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Extended Abstract 

1 Einleitung 

Der Mensch nutzt seit rund 5000 Jahren das Metall Eisen. Aber erst im 18. Jahrhundert stoßen 

Wissenschaftler in kurzer Folge auf eine ganze Reihe zuvor unbekannter Metalle. Im Jahr 

1751 entdeckte z.B. der schwedische Wissenschaftler Axel Cronstedt das Element Nickel. 

1778 folgte sein Landsmann Karl Wilhelm Scheele mit dem Element Molybdän. 1797 fand 

der Franzose Nicola-Louis Vauquelin ein neues Metall, das er Chrom nannte. Im 19. Jahrhun-

dert experimentierten mehrere Metallurgen erfolgreich mit Eisen-Chrom Legierungen. Zwar 

zeigt sich, dass sie besonderes rostbeständig sind, allerdings waren die Gründe hierfür noch 

nicht bekannt. 

1912 wurde den beiden Deutschen Edward Maurer und Beno Strauß ein Patent auf austeneti-

sche Chrom-Nickel-Stähle erteilt. Noch heute machen die austenitischen Sorten rund 65% der 

Weltproduktion an rostfreiem Stahl aus. 1913 wurde in England erstmals martensitischer rost-

freier Stahl hergestellt. Der Entdecker dieser Neuerung war Harry Brearley. Ungefähr zur 

selben Zeit, nämlich 1915, entwickelten die US-Amerikaner Becket und Dantsaizen ferriti-

sche rostfreie Stähle. Auf sie entfallen 30% der weltweiten Erzeugung. Bis 1920, also in we-

niger als einem Jahrzehnt, bildete sich auf diese Weise der hauptsächliche Anwendungsgebie-

te.   

1930 entwickelten schwedische Metallurgen Stahlsorten, die sowohl ein ferritisches als auch 

ein austenitisches Gefüge in einer Legierung vereinen, und bezeichneten diese als rostfreie 

Duplexstähle. Duplexstähle revolutionierten zunächst die Zellstoff- und Papierindustrie durch 

die Verfügbarkeit beständiger Bauteile. Heute bewähren sie sich in einer ganzen Reihe von 

Anwendungen, z.B. in der petrochemischen Industrie oder bei der Meerwasser-Entsalzung, 

also dort wo sowohl eine besondere Korrosionsbeständigkeit als auch eine hohe Festigkeit 

erforderlich sind. 

Seit 1990 findet eine zweite Generation von rostfreien Duplexstähle immer mehr breiteren 

Einsatz als Alternative zu den konventionellen rostfreien Stählen. Die Gründe hierfür sind: 

1. Geringere Preise durch einen geringeren Anteil an Nickel, 

2. Höhere Zugfestigkeit und 
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3. Deutlich höhere Korrosionsbeständigkeit gegen durch Chlorid induzierte Spannungs-

korrosion als dies bei austenitischen rostfreien Stählen der Fall ist. 

Andererseits sind die rostfreien Duplexstähle normalerweise schwerer zerspanbar als austeni-

tische Sorten mit einer vergleichbaren Korrosionsbeständigkeit. Die Gründe sind: große Zä-

higkeit, niedrige Wärmeleitfähigkeit, hohe Streckgrenzwerte (ca. zweimal höher als austeniti-

sche rostfreie Stähle), spezielle Mikrostruktur (weiches Ferrit neben hartem Austenit), gerin-

ger Schwefel- und Phosphorgehalt, starke Tendenz zu Bildung von Aufbauschneiden und eine 

hohe Kaltverfestigungsrate.  

Aufgrund der hohen Zähigkeit bilden sich oftmals beim Zerspanen lange Band- oder Wirr-

späne aus, die sich um das Werkstück oder den Werkzeughalter wickeln können. Die Proble-

matik verschärfte sich besonders bei Schlichtoperationen mit geringen Vorschüben und 

Schnitttiefen. In der automatisierten Fertigung verringert dies die Produktivität aufgrund von 

Maschinenstillstandszeiten sowie geringer Prozesssicherheit in erheblichem Maße. 

2 Forschungsmethodik  

Vor dem Hintergrund der Komplexität von Zerspanungsuntersuchungen, der Grenzen der 

Theorie spanender Prozesse und analytischer Modelle, der Schwierigkeiten bei der Modellie-

rung und Optimierung von Parametern des Zerspanungsprozesses und der Notwendigkeit von 

zusätzlichen Kenntnissen über die Zerspanung von duktilen und kaltverfestigten Materialien, 

wird in der vorliegenden Dissertation die Zerspanung von rostfreien Duplexstählen am Bei-

spiel des Drehens systematisch untersucht. Neuentwickelte Modellierungs- und Optimie-

rungsverfahren werden systematisch verwendet, um die Zerspanbarkeit rostfreier Duplexstäh-

le präziser abbilden zu können. Das abschließende Ziel der vorliegenden Arbeit ist es, dem 

Prozessplaner ein Hilfsmittel an die Hand zu geben, mit dem er, unter Berücksichtigung meh-

rerer und sich häufig widersprechender Leistungsmerkmale, die optimalen Prozessparameter 

für die Drehbearbeitung von Duplexstählen finden kann. Auf Ein- und Ausgangkenngrößen 

basierende Modellierungs- sowie Optimierungsverfahren, multikriterielle Entscheidungsstra-

tegien (MKES) und Finite-Elemente-Simulationen wurden hier intensiv angewandt. Solche 

MKES, die mit der Fuzzy-Set-Theorie in Verbindung stehen, werden ebenfalls vorgeschlagen, 

um damit eine Mehrzieloptimierung durchzuführen und für unterschiedliche Schnittbedin-

gungen angepasste Maßnahmen zu erhalten. Ein weiteres Hilfsmittel stellt die Hybridisierung 
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rechnerischer Modellierungs- sowie Optimierungsverfahren dar. Diese werden im Rahmen 

der Ansätze zur Zerspanungsoptimierung effektiv angewendet.  

2.1    Hypothesen 

Ausgehend von der Frage, wie die Verwendung von neu entwickelten Modellierungs- und 

Optimierungsverfahren für eine effektive Ableitung von optimierten Zerspanungslösungen 

ermöglicht werden kann, werden systematische Untersuchungen unter Einsatz von neuentwi-

ckelten Modellierungs- und Optimierungsverfahren durchgeführt. Zunächst sollen jedoch die 

folgenden Hypothesen vorgestellt werden: 

1. Statistische Regression und metaheuristische Optimierungsverfahren können zu einer 

Reihe von nicht dominanten Zerspanungslösungen führen. 

2. Fuzzylogik ist vorteilhaft zur Beseitigung der Diskrepanz in der Rangordnung von Alter-

nativen unter dem Einsatz von MKES. 

3. Das Taguchi-MKES-metaheuristisches Konzept kann praktischerweise für Mono- und 

Mehrzieloptimierungen verwendet werden. 

4. Merkmale der Oberflächenqualität können effizient optimiert werden, wenn MKES mit 

der Fuzzy-Set-Theorie gekoppelt werden. 

5. Die Multipass-Zerspanung kann nachhaltig optimiert werden, wenn eine systematische 

Hybridisierung des Modells der Ein- und Ausgangkenngrößen sowie der Optimierung und 

der MKES durchgeführt wird. 

6. Es ist ausreichend, die JMatPro Software, MKES und Modelle sowie Optimierungsansät-

ze für Ein- und Ausgangkenngrößen zur Rückwärtsidentifikation von FEM-

Eingangskenngrößen zu benutzen. 

2.2    Gliederung der Dissertation 

Angesichts der breit angelegten Aufgabenstellung ist die Dissertation in 10 Kapitel gegliedert. 

In Kapitel 1 wird eine kurze Einführung in das Hauptthema gegeben und die bei den For-

schungsarbeiten verfolgte wissenschaftliche Methodik behandelt. In Kapitel 2 wird der Stand 

der Technik zu den Themenbereichen Modellierung und Optimierung von Zerspanprozessen 

dargestellt. Zudem wird ein Überblick über die Vor- und Nachteile der Verfahren und der 

abgeleiteten Modellierungs- und Optimierungsansätze gegeben. Im Kapitel 3 werden der ver-

wendete Versuchsaufbau sowie die Details der experimentellen Untersuchungen beschrieben. 
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Kapitel 4 befasst sich mit experimentellen Untersuchungen zum Längsdrehen von rostfreien 

Duplexstählen mit beschichteten Wendeschneidplatten. In Kapitel 5 wird die Beseitigung von 

Diskrepanzen bei der MKES-Rangordnung durch die Ableitung eines allgemeinen Eigen-

schafts-Zeiger-Index behandelt. In Kapitel 6 wird die Anwendung eines neuen Taguchi-

VIKOR- metaheuristischen Konzepts als angemessener Ansatz für die Mono- und Mehrzielo-

ptimierung der Bearbeitung von rostfreien Duplexstählen aufgeführt. In Kapitel 7 wird die 

Taguchi-Methode in Verbindung mit der Fuzzy-MKES für die Optimierung von Merkmalen 

der Oberflächengüte angewandt. In Kapitel 8 wird ein systematischer Ansatz vorgelegt, der 

unterschiedliche Modellierungs- und Optimierungsverfahren integriert, um die Multipass-

Zerspanung von rostfreien Duplexstählen nachhaltig zu optimieren. Kapitel 9 befasst sich mit 

der Rückwärtsidentifikation der FEM-Eingangskenngrößen und der Anwendung der Finite-

Elemente-Simulationen, um damit eine hypothetische Optimierungsstudie durchzuführen. In 

Kapitel 10 werden die Forschungsfragen, welche der vorliegenden Arbeit zugrunde lagen, 

beantwortet und abschließenden besprochen.  

