a closed set achieves its minimum at some point
in the domain. This can be taken as an axiom, or can be easily proved
by applying other well-known completeness axioms, such as the Cauchy
sequence axiom or the nested interval axiom (Körner, 2004).



Proof Suppose that p(z) has no roots in the complex plane. First note

that for large z, say |z| > 2 max
i

∣∣∣ pipn ∣∣∣, the zn term of p(z) is greater

in absolute value than the sum of all the other terms. This gives some
B > 0, then for any sufficiently large δ, we have |f(z)| > B,∀z with
|z| ≥ δ. We will take B = 2 |p(0)| = 2 |p0|. Since |p(z)| s continuous on
the interior and boundary of the circle with radius δ, it follows by the
completeness axiom mentioned above that |p(z)| achieves its minimum
value at some point t in this circle (possibly on the boundary). But
since |p(0)| < 1

2
.p(z),∀z on the circumference of the circle, it follows

that |p(z)| achieves its minimum at some point t in the interior of the
circle.

Now rewrite the polynomial p(z), translating the argument z by t,
thus producing a new polynomial:

q(z) = p(0z + t) = q0 + q1z + q2z
2 + qnz

n, and similarly translate
the circle described above. Presumably the polynomial q(z), defined
on some circle centered at the origin (which circle is contained within
the circle above), has a minimum absolute value M > 0 at z = 0. Note
that M = |p(0)| = |q0| .

Our proof strategy is to construct some point x, close to the origin,
such that |q(x)| < |q(0)|, thus contradicting the presumption that |q(z)|
has a minimum nonzero value at z = 0. If our method gives us merely
a direction in the complex plane for which the function value decreases
in magnitude (a descent direction), then by moving a small distance in
that direction, we hope to achieve our goal of constructing a complex
x such that |q(x)| < |q(0)|. This is the strategy we will pursue.



Construction of x such that |q(x)| < |q(0)|:
Let the first nonzero coefficient of q(z), following q0, be qm, so that
q(z) = q0 + qmz

m + qm+1z
m+1 + ...+ qnz

n.

We will choose x to be the complex number x = r(−q0
qm

)
1
m , where r

is a small positive real value we will specify below, and where (−q0
qm

)
1
m

denotes any of the mth roots of (−q0
qm

).
Comment:As an aside, note that unlike the real numbers, in the

complex number system the mth roots of a real or complex number are
always guaranteed to exist: if z = z1 + iz2, with z1 and z2 real, then
the mth roots of z are given explicitly by{

R
1
2 cos(ϕ+2kπ

m
) + iR

1
2 sin(ϕ+2kπ

m
), k = 0, 1,m− 1, ..., n

}
, where R =√

z21 + z22 , ϕ = arctan( z2
z1
). The guaranteed existence of mth roots,

a feature of the complex number system, is the key fact behind the
fundamental theorem of algebra.

Proof that |q(x)| < |q(0)| : With the definition of x given above,
we can write

q(x) = q0 − q0rm + qm+1r
m+1(−q0

qm
)
m+1
m + ...+ qnr

n(−q0
qm

)
n
m

= q0 − q0rm + E,
where the extra terms E can be bounded as follows. Assume that

q0 ≤ qm (a very similar expression is obtained for |E| in the case q0 ≥
qm), and define δ = (

∣∣∣ q0qm ∣∣∣) 1
m . Then, by applying the well-known formula

for the sum of a geometric series, we can write

|E| ≤ rm+1max
i
|qi|
∣∣∣ q0qm ∣∣∣m+1

m
(1 + δ + δ2 + ... + δn−m−1) ≤

rm+1max
i

|qi|

1−δ

∣∣∣ q0qm ∣∣∣m+1
m

.

Thus |E| can be made arbitrarily smaller than |q0rm| = |q0| rm by
choosing r small enough. For instance, select r so that |E| <

∣∣ q0rm
2

∣∣.
Then for such an r, we have

|q(x)| = |q0 − q0rm + E| <
∣∣∣q0 − qmr

2

∣∣∣ = |q0| (1− rm

2
) < |q0| = |q(0)|,

which contradicts the original assumption that |q(z)| has a minimum
nonzero value at z = 0. ♦



Appendix B

Proof of Taylor’s Theorem
Some reflection on the proof(s) of Taylor’s theorem. In the

beginning, we recall the mathematical form of the theorem:
Taylor’s theorem: Suppose f : (a, b) → R is a function on

(a, b), where a, b ∈ R with a < b. Assume that for some positive
integer n, f is n-times differentiable on the open interval (a, b), and
that f, f

′
, f

′′
, ..., f (n−1) all extended continuously to the closed interval

[a, b](the extended functions will still be called f, f
′
, f

′′
, ..., f (n−1)

respectively ). Then, there exists c ∈ (a, b) such that

f(b) =
n−1∑
k=0

fk(a)

k!
(b− a)k + fn(a)

n!
(b− a)n

It should be noted that, when n = 1, this reduces to the ordinary
mean value theorem. This suggests that we may modify the proof of
the mean value theorem, to give a proof of Taylor’s theorem (Besenyei,
2012).

The proof of the mean value theorem comes in two parts:



(i) By subtracting a linear polynomial (degree one), we we reduce
the case where f(a) = f(b) = 0.

(ii) The special case where f(a) = f(b) = 0 from Rolle’s theorem.

In the proof of the therm, we follow the strategy to generalization
of Roll’s therm by state the following proposition.