2.3    Die Vorgehensweisen 

2.3.1 Die Fledermaus-Mehrzieloptimierung 

Im Zusammenhang mit der Haupthypothese stellt sich die erste Forschungsfrage wie folgt: 

Kann durch die Anwendung der statistischen Regression und des Metaheuristischen Optimie-

rungsverfahren in Mehrzieloptimierungen eine Reihe von nichtdominierten Zerspanungslö-

sungen effektiv gewonnen werden? Um diese Frage angemessen zu beantworten, wird eine 

experimentelle Untersuchung des Längsdrehens von rostfreien Duplexstählen EN 1.4462 und 

EN 1.4410 mit beschichteten Wendelschneidplatten durchgeführt. Mit Hilfe des Fledermaus-

Mehrziel-Algorithmus (MOBA) werden Bewertungskriterien wie beispielsweise die Zerspan-

kraftkomponenten und die maximale Verschleißmarkenbreite optimiert und die Pareto Gren-

zen der nicht dominierten Optimierungslösungen ermittelt. Die parametrischen Einflüsse von 

Größen wie Schnittgeschwindigkeit, Vorschub und Kühlmedium auf die Bewertungskriterien 

werden mit Hilfe von dreidimensionalen Diagrammen dargestellt. 

Erste Ergebnisse zeigen, dass die Werte von nicht nutzbringenden Bewertungskriterien bei 

der Zerspanung des Werkstoffs EN 1.4410 im Allgemeinen höher liegen, als beim Werkstoff 

EN 1.4462. Zudem zeigt die Nasszerspanung im Vergleich zur Trockenzerspanung eine Ver-

besserung der Gesamtbearbeitungsleistung durch geringere Zerspankraftkomponenten und die 
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Steigerung der Werkzeugstandzeit. Drittens wird nach der Regressionsanalyse ein MOBA zur 

Modellierung eingesetzt. Ergebnisse zeigen, dass der MOBA sehr effizient und sehr zuverläs-

sig ist. Er führt effizient zu vielen optimalen Lösungen. Abhängig vom Entscheidungsträger-

vorzug wird die optimale Schnittbedingung identifiziert.    

2.3.2  Der allgemeine Eigenschaftenzeiger 

Die zweite Forschungsfrage lautet: Ist die Anwendung von Fuzzylogik vorteilhaft zur Besei-

tigung von Widersprüchlichkeiten in der Rangordnung beim Einsatz von MKES? Als bei-

spielhafter Zerspanungsprozess wird hierzu das Plandrehen bei konstanter Schnittgeschwin-

digkeit herangezogen. Das Plandrehen zeichnet sich im Vergleich zum Außenlängsdrehen 

durch eine bessere Wirtschaftlichkeit, höhere Oberflächengüte und kürzere Hauptzeit aus. 

Leistungsmerkmale wie Spanraumzahl, resultierende Schnittkraft, spezifische Schnittkraft 

und Netto-Spindelleistung sollen gleichzeitig optimiert werden.  

Unter den vielen maßgeblichen Leistungsmerkmalen ist die Spanraumzahl eine der wichtigs-

ten. Die Spanraumzahl gibt Auskunft über die Sperrigkeit der Späne. Sie wird aus dem Ver-

hältnis von Spänevolumen zu Spanungsvolumen gebildet. Allerdings ist die messtechnische 

Erfassung des Spänevolumens in der Praxis nicht einfach. Um dieses zumindest hinreichend 

abschätzen zu können, wird deshalb eine neue Methode vorgeschlagen. Zunächst werden qua-

litative Informationen über die Späne in einer Spanbruchtabelle dargestellt. Anschließend 

werden die Späne gemäß den bekannten Standardspanformen klassifiziert. Dann kommt die 

Fuzzylogik zum Einsatz, wobei Regeln formuliert werden, um die qualitativen Informationen 

zu fuzzifizieren. Abschließend werden die fuzzifizierten Daten im Fuzzy-Inferenz-System zu 

quantitativen Daten defuzzifiziert und zur Vorhersage der Spanrauzahl genutzt. 

Die unterschiedlichen Leistungsmerkmale werden zudem mit Hilfe von MKES wie TOPSIS, 

VIKOR, GRA und UA in einem einzelnen MKES-Index zusammengeführt. Basierend auf 

einer unterschiedlichen MKES-Präferenz und der Tatsache, dass keine MKES als optimales 

Verfahren anzusehen ist, wird schließlich die Mamdani-Fuzzy-Begründung genutzt, um den 

Widerspruch zwischen den MKES aufzulösen und einen allgemeinen Index abzuleiten. Dieser 

Index wird als allgemeiner Eigenschaftenzeiger (UCI) bezeichnet. Der optimierte UCI wird 

anhand der Ergebnisse von zwei weiteren Optimierungsverfahren validiert.  

Bei diesen Verfahren handelt es sich um: 

1. Die Methode der gewichteten Summen ergänzt durch eine simulierte Abkühlung und 
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2. Statistische Regression ergänzt durch eine simulierte Abkühlung. 

Die Ergebnisse zeigen, dass mit diesem Ansatz die aus anderen anderen Optimierungsverfah-

ren resultierende, durchschnittliche Verbesserung der Leistungsmerkmale übertroffen werden 

kann. Im Allgemeinen sind durchschnittliche Verbesserungen zwischen 10% und 40% mög-

lich.  

Aus diesen Ergebnissen kann geschlossen werden, dass der neue Ansatz wirkungsvoller ist, 

als die anderen klassischen Ansätze. 

2.3.3 Das Taguchi-VIKOR-metaheuristische Konzept 

Kann das Taguchi-VIKOR-metaheuristische Konzept praktischerweise für Monoziel- und 

Mehrzieloptimierungen der Zerspanung von rostfreien Stählen verwendet werden? Dies ist 

die dritte Frage in der Folge des Erkenntnisgewinns. Zunächst werden hierzu die Schnittbe-

dingungen als Einflussgrößen und das Plandrehen mit konstanter Schnittgeschwindigkeit als 

Zerspanprozess festgelegt. 

Anschließend wurden Zerspanversuche gemäß der Taguchi-Methode durchgeführt. Bei der 

Taguchi-Methode werden im Wesentlichen orthogonale Felder eingesetzt. Orthogonale Felder 

sind Teilfaktorpläne, d.h. es werden nicht alle möglichen Kombinationen von Faktorstufen 

durchgespielt, sondern nur eine genau ausgewählte Teilmenge. Durch diesen Ansatz kann 

man die Zahl der erforderlichen Experimente erheblich reduzieren. Im konkreten Fall müssen 

so anstelle von 125 Experimenten nur 25 Experimente durchgeführt werden. Die Leistungs-

merkmale, die gleichzeitig optimiert werden sollen, sind die Schnittleistung, die resultieren-

den Schnittkräfte, die spezifische Schnittenergie und der arithmetische Mittenrauwert. Die 

Vorgehensweise ist wie folgt: 

Im ersten Schritt werden die Monozieloptimierungen nach der Taguchi Methode durchge-

führt. Die Taguchi-Methode, das sogenannte Robust Design, ist eine Technik, deren Ziel es 

ist, Produkte und Prozesse zu entwickeln, die robust gegen äußere Störeinflüsse sind. Die 

Taguchi-Methode nutzt das Signal-Rausch-Verhältnis. Es ist definiert als das Verhältnis der 

vorhandenen mittleren Signalleistung zur vorhandenen mittleren Rauschleistung. Es wird oft 

im logarithmischen Maßstab dargestellt. Danach werden Mittelwertanalyse und Varianzanaly-

se der Signal-Rausch-Verhältniswerte durchgeführt. Eine Maximierung des Mitten-Signal-

Rausch Verhältnisses minimiert die Verlustkosten und optimiert die Steuerungsgröße. 
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Im zweiten Schritt wird die Mehrzieloptimierung durchgeführt und hierzu die VIKOR-

Methode eingesetzt. VIKOR gehört zu einer Kompromissklassifizierung der MKES. Sie be-

ginnt mit einer Datennormalisierung auf Werte zwischen 0 und 1. Anschließend werden die 

Gewichte der einzelnen Leistungsmerkmale mit Hilfe der Entropiegewichtsmethode berech-

net. Anschließend erfolgt die statistische Kalkulation der Utility, Regret und des VIKOR-

Index und der entsprechenden Rangordnung der Alternativen. Man kann diesen Index auch 

als Schwerzerspanbarkeitsindex bezeichnen. Je kleiner der Wert des VIKOR-Index desto bes-

ser. Es handelt sich um einen Index, der genau darauf hinweist, wo sich der optimale Schnitt-

parameterbereich befindet. 

Der dritte Schritt, um die wirkungsvollsten metaheuristischen Optimierungsverfahren zu er-

mitteln und die exakten Schnittbedingungen zu bestimmen, besteht darin, drei neuentwickelte, 

metaheuristische Algorithmen anzuwenden und ihre Leistung zu verglichen. Die betrachteten 

drei neuentwickelten, metaheuristischen Optimierungsverfahren sind der Glühwürmchen-

Algorithmus, die beschleunigte Partikel-Schwarm-Optimierung und der Kuckuck-

Suchalgorithmus. Diese Algorithmen wurden entsprechend der gegebenen Entscheidungsva-

riablen, Zielfunktionen und Zwänge eingesetzt. Die Ergebnisse zeigten, dass der Kuckuck-

Suchalgorithmus die anderen Optimierungsalgorithmen übertrifft. 

Zusammenfassen wird bewiesen, dass das Taguchi-VIKOR-metaheuristische Konzept prakti-

scherweise für Monoziel- und Mehrzieloptimierung der Zerspanung rostfreier Stähle verwen-

det werden kann. 

2.3.4 Die Optimierung von Merkmalen der Oberflächengüte 

Die vierte Frage befasst sich mit der Optimierung von Merkmalen der Oberflächengüte. Unter 

Zuhilfenahme von MKES und Fuzzy-Set-Theorie werden die Größen zur Bewertung der 

Oberflächengüte namentlich der arithmetische Mittenrauwert, die gemittelte Rautiefe und die 

maximale Rautiefe parallel optimiert. Zu diesem Zweck wird ein neuer Ansatz dargestellt.  

Der Zerspanungsprozess wird wiederum das Plandrehen mit konstanter Schnittgeschwindig-

keit und als Eingangsgrößen die Schnittbedingungen festgelegt. Taguchi-Versuchspläne wer-

den verwendet, um den gesamten Hauptparameterraum mit einer geringen Anzahl von Versu-

chen abarbeiten zu können.  

Die Vorgehensweise, die sogenannte Methodik, gliedert sich in fünf Stufen: die erste Stufe 

erledigt die Vorverarbeitung der Daten. Diese beinhaltet die Versuchsplanung und die Festle-
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gung der Leistungsmerkmale. Im zweiten Schritt werden MKES, wie GTMA und AHP-

TOPSIS benutzt, um einen allgemeinen Index für die Merkmale der Oberflächengüte zu be-

stimmen. Es stellt sich die Frage, warum hier zwei MKES genutzt werden: Es gibt kein 

MKES als globales Verfahren, das für alle Arten von Mehrzieloptimierungsproblemen geeig-

net ist. Aus diesem Grund ist der Entscheidungsablauf immer mit Unsicherheiten behaftet. 

Um dieses Problem zu lösen, wird im zweiten Schritt die Fuzzy-Set-Theorie herangezogen. 

Alle Merkmale der Oberflächengüte müssen in Fuzzy-Trapenznummern überführt werden 

und unter Einhaltung von 10%-Unsicherheit im Entscheidungsablauf konvertieren. Dann wird 

die Methode der Gewichteten Summen zur Ableitung von Kompromisslösungen verwendet 

und die geometrischen Eigenschaften der Trapenznummern werden zur Defuzzifizierung der 

Indizes genutzt. Schließlich werden die defuzzifizierten Zahlen nachbearbeitet. Die Nachbe-

arbeitung befasst sich mit der Anwendung der Mittelwert- und Varianzanalyse sowie der Ve-

rifikation der optimierten Ergebnisse. 

Nach der Anwendung und Verifikation des Ansatzes, wird die erreichte Verbesserung der 

Merkmale der Oberflächengüte ermittelt. Hier zeigt sich, dass Verbesserungen von bis zu 

30% bei der Oberflächengüte möglich sind. Deshalb kann zusammenfasst werden, dass die 

beschriebene Vorgehensweise zielführend ist. 

2.3.5 Die nachhaltige Optimierung der Multipass-Zerspanung 

Im Zusammenhang mit den Hypothesen stellt sich die fünfte Frage: ist es möglich, durch eine 

systematische Hybridisierung des Modells und der Optimierung der Ein- und Ausgangkenn-

größen und durch die MKES die Multipass-Zerspanung nachhaltig zu optimieren? 

Wie bei den zuletzt beschriebenen Vorgehensweisen, wird zunächst die experimentelle Me-

thodik festgelegt. Die Experimente werden am Beispiel des Plandrehens bei konstanter 

Schnittgeschwindigkeit im Mehrschnittverfahren durchgeführt. Bekanntermaßen sind die Zu-

sammenhänge zwischen den Eingang- und Ausganggrößen bei der Zerspanung stark nichtli-

near. Außerdem müssen noch kategorische Faktoren zu den Versuchsplänen und Zer-

spanungsmodellen hinzufügt werden. Dazu werden D-Optimale Versuchspläne als sehr ge-

eignet angesehen. Die D-Optimalen Versuchspläne werden nicht mit einem festen Schema 

generiert, sondern iterativ aufgebaut. Allerdings sind die Vorteile, wie freie Wahl für die Zahl 

der Stufen pro Einflussfaktor, freie Wahl des mathematischen Modells, freie Wahl der Stu-
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fenabstände wesentlich größer, als die Nachteile, wie beispielsweise zu wenig Versuchspunk-

te in der Mitte des Versuchsraumes und die Abhängigkeit von Rechenalgorithmen.  

Die Steuerungsfaktoren sind hier numerisch und kategorisch. Erstmalig werden Leistungs-

merkmale, wie die prozentuale Erhöhung der radialen Schnittkraft, die Spanraumzahl, die 

Wirkleistung und die maximale Verschleißmarkenbreite, in der Zerspanungsoptimierung der 

rostfreien Duplexstähle genutzt.  

Die Vorgehensweise des Studiums vollzieht sich systematisch in drei Phasen. In Phase 1 wer-

den mathematische Modelle für die Leistungsmerkmale mit der Response-Surface-Methode 

(RSM) entwickelt, die Wechselwirkungseffekte zwischen Schnittbedingungen und Leis-

tungsmerkmalen mit Hilfe von dreidimensionalen Diagrammen analysiert und eine parametri-

sche Optimierung der Leistungsmerkmale unter Verwendung des Kuckuck-Suchalgorithmus 

durchführt. In der Phase 2 werden umfassende Modelle zur Kalkulation von Produktionskos-

ten und Produktionsraten entwickelt. Um den Konflikt zwischen dem Wunsch nach minimier-

ten Produktionskosten und maximierter Produktionsrate überwinden zu können, wird TOPSIS 

als Optimierungsansatz vorgeschlagen. Die Betriebsmittel-belegungszeit, die Hauptzeitkosten, 

die Werkzeug- und Werkzeugwechselkosten werden für die Herstellung einer Zahl von 

12.000 Stück optimiert und hieraus die beste Alternativ identifiziert. Ein Ansatz zur Modellie-

rung und Optimierung eines Betriebsnachhaltigkeitsindexes (BNI) wird in der dritten Phase 

der Vorgehensweise präsentiert. Zuerst wird durch die Anwendung der Mamdani-Implikation 

ein neuer Index für die nachhaltige Mehrschnitt-Zerspanung von rostfreien Stählen abgeleitet. 

Durch das BNI kann genau bestimmt werden, wo der Bereich nachhaltiger Zerspanungspara-

meter liegt. Der nächste Schritt beinhaltet die Modellierung und Optimierung. Ein neues Ver-

fahren nutzt ein künstliches neuronales Netz mit integriertem Kuckuck-Suchalgorithmus 

(CSNNS). Das BNI kann gleichzeitig und effizient durch den entwickelten CSNNS modelliert 

und optimiert werden.  

Schließlich kann festgehalten werden, dass die systematische Hybridisierung des Modells und 

der Optimierung der Ein- und Ausgangkenngrößen sowie die MKES Methoden die Zer-

spanung der rostfreien Duplexstähle nachhaltig optimieren können. 