Proposition: Suppose f : (a, b) → R is a function on (a, b),
where a, b ∈ R with a < b. Assume that for some positive integer
n, F is n-times differentiable on the open interval (a, b), and that
F, F

′
, F

′′
, ..., F (n−1) all extended continuously to the closed interval

[a, b](the extended functions will still be called F, F
′
, F

′′
, ..., F (n−1)

respectively ). In addition

F (a) = F
′
(a) = ... = F (n−1) = 0, F (b) = 0

then there exists c ∈ (a, b) such that,

F (n)(c) = 0

Proof The proof of this proposition follows readily from an n- fold
application of Rolle’s theorem:

Since F (a) = F (b) = 0, by Rolle’s theorem applied to F on [a, b],
there exists c1 ∈ (a, b) such that

F
′
(c1) = 0.

Next, since F
′
(a) = F

′
(c1) = 0, by Roll’s theorem applied to F on

[a, c1], there exists c2 ∈ (a, c1) such that

F
′
(c2) = 0.

Repeat, then we get c1, ..., cn such that

a < cn < cn−1 < ... < c1 < b,

with

F (k)(ck) = 0, ∀k = 1, 2, ..., n



By, setting c = cn, we have c ∈ (a, b), and

F (n)(c) = 0. ♦

Proof Here we can prove this theorem in two different ways, and
we call the first method the first proof, while we call the second the
alternative proof.

First proof of Taylor’s Theorem .
We apply the proposition to prove the theorem. The key is to

construct a degree n polynomial, that allows us to reduce the case
in Proposition. The fact that such polynomial exists follows by a
dimension counting argument in linear algebra. But we will need
the explicit expression of the polynomial. So let us construct the
polynomial explicitly:

Let, f be as in Taylor’s theorem. Let

P (x) =
n∑

k=0

ak(x− a)k.

This is convenient from of expressing a polynomial of degree k, since
we will need to compute higher order derivatives of this polynomial at
the point a. We will find coefficients a0, a1, ..., an, such that F (x) :=
f(x) − P (x) satisfies the conditions of the Proposition. Indeed, for
k = 0, 1, ..., n− 1, we have

F (k)(a) = f (k)(a)− k!ak,

so in order for F (a) = F
′
(a) = ... = F (n−1)(a) = 0, it suffices to set

ak =
f (k)

k!
,∀k = 0, 1, ..., n− 1.

It remains then to determine an. But this is determined by the
equation F (b) = 0. Indeed



F (b) = f(b)−
n∑

k=0

ak(b− a)k

= f(b)−
n−1∑
k

f (k)(a)

k!
(b− a)k − an(b− a)n,

Setting F (b) = 0, we get

an =
1

(b− a)n

(
f(b)−

n−1∑
k=0

f (k)(a)

k!
(b− a)k

)
.

Now, we have found a polynomial P such that F (x) := f(x)−P (x)
satisfies the conditions of the Proposition. Hence there exists c ∈ (a, b)
such that F (n)(c) = 0. But

F (n)(c) = f (n)(c)− P (n)(c)

= f (n)(c)− n!an

= f (n)(c)− n!

(b− a)n
n−1∑
k

f (k)(a)

k!
(b− a)k

Since F (n)(c) = 0, it follows that

0 = f (n)(c)− n!

(b− a)n

(
f(b)−

n−1∑
k

f (k)(a)

k!
(b− a)k

)
It means

f(b) =
n−1∑
k

f (k)(a)

k!
(b− a)k + f (n)(c)

n!
(b− a)n. ♦



Second proof of Taylor’s Theorem: The alternative proof
Let f be as in Taylor’s theorem, and

F (x) = f(x)−
n−1∑
k=0

f (k)(a)

k!
(x− a)k.

Also,

G(x) = (x− a)n.
Then both F and G vanishes to order (n−1) at a, in the sense that

F, F
′
, ..., F (n−1) and G,G

′
, ..., G(n−1) are extends continuously to [a, b],

and the extends functions satisfy

F (a) = F ′(a) = ... = F (n−1)(a) = 0

G(a) = G′(a) = ... = G(n−1)(a) = 0

Note also that G
′′
, G

′′′
, ..., G(n) all never vanishes on (a, b). Hence we

may apply Cauchy’s mean value theorem (Lozada-Cruz, 2020) n times,
the first time we obtain

F (b)

G(b)
=
F

′
(b)− F ′

(a)

G′(b)−G′(a)
=
F

′
(c1)

G′(c1)

for some c1 ∈ (a, b).
Next, we can repeat this argument, on the interval [a, c1] instead of

[a, b], we then obtain

F
′
(c1)

G′(c1)
=
F

′
(c1)− F

′
(a)

G′(c1)−G′(a)
=
F

′′
(c1)

G′′(c1)

for some c2 ∈ (a, c1).
Repeating this procedure, we obtain c1, c2, ..., cn such that

a < cn < cn−1 < ... < c1 < b

with

F (b)

G(b)
=
F

′
(c1)

G′(c1)
=
F

′′
(c2)

G′′(c2)
= ... =

F (n)(cn)

G(n)(cn)



Setting c = cn, we have c ∈ (a, b), and

F (b)

G(b)
=
F (n)(c)

G(n)(c)

This is equivalent to saying that

f(b)−
∑n−1

k=0
f (k)(a)

k!
(b− a)k

(b− a)n
=
f (n)(c)

n!

Now, rearranging the term yields

f(b) =
n−1∑
k=0

f (k)(a)

k!
(b− a)k + f (n)(c)

n!
(b− a)n. ♦
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