2.3.6 Die Rückwärtsidentifikation der FEM-Eingangskenngrößen 

Die nächste Anwendung der Modellierung und Optimierung behandelt die Rückwärtsidentifi-

kation von FEM-Eingangskenngrößen. Für die Zerspanungssimulation ist es ein wesentlicher 
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Vorteil, Eingangskenngrößen wie die Thermokontakt-Leifähigkeit, den Coulombschen Reib-

koeffizienten, den Schub-Reibkoeffizienten, den Taylor-Quinney-Koeffizienten, die Festig-

keitsabnahme und das Cockcroft-Latham-Schadenskriterium und deren Wechselwirkung mit 

den gegebenen Schnittbedingungen zu kennen. 

Bevor die FEM-Simulation erstellt wird, werden die mechanischen und physikalischen Eigen-

schaften der Werkstoffe als Funktion der Temperatur ermittelt. Zu diesem Zweck wurde 

JMatPro eine Java-basierte Software zur Herleitung von Materialeigenschaften genutzt. Phy-

sikalische Eigenschaften, wie die Wärmleitfähigkeit, der thermische Ausdehnungs-koeffizient 

und die spezifische Wärmekapazität, werden als Funktionen der Temperatur dargestellt. Auch 

wurden die mechanischen Eigenschaften, wie Fließkurven, Elastizitätsmodul und Poissonzahl 

als Funktion der Temperatur ausgedrückt. Aus diesen wichtigen Informationen wird zunächst 

ein Textfile erzeugt, um dieses dann in die Keyword-Datei der aktuellen Simulation kopieren 

zu können. 

Um die Eignung von JMatPro für Bereitstellung von Daten für Zerspanungssimulationen zu 

bewerten, wurde die FE-Simulation unter ähnlichen Eingangsgrößen mit dem Johnson-Cook-

Model verglichen. Die Ergebnisse zeigen, dass die JMatPro-basierte Simulation die Johnson-

Cook Simulation übertrifft, besonders wenn die Späne-Morphologie als Bewertungskriterium 

herangezogen wird. 

Zur Rückwärtsidentifikation von FEM-Eingangskenngrößen wird ein L18-Taguchi-

Versuchsplan verwendet. Nach den experimentellen Untersuchungen und Simulationsrech-

nungen werden für beide Fälle die prozentualen Fehler zwischen Schnittkraft, Temperatur an 

der Werkzeugspitze und Spandicke gerechnet und als Leistungsmerkmale definiert. Dann 

wird die VIKOR-Methode verwendet, um alle prozentualen Fehleranteile zu einem Index zu 

konvertieren. Dieser Index ist eine Funktion der  Eingangsgrößen und wird mit dem neuent-

wickelten FANNS (Firefly Algorithm Neural Network System) optimiert. Am Ende dieser 

Phase werden die Ergebnisse validiert. 

Nach Abschluss der beschriebenen Vorgehensweise, werden die FEM-Eingangskenngrößen 

rückwäsrts identifiziert und die prozentualen Fehleranteile drastisch reduziert. Die Rückwärts-

identifikation wirkt sich mit einer Fehlerminimierung von -60% bis -200% bis auf minimal 

±10% aus. 
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Es kann deshalb gesagt werden, dass die vorgeschlagene Vorgehensweise die Eingangskenn-

größen sehr effektiv identifiziert und die Fehleranteile der FEM-Rechnung zehn bis zwanzig-

fach reduziert. 

2.3.7 Hypothetische FEM-Optimierung 

In der zweiten Phase der FEM-Studie wird eine neue Vorgehensweise zur FEM-basierten 

Optimierung beschrieben. Einflussgrößen wie Spänebrecher, die Form der Wendeschneidplat-

te, das Kühlschmiermedium, die Schnittgrößen und Neigungswinkel werden durch den inten-

siven Einsatz von Taguchi-Optimierungsmethoden und Fuzzylogik optimiert. Die Bewer-

tungskriterien sind in diesem Fall resultierende Schnittkraft, Spannung, Schnitttemperatur und 

Verschleißrate. Eine neue Maßnahme wird von diesen Merkmalen abgeleitet. Es werden 81 

Regeln je Werkstoff formuliert und in das Mamdani-Fuzzy-Inferenz-System integriert. Die 

Ausgabe der Defuzzifizierung wird als numerischer Zerspanungsleistungsindex (NZLI) be-

zeichnet.    

Nach der Durchführung der FEM-Simulationen und Ableitung des NZLI, wird eine Mittel-

wertanalyse des NZLI durchgeführt. Je größer der Wert des NZLI ist, desto besser. Abschlie-

ßend zeigen die Ergebnisse, dass die Vorgehensweise für die weitere Entwicklung und Ver-

besserung des Zerspanungsprozesses verwenden werden kann. 

3 Zusammenfassung 

In der vorliegenden Dissertation wurden Untersuchungen zur Bearbeitung von Duplex-

Edelstählen unter Anwendung unterschiedlicher und systematisch gut strukturierter Modelle 

und Optimierungsmethoden durchgeführt. Das Hauptziel, nämlich die Bereitstellung von  

optimalen Bearbeitungsparametern für Duplex-Edelstähle, wurde unter Verwendung unter-

schiedlicher Methoden verfolgt. Hierzu zählten eine umfassende statistische Versuchsplanung 

zur Durchführung der erforderlichen experimentellen Untersuchungen sowie, als besondere 

Herausforderung, die Integration von insgesamt sechs unterschiedlichen Ansätzen zur Erstel-

lung von Modellen und Optimierungsalgorithmen in einem System. Dies waren zum einen die 

Verwendung der statistischen Regression und des Multi-Objektive Fledermaus-Algorithmus, 

um Sätze von nicht dominierten, optimalen Lösungen beim Zerspanen von zwei unterschied-

lichen Duplex-Stählen (normal EN 1.4462 und super EN 1.4410) zu erhalten. Zweitens war 

dies die Ableitung von Fuzzy-Implikationsregeln zur universellen Indizierung, um zum einen 
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Diskrepanz aus dem Ranking von vier unterschiedlichen attributiven Entscheidungsverfahren 

zu beseitigen und zum anderen die optimalen Schnittbedingungen zum Plandrehen des auste-

nitischen EN 1.4404 und der beiden Werkstoffe Duplex EN 1.4462 und 1.4410 bei konstanter 

Schnittgeschwindigkeit definieren zu können. Drittens wurde ein Taguchi-VIKOR-

metaheuristisches Konzept vorgeschlagen und auf die Mono- und Multi-Objektive-

Optimierung der drei oben genannten Werkstoffe eingesetzt. Viertens wurde ein neuartiges, 

auf der Fuzzy-Set-Theorie beruhendes Konzept angewandt, um die Oberflächengüte von Bau-

teilen aus den genannten Werkstoffen zu optimieren. Fünftens wurde das Plandrehen von 

Duplexstählen bei konstanter Schnittgeschwindigkeit in Wiederholversuchen unter Verwen-

dung von hybridisierten Methoden zur statistischen Berechnung, Modellierung und Optimie-

rung nachhaltig verbessert. Hierzu wurde ein neuer Nachhaltigkeitsindex definiert und einge-

führt sowie ein neuronales Netzwerk basierend auf einer neuartigen Cuckoo-Search-Methode 

für die Modellierung und Optimierung eingesetzt. Abschließend wurden Finite-Elemente-

Simulationen zum Drehen von Duplexstählen durchgeführt und ein neues Verfahren zur in-

versen Identifizierung der Eingangsparameter vorgeschlagen. Optimierungstechniken der Sta-

tistik und Informatik wurden eingesetzt, um die Differenz zwischen experimentell und nume-

risch gewonnenen Ergebnissen zu minimieren. Die Studie hat sich auch mit der hypotheti-

schen Anwendung von Finite-Elemente-Simulationen bei der Identifikation optimaler Bedin-

gungen für das Zerspanen von rostfreien Duplex-Edelstählen befasst. 
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Summary 

The global production of stainless steel nearly doubles every ten years and a high growth rate, 

which has exceeded that of other metals and alloys, indicate the importance of such alloy 

classes. While there is no controversy over the significant contribution of stainless steels to 

the well-being of humanity, there is still a lot of room for research works intended to optimize 

the application of alloys to the manufacturing processes. Owing to the importance of machin-

ing as one of the most important classes of manufacturing processes, the cutting of stainless 

steels attracted a lot of attention long ago. However, there still remain some families of alloys 

of which their machining has not been thoroughly investigated yet. Belonging to the family of 

alloys and combining properties such as high strength, high corrosion resistance and a rela-

tively low price of modern duplex stainless steels have made the material an attractive alterna-

tive to the more widely used family of austenitic stainless steels. In spite of the importance 

and popularity potential, investigations on the machining of modern duplex stainless steels 

have attracted little attention until very recently.   

On the other hand, with the onset of more and more powerful computers and superior soft-

ware, enthusiasm for computer modeling and the optimization of machining processes has 

continued to grow. The interest in computer modeling and optimization is justified by the fact 

that perceptive achievement of the optimal process performance is rarely possible, even for a 

highly skilled operator. Moreover, the large number of variables as well as the complex and 

stochastic nature of the machining process make the decision-making process more difficult. 

Therefore, an alternative approach is frequently used to identify the relationship between the 

performance characteristics of the process and the control factors via mathematical models 

and/or to represent the dynamics of the system via simulation, after the performance of the 

process has been optimized using a suitable optimization algorithm.  

In the present dissertation, machining investigations into duplex stainless steels are performed 

under different and systematically well-structured modeling and optimization frameworks. 

Focusing on the main objective of finding optimum machining process parameters and com-

prehensively applying the statistical design of experiments to design the experiments, the 

study tackles the challenge of integrating modeling and optimization algorithms using six 

different approaches. Firstly, sets of non-dominated optimal solutions are obtained during 

cutting standard EN 1.4462 and super EN 1.4410 duplex grades employing statistical regres-
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sion and Multi-Objective Bat Algorithm. Secondly, fuzzy implication rules are used to derive 

a universal characteristics index to simultaneously eliminate the discrepancy among the rank-

ing system of four multiple attribute decision-making methods and define the optimum cut-

ting condition during the facing of austenitic EN 1.4404, duplex EN 1.4462 and 1.4410 stain-

less steels at constant cutting speeds. Thirdly, the Taguchi-VIKOR-Meta-heuristic concept is 

proposed and applied to the mono- and multi-objective optimization of austenitic and duplex 

stainless steels. Fourthly, a novel approach based on the fuzzy set theory is applied to opti-

mize the multiple surface quality characteristics of austenitic and duplex stainless steels. 

Fifthly, the multi-pass facing of duplex stainless steels at constant cutting speeds is sustaina-

bly optimized using the hybridization of statistical and computation modeling as well as op-

timization techniques. A new sustainability index is defined and a novel Cuckoo Search for 

neural network system algorithms is employed for the modeling and optimization. Lastly, the 

finite element simulation of turning duplex stainless steels is performed, and a novel proce-

dure of the inverse identification of the input parameters is proposed. Statistical and computa-

tional optimization techniques are employed to minimize the percentage difference between 

experimental and numerical results. The study also covers the hypothetical application of fi-

nite element simulations in defining the optimum criteria during cutting duplex stainless 

steels.      

 

 



Introduction 1 

1 Introduction 

There is no doubt that stainless steels are an important class of alloys. Their importance is 

manifested in the plenitude of applications that rely on their use. From low-end applications, 

like cooking utensils and furniture, to very sophisticated ones, such as space vehicles, the use 

of stainless steels is indispensable. In fact, the omnipresence of stainless steels in our daily 

life makes it impossible to enumerate their applications [Lula86]. The importance of stainless 

steels may be more appreciated by looking at the compound annual growth rate of the world 

stainless steel production in the last six decades as shown in Figure 1.1.  

 

Figure 1.1: Compound annual growth rate of world stainless melt shop production (slab/ingot 

equivalent): 1950 – 2013 in Mt [Issf13]. 

Certain relationships between the per-capita consumption of stainless steels and the prosperity 

of the society could be true in various regions of the world. So that the higher the growth do-

mestic product per capita is, the higher the specific consumption of stainless steel is. The 

boom of stainless steel consumption per-capita in selected countries in the period between 

2001 and 2011 is shown in Figure 1.2. It can be seen that certain developing countries appear 

in the statistics for the first time with significant stainless steel consumption. 
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Figure 1.2:  Comparison of the per-capita consumption of stainless steel in selected countries 

[Rasc12]. 

Compared to alloy steels, stainless steels are chemically complex. The large number of alloy-

ing elements enables a larger range of possible phases or basic crystal structures. It makes the 

deviation from the behavior of pure iron greater; consequently, the calculations that predict 

which phases will exist are more difficult. The effect of the alloying elements on the micro-

structure of stainless steels is summarized in an empirical diagram known as Schäffler- 

DeLong diagram, see Figure 1.3 [Mcgu08]. Schäffler-DeLong grouped the minor and alloy-

ing elements present in stainless steels in two categories. The elements of one group have an 

effect upon the structure similar to that of nickel. These elements include, for example, nitro-

gen, manganese, copper, which widen the range of austenite, and are called ‘austenite for-

mers’. The other group contains elements, such as silicon, molybdenum and tungsten, which 

enlarge the range of ferrite, like chromium, and are thus termed ‘ferrite formers’. The Ni-

equivalent term on the y-axis represents the sum of nickel content and the contents of other 

austenite formers multiplied by coefficients representing their effects as compared to that of 

nickel. The Cr-equivalent is calculated in an analogous manner. Thus, with the aid of this dia-

gram, the presence of austenite, ferrite and martensite can be easily evaluated depending on 

the chemical composition and the “proper cooling” [CaCa75]. 
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Figure 1.3: Schäffler-DeLong diagram also indicating workpiece materials (red circles). 

Based on their microstructure, the wide variety of stainless steel alloys that exist can be classi-

fied into five main categories as illustrated in Figure 1.4. Among these families, ferritic stain-

less steels are the simplest, cheapest stainless steels. In their minimal form, they contain 

enough chromium to overcome their inherent level of carbon impurity and reach the level of 

11% chromium, required for “stainlessness”. Austenitic grades represent the largest group of 

used stainless steels, making up 65%–70% of the total for the past several years [Grze08]. 

These steels are generally composed of chromium, nickel and manganese in iron [KaSc06]. 

Owing to the ferritic-austenitic bi-phased microstructure, duplex stainless steels (DSSs) pos-

sess higher mechanical strength and better corrosion resistance than austenitic stainless steels. 

The applications of and markets for DSSs are continuously increasing due to their outstanding 

properties and their relatively low costs [ArDe09]. Martensitic stainless steels contain 11–

18% Cr, 0.1–1.2% C and small amounts of manganese and nickel [Davi03]. Unlike ferritic 

and austenitic steels, they are hardenable by heat treatment and are generally used in hardened 

and tempered conditions [Cobb99]. On the other hand, precipitation-hardening stainless steels 

are mainly chromium-nickel steels with precipitation-hardening elements, such as copper, 
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aluminum and titanium. They attain higher strength, toughness and corrosion resistance than 

strictly martensitic stainless steels [Bram01]. 

 

Figure 1.4: Classification chart for stainless steels. 

1.1 Frame of reference 

Machining is a general term describing a group of manufacturing processes that consist of the 

removal of material and the modification of the surfaces of a workpiece after it has been pro-

duced by various methods [KaSc08]. The importance of machining can be econimcally envis-

aged. In the US, for instance, industries spend annually well over $100 billion to perform 

metal removal operations because the vast majority of manufactured products require machin-

ing at some stage in their production, ranging from relatively rough or nonprecision work, 

such as cleanup of castings or forgings, to high-precision work, involving tolerances of 

0.0025mm or less and high-quality finishes. Thus machining is undoubtedly the most im-

portant of the basic manufacturing processes [BlKo13].  

The term machinability is often used to describe the easiness with which the work material is 

machined under a specific set of cutting conditions. The ease of machining different materials 
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can be compared in terms of the value of tool life, cutting power, surface finish, dimensional 

accuracy, chip control and part cost under similar cutting conditions. Other criteria can also be 

employed, for example, cutting temperature, operator safety, etc., see Figure 1.5 [KaSc08].    

 

Figure 1.5: Traditionally used machinability assessment criteria [Jawa88]. 

There are seven traditional machining processes: turning, milling, drilling, sawing, broaching, 

shaping (planing), and grinding (also called abrasive machining). As an introduction to the 

field, the following section is intended to describe the fundamentals of metal cutting processes 

with particular focus on turning processes and the factors influencing the machinability of 

metals during turning processes. 

1.1.1 Metal cutting 

In machining, if the workpiece is metal, the process is often called metal cutting or metal re-

moval. The process itself is complex because it has such a wide variety of inputs and outputs. 

The factors that influence the cutting process are illustrated in Figure 1.6.  
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Figure 1.6: Fundamental input and outputs of the metal cutting process. 

Although the most common cutting operations are three-dimensional and geometrically com-

plex, the simple case of two-dimensional orthogonal cutting adopted by M. E. Merchant 

[Merc44] (see Figure 1.7 (a)) is used to explain the general mechanics of metal removal. In 

orthogonal cutting, the material is removed by a cutting edge that is perpendicular to the di-

rection of relative tool-workpiece motion. In order to continue removing material at a second 

stage, the tool is taken back to its starting position and fed downwards by the amount rf , the 

feed of the process. Perpendicular to rf , pa  is the depth of cut, which is smaller than or equal 

to the width of the tool edge. The cutting tool moves to the left along the workpiece at a con-

stant velocity, best known as cutting speed cv . The surface along which the chip flows is the 

rake face of the tool. The angle between the rake face and a line perpendicular to the ma-

chined surface is called rake angle n . The face of the tool that is near the machined surface 

of the workpiece is the flank face. The angle between the flank face of the tool and the work-

piece is called relief or clearance angle c . The angle between the rake face and the flank face 

is the wedge angle w . The sum of the three angles is always equal to 90o [AlBe12, Mark13].  
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Figure 1.7: Schematic illustration of two-dimensional cutting processes: (a) orthogonal cut-

ting with a well-defined shear plane (b) orthogonal cutting without a well-defined shear plane. 

Chip formation in metal cutting is a complex chemical-physical process accompanied by large 

plastic deformation of the workpiece material and very high strain rates. Basically, there are 

three deformation zones in the cutting process as shown in the cross-sectional view of the 

orthogonal cutting (see Figure 1.7 (b)). As the edge of the tool penetrates into the workpiece, 

the material ahead of the tool is sheared over the primary shear zone to form a chip. The 

sheared material, i.e., the chip, is partially deformed and moves along the rake face of the 

tool, which is called secondary deformation zone. The friction area where the flank of the tool 

rubs the newly machined surface is called tertiary zone [AlBe12, PHLT08].  

The engineering approach to characterize plastic deformation in the cutting zone is based on 

three basic simplifications. The first one, referred to as shear plane model or M.E. Merchant 

model, was developed in the early 1940s and adopts one shear surface in the shear zone at an 

angle, ϕs (called the shear angle). The work material is assumed to be perfectly plastic, i.e., 

work hardening does not occur. Moreover, it ignores the built-up edge (BUE), which may be 
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present, as well as chip curl and depicts tool face friction as being elastic rather than plastic. 

In 1966, Zorev [Zore63] proposed a ‘fan’-type or pie-shaped shear zone model through re-

placing curvilinear boundaries by straight lines. Later, Oxley [Oxle89] developed a model 

with parallel-sided shear bands inclined at a certain angle to the tool motion boundaries 

[Grze09].  

The majority of machining operations involve tool shapes that are three-dimensional, thus the 

cutting is oblique. The mechanics of complex, three-dimensional oblique cutting operations 

are usually evaluated by geometrical and kinematic transformation models applied to the or-

thogonal cutting process. A simplified schematic representation of the oblique cutting process 

is shown in Figure 1.8. 

The process is performed by tools with a tool cutting edge angle of Kr ≠ 90° and a tool incli-

nation angle of λi ≠ 0°. The rake angle may be measured in more than one plane, and hence 

more than one rake angle can be defined for a given tool and angle of obliquity. The different 

rake angles in oblique cutting are called normal (αn), velocity and effective rake angle. The 

flow of chip is at an angle to the normal to the cutting edge. The angle between normal to the 

cutting edge and chip velocity vector is called chip flow angle (Δc).  The shear angles can also 

be measured in different planes such as a plane normal to the cutting edge (ϕn) and plane of 

effective rake angle  [AlBe12, BlKo13, Grze09, KaSc08].  

 

Figure 1.8: Schematic illustration of cutting with an oblique tool. 
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1.1.1.1 Surface roughness 

Roughness refers to the small, finely spaced deviations from the nominal surface that are de-

termined by the material characteristics and the process that formed the surface [Groo10]. It is 

one of the most important measurable quality characteristics and one of the most frequent 

customer requirements. Surface roughness greatly affects the functional performance of me-

chanical parts, such as wear resistance, fatigue strength, ability of distributing and holding 

lubricant, heat generation and transmission, corrosion resistance, etc.  

JIS 1994 has defined six parameters in roughness profiles. The reader should refer to the 

standard for complete definitions of each parameter [SeCh06]. However, since the ranges of 

definition seem to be dictated by the physical possibilities of existing measuring instruments, 

it can be assumed that the definitions can also be extended to values below those, but this 

must be investigated. 

 Ra is the most widely used quantification parameter in surface texture measurement. In 

the past, it was also known as center line average (CLA) or in the USA as arithmetic aver-

age (AA). Ra is the arithmetic average value of the profile departure from the mean line 

within a sampling length, which can be defined as: 
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where sL is the sample length, and z is the height from the mean line defined in Figure 1.9. 

 Rz is the sum of the average absolute value of the height of the five highest peaks as 

measured from the average line and the average absolute value of the height of the five 

lowest valleys within a portion stretching over a sample length (Ls) in the direction in 

which the average line extends. 
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where 
ipz and 

ivz are the highest peaks and deepest valleys respectively.  

 Rt is the sum of the height 5pz  of the highest point from the mean line and  the height 5vz  

of the lowest point from the mean line [Groo10, Grou11, WaCh13].  
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55 vp zzRt   (1.3) 

 

Figure 1.9: Definition of the surface roughness parameters. 

1.1.1.2 Energy and power in turning 

Turning is a process of removing excess material from the workpiece to produce an axisym-

metric surface, in which the workpiece rotates in a spindle and the tool moves in a plane per-

pendicular to the surface velocity of the workpiece at the tool-workpiece contact point 

[DiDi08]. Based on the direction of the feed motion, one can differentiate between longitudi-

nal turning, facing and form turning. In the first case there is an axial feed, in the second case 

a radial feed and in the third case a simultaneous axial and radial feed motion [Chry06]. The 

first case is used to produce cylindrical surfaces, the second is utilized to produce flat surfaces 

at the end of the part and perpendicular to its axis, and the third is used to produce various 

axisymmetric shapes for functional or aesthetic purposes [KaSc06].   

It is worthwhile mentioning that during facing operations cutting speed increases linearly 

from the center to the circumference. Since the surface finish depends on the cutting speed, 

the surface finish becomes very poor as the tool approaches the center of the workpiece. To 

maintain a constant surface finish, the facing should be performed at constant cutting speed. 

For this purpose the rotational speed has to be varied to keep the cutting speed constant. This 

cutting operation is called facing at constant cutting speed. Through this process, savings of as 

much as 50% in production time can be achieved as well [Sing11]. The cutting force system 

in a conventional longitudinal turning and facing operation is shown schematically in Figure 

1.10. The main components of the cutting forces are: 
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 cF : Main cutting force acting in the direction of the cutting velocity vector. This force is 

generally the largest force and accounts for 99% of the power required by the process.  

 fF : Feed force acting in the direction of the tool feed. This force is usually about 50% of 

cF  but accounts for only a small percentage of the power required because feed rates are 

usually small compared with cutting speeds.  

 tF : Thrust or radial force acting perpendicular to the machined surface. This force is typi-

cally about 50% of fF  and contributes very little to power requirements because velocity 

in the radial direction is negligible. 

The resultant cutting force ( cR ) and the power required for cutting ( cP ) can be calculated 

from the following equations: 

222
tfcc FFFR   (1.4) 

ccc vFP   (1.5) 

 

Figure 1.10: (a) Longitudinal turning and (b) facing operations have three measurable compo-

nents of forces acting on the tool. These forces vary with cutting speed ( cv ), feed rate ( rf ) 

and depth of cut ( pa ). 

The turning energy required to remove a volume of material is given by the cutting power 

divided by the material removal rate (MRR). In manufacturing technology, this quantity is 
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generally known as the specific (volumetric) cutting energy (ec) and both quantities are equiv-

alent to the specific cutting pressure ( ck ). 
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where c is cross-sectional area of the uncut chip. Similarly, the values of the specific cutting 

pressures related to the feed forces fk  and thrust forces tk  can be evaluated using the expres-

sions: 
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The value of the cutting force can also be predicted using the modified Kienzle equation: 
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where F represents the described cutting and resultant forces, 1.1k  is the specific cutting pres-

sure for a 1mm2 cross-sectional area of the cut, and the exponents a  and b  are model con-

stants [BlKo13, Grze09, Kloc11]. 

1.1.1.3 Tool wear 

During metal cutting, cutting tools are subjected to: 

 high localized stresses at the tip of the tool, 

 high temperatures, especially along the rake face, 

 sliding of the chip along the rake face, and 

 sliding of the tool along the newly cut workpiece surface. 

These conditions induce tool wear, which is of major consideration in all machining opera-

tions, as are mold and die wear in casting and metalworking. Tool wear adversely affects tool 

life, the quality of the machined surface and its dimensional accuracy, and consequently the 

economics of cutting operations. 
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Wear is a gradual process, much like the wear of the tip of an ordinary pencil. The rate of tool 

wear depends on tool and workpiece materials, tool geometry, process parameters, and the 

characteristics of the machine tool. Tool wear and the changes in tool geometry during cutting 

manifest themselves in different ways, generally classified as flank wear, crater wear, nose 

wear, notching, plastic deformation of the tool tip, chipping, and gross fracture [KaSc06]. 

Figure 1.11 shows wear forms that occur primarily on turning tools [Kloc11]. 

 

Figure 1.11: Characteristic wear forms at the cutting part during the turning process. 

Figure 1.12 is a schematic representation of the dimensions of wear. In particular, we distin-

guish the width of flank wear land VB, the displacement of cutting edge toward flank face 

SVα and rake face SVγ , the crater depth KT and the crater center distance KM, from which 

the crater ratio K = KT/KM is formed. 

The mechanisms that cause wear at the tool–chip and tool–work interfaces in machining can 

be summarized as follows: 

 Abrasion. This is a mechanical wearing action caused by hard particles in the work ma-

terial gouging and removing small portions of the tool. This abrasive action occurs in both 

flank wear and crater wear; it is a significant cause of flank wear.  
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 Adhesion. When two metals are forced into contact under high pressure and temperature, 

adhesion or welding occur between them. These conditions are present between the chip 

and the rake face of the tool. As the chip flows across the tool, small particles of the tool 

are broken away from the surface, resulting in attrition of the surface.  

 

Figure 1.12:  Wear forms and measured quantities at the cutting part, according to the DIN 

ISO 3685 [Kloc11]. 

 Diffusion. This is a process in which an exchange of atoms takes place across a close con-

tact boundary between two materials. In the case of tool wear, diffusion occurs at the tool–

chip boundary, causing the tool surface to become depleted of the atoms responsible for 

its hardness. As this process continues, the tool surface becomes more susceptible to abra-

sion and adhesion. Diffusion is believed to be a principal mechanism of crater wear.  

 Chemical reactions. The high temperatures and clean surfaces at the tool–chip interface in 

machining at high speeds can result in chemical reactions, in particular, oxidation, on the 

rake face of the tool. The oxidized layer, being softer than the parent tool material, is 

sheared away, exposing new material to sustain the reaction process.  

 Plastic deformation. Another mechanism that contributes to tool wear is plastic defor-

mation of the cutting edge. The cutting forces acting on the cutting edge at high tempera-
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ture cause the edge to deform plastically, making it more vulnerable to abrasion of the tool 

surface. Plastic deformation contributes mainly to flank wear.  

Most of these tool-wear mechanisms are accelerated at higher cutting speeds and tempera-

tures. From those, diffusion and chemical reaction are especially sensitive to elevated tem-

peratures [Groo10]. 

1.1.1.4 Chip morphologies in turning 

A chip is enormously variable in shape and size in industrial machining operations. The for-

mation of all types of chips involves a shearing of the work material in the region of a plane 

extending from the tool edge to the position where the upper surface of the chip leaves the 

work surface. Gray cast iron chips, for example, are always fragmented, and the chips of more 

ductile materials may be produced as segments, particularly at very low cutting speeds. This 

discontinuous chip is one of the principal classes of chip forms and has the practical ad-

vantage that it is easily cleared from the cutting area. Under the majority of cutting conditions, 

however, ductile metals and alloys do not fracture on the shear plane, and a continuous chip is 

produced. Continuous chips may adopt many shapes - straight, tangled or with different types 

of helix. Often they have considerable strength, and the control of the chip shape is one of the 

problems confronting machinists and tool designers. Continuous and discontinuous chips are 

not two sharply defined categories; every shade of gradation between the two types can be 

observed. Another category of chips is observed when layers of workpiece material are grad-

ually deposited on the tool tip, forming the built-up edge (BUE). As it grows larger, the BUE 

becomes unstable and eventually breaks apart. Part of the BUE material is carried away by the 

tool side of the chips; the rest is randomly deposited on the workpiece surface. The cycle of 

BUE formation and destruction is repeated continuously during the cutting operation until 

corrective measures are taken [KaSc06, TrWr00]. 

The formation of chips can be explained in terms of material behavior during the deformation 

process using appropriate stress-strain curves and relevant fracture mechanisms. As depicted 

in Figure 1.13 (a), continuous chips are related to curve #1 with large plastic flow of the ma-

terial and the characteristic neck of a tensile specimen developed in region II. This phenome-

non is termed by Shaw [Shaw89] as negative strain-hardening in the engineering stress-strain 

curve. If the plastic flow is not so intensive and the shear strain slightly exceeds the critical 

value of shear strain, the onset of chip segmentation is observed (partially segmented chips vs. 
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curve #2). When the entire shear strain decreases further, the chip segmentation starts to de-

velop and the separation of chip segments begins (elemental chips vs. #3). In this case, the 

material necking takes place before the fracture but at a relatively lower shear stress. It should 

be noted that all three types of chips formed by shearing mechanisms could generally be relat-

ed to the plastic deformation of the ductile work materials. In contrast, brittle materials only 

undergo elastic deformation (curve #4), which leads to producing discontinuous chips 

[Grze09].  

 

Figure 1.13: (a) Chip formation in terms of stress-strain curves according to Weber and 

Loladze; and (b) Fridman diagram of the fracture mechanism [Grze08]. 

All previously selected chip types can also be quantitatively related to the types of material 

fracture based on the Fridman diagram, shown in Figure 1.13 (b). This diagram utilizes the 

Tresca criterion for ductile fracture (maximum shear strength on the Y axis) and the maxi-

mum tensile strength criterion on the abscissa. Lines a, b and c adequately represent the yield 

point in shearing (a), the brittle fracture strength (b) and the yield point in shearing for per-
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fectly ductile material (c). Additionally, line a’ represents some specific case when the shear 

stress is artificially lowered due to intensive cooling by supplying gaseous or liquid coolants. 

Inclined lines starting from the origin of such a coordinate system represent simple tension 

(1), simple compression (2) and simple torsion (3). Consequently, three types of material frac-

ture can be distinguished, namely: brittle fracture in point A, partially ductile fracture in point 

C because of the linear work-hardening effect and perfect ductile fracture in point E. It can be 

assumed that these mechanical material states are equivalent to those responsible for the for-

mation of discontinuous, segmented and continuous types [Grze08]. 

1.1.1.5 Chip volume ratio (R) 

With regard to the metal removal rate, one has to distinguish between the volume of the re-

moved material MRR and the space needed for the randomly arranged metal chips. The vol-

ume of the removed material identifies the volume occupied by a chip with cross sectional 

area cΑ . The volume of the randomly arranged metal chips removed is greater than the real 

volume of the same amount of removed material, since in a reservoir the chips are not located 

next to each other without gaps. The chip volume ratio R defines by what factor the volume of 

randomly arranged chips is greater than the volume of the removed material. 

removalmetalofamountsametheofvolumeMaterial

chipsmetalarrangedrandomlyforneededVolume
R  

(1.10) 

Figure 1.14 summarizes the most significant chip shapes. Each chip form is assigned to a chip 

volume ratio R, which defines by what factor the transport volume needed for the specific 

chip form exceeds the intrinsic material volume of the chip.  

The appraisal of the chip form involves two criteria (safety of the operator and transportabil-

ity). According to this approach, ribbon, snarled and helical chips are not preferred. The de-

sirable chip forms are helical chip segments, spiral chips, pieces of spiral chips and discon-

tinuous chips [TsRe09]. 
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Figure 1.14: Chip shapes and chip volume ratios [BBCC09]. 

1.1.1.6 Economics of turning operations 

The economics of machining has been an important area of research in machining starting 

with the early work of Gilbert [Gilb50]. The main objectives are the minimization of the ma-

chining cost, the maximization of the production rate and the maximization of the profit rate. 

The major constraints are the constraint on surface roughness, forces acting on the tool and 

machine power. In general, the optimization of machining is a multi-objective problem. The 

major difficulty in the optimization is the knowledge about the metal cutting behavior. There 

should be a model to predict the tool life, a model to predict the job quality and a model to 

predict the forces and temperature of the tool. Figure 1.15 shows the block diagram of the 

optimization procedure. 

 

Figure 1.15: Block diagram of the optimization procedure in machining [DiDi08]. 
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 Machining time model 

In cutting operations, the machine utilization time bBt  is defined as the sum of all nominal 

times that a machine requires to accomplish a specified job. It is composed of the time re-

quired to produce m units and the total set-up time rBt : 

rBebB ttmt  .  (1.11) 

Production time or time per unit et  can be expressed in terms of the basic time gt and the idle 

time it  as follow: 

ige ttt   (1.12) 

The basic time gt  is the sum of the main process time ht and the auxiliary process time nt . 

nhg ttt   (1.13) 

The main cutting time for turning can be calculated using the following expression: 

fch Ctt   (1.14) 

Here, the cutting time ct  is the time in which the tool is actually cutting. For longitudinal turn-

ing operations, the cutting time is defined as: 
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where tL is the total length of tool travel including approach and overrun lengths in mm, pn  is 

the number of cutting passes, and N is the rotational speed in revolutions per minutes (rpm). 

Meanwhile, the cutting time for facing a solid cylinder at a constant rotational speed is calcu-

lated using the following expression: 
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where rl is the approach length and d is the outside diameter in mm. In facing a solid cylinder 

at a constant cutting speed, the cutting time (in minutes) is given by the expression: 
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 where maxN  is the maximum rotational speed of the workpiece. The constant Cf  is the func-

tion of cut lengths, which are considered in conjunction with the respective feed velocity. The 

auxiliary process time nt  is the time during which all indirect processes arising during the 

machining operation (e.g. tightening, measuring, adjusting, pro rata tool change and work-

piece change) are executed. The idle time it  takes all pauses into consideration during which 

the machine tools are not in operation and the total time required for all irregular events, such 

as procuring necessary resources. The following relation is considered valid for calculating 

the idle time: 

)(3.0 nhi ttt   (1.18) 

The total setup time rBt  refers to the time required for machine set-up vMt , tool change rWt  

and nonproductive set-up activities rVt . The latter is often estimated as 30% of the machine 

set-up and tool change time. 

rVrWvMrB tttt   (1.19) 

For a batch of m workpieces per machine, the total tool change time is defined as: 

T

t
tmt h
WZrW ..  

(1.20) 

where WZt  is the time that passes till a single tool is changed, and both the position correction 

and the positioning for re-entry have taken place. The tool life T can generally be calculated 

based on flank wear criteria of VB=200-600µm when cemented carbides are used. The overall 

working time ta per x number of machines is described as: 

x

m
tt ea .  

(1.21) 

Finally, the following relation is true for the machine utilization time per workpiece or pro-

cess: 
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 Production cost model 

The typical production cost for a workpiece produced by turning operations is comprised of 

machine costs, labor cost and tool costs: 

WLMF KKKK   (1.23) 

The machine hour-rate describes the costs to be calculated of a machine tool per hour. The 

machine hour-rate MK  is calculated as follow: 
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The annual operating hours JAS of a machine are defined as: 

Year

weeksworkingofNo.
shiftsworkingofNo.

(w.)Week

hoursoperationofNo.
JAS  (1.25) 

The yearly machine runtime JAS  amounts, for example, to 1600–1800 h/a for single-shift 

operations. In the case of multi-shift operations, the runtime is increased proportionately (e.g. 

two-shift operations ca. 3200 h/a or three-shift operations ca. 4800 h/a). The procurement 

costs bBk  cover the purchasing, transportation and installation costs. The time lt  is defined as 

a time frame at which the machine is economically utilizable. The cost of maintenance and 

repair services bWk  can be expressed in terms of the percentage % pp  of the procurement 

costs bBk : 
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  (1.26) 

Assumed interest rates can be set at the current value of the machine, also of a non-

depreciated element, as a calculated average based on the procurement price at the full interest 

rate ( iq% ): 

bBibZ kqk .%.5.0  (1.27) 

To calculate the space cost bRk , planning estimations should take account of the required ma-

chine area mQ  in m2 and the monthly rent aA  per m2: 

ambR AQk ..12  (1.28) 
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The operating cost bEk  includes the costs of operation energy, lighting and coolant kk . The 

electricity costs can be estimated based on the effective cutting power MP , the standard cost 

of electricity cE  in euro/kWh and the percentage 2%C of being in ON state: 

kcMbE kCEPk  2.%.  (1.29) 

Labor cost LK  is calculated as follows: 

)1( rLK mL   (1.30) 

where mL  is the gross hourly wage, and r  as the amount of the nonwage cost of the operator. 

This applies if a new factor that summarizes the machine cost and the wage rate per hour in 

terms of previously defined time scales is formulated as:  

L
bB

arB
MML K

t

tt
KK .


  (1.31) 

The costs of typical indexable carbide cutting tools are comprised of the cost of tool holders 

WHk , inserts WPk  and spare parts ETk :  

ETWPWHW kkkK   (1.32) 

The total insert costs are defined as: 

s

WSPh
WP ZT

Ktm
k

..8.0

..
  (1.33) 

where WSPK  is the cost of an insert, sZ  is the number of usable cutting edges per insert, and 

0.8 is a safety factor accounts for uncertainty in tool life. The spare parts costs are often ex-

pressed in terms of the percentage of tool holder and insert costs. The final production cost 

per unit is obtained by adding the terms in Eqs. 20-35: 

]
..8.0

..
).(.[

1
ET

s

WSPh
WHLarBMbBF k

ZT

Ktm
kKttKt

m
K   (1.34) 

Using the previous relationships, one can define the main time-related costs as: 

hLM tK
x

KK ).
1

(1   (1.35) 

the fixed or the workpiece-related costs as: 
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and the tool-related costs as: 

WWLM
h K

m
tKK
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t
K

1
))((3   (1.37) 

The production cost can also be determined using [Kloc11, PHLT08]: 

321 KKKKF   (1.38) 

The cutting speed has such a great influence on the tool life compared to the feed or the depth 

of cut that it greatly influences the overall economics of the machining process. For a given 

combination of work material and tool material, a 50% increase in speed results in a 90% de-

crease in tool life, while a 50% increase in feed results in a 60% decrease in tool life. A 50% 

increase in depth of cut produces only a 15% decrease in tool life. Therefore, in limited-

horsepower situations, depth of cut and then feed should be maximized while speed is held 

constant and horsepower consumed is maintained within limits. As cutting speed is increased, 

the cutting time decreases but the tools wear out faster and must be changed more often. In 

terms of costs, the situation is as shown in Figure 1.16, which presents the effect of cutting 

speed on the cost per piece [BlKo13]. 

 

Figure 1.16: Cost per unit for a machining process versus cutting speed. 
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1.2 Background and aim 

It is estimated that 15% of the value of all mechanical components manufactured worldwide 

is derived from machining operations. Despite this obvious economic and technical im-

portance, it remains one of the least understood manufacturing operations due to the low pre-

dictive ability of the machining models [UsSh82a, Usui88].  

In most of the textbooks on machining, a single shear plane model is described. This is based 

on the assumption that material removal takes place through shear over a very narrow zone. 

As argued by Astakhov [Asta05], this model suffers from a number of drawbacks, viz., infi-

nite strain rate, unrealistically high shear strain, unrealistic behavior of the work material, 

improper accounting for the resistance of the work material to cut, unrealistic representation 

of the tool–workpiece contact, inapplicability for cutting brittle work materials, incorrect ve-

locity diagram, incorrect force diagram and inability to explain chip curling. Actually the ma-

chining process is so complex that no existing physics-based model seems to describe the 

process properly. Other analytical modeling approaches such as the extended three dimen-

sional shear plane model or oblique cutting slip-line field models are either poorly correlated 

with experimental results or quite complex, and for their application stress and strain data at 

the strain rates encountered in metal machining is needed. This is why other modeling ap-

proaches such as empirical, mechanistic, numerical and artificial intelligence are developed as 

alternatives to the metal cutting theory, because the latter did not prove its ability to solve 

even simple practical problems [Asta06].  

Traditionally, mathematical programming techniques such as linear programming, method of 

feasible direction, dynamic programming and geometric programming had been used to solve 

optimization problems in machining. However, these traditional methods of optimization do 

not fare well over a broad spectrum of problem domains. Moreover, traditional techniques 

may not be robust. Numerous performances, constraints and multi-passes make machining 

optimization problems complicated, and hence these techniques are not ideal for solving such 

problems as they tend to obtain a local optimal solution [VePa10]. 

On the other hand, a search with the keywords ‘duplex stainless steel’ in popular databases, 

such us Science Citation Index-Expand or Scorpus, would reveal tens of recent publications. 

This is a vivid testimony of the potential interest in DSSs as a key research topic by various 

researchers in the world. However, one can hardly find a scientific article which addresses the 
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computational and numerical modeling as well as the optimization of machining regarding 

such an important family of stainless steels.  

Considering the respective drawbacks of metal cutting theory and traditional optimization 

techniques in the modeling and optimizing of machining processes as well as the scarcity of 

the work material’s comprehensive machining investigations, the objective of the present dis-

sertation is to address the machinability of DSSs through the systematic application of ad-

vanced modeling and optimization techniques in turning processes. The approaches proposed 

here could then be used to optimize the residual machining criteria, for example, towards a 

lower manufacturing cost or a more sustainable machining process or a more precise numeri-

cal simulation. 

1.3 Research approach 

Research in common parlance refers to a search for knowledge. One can also define research 

as a scientific and systematic search for pertinent information on a specific topic. In fact, re-

search is an art of scientific investigation. The Advanced Learner’s Dictionary of Current 

English lays down the meaning of research as “a careful investigation or inquiry especially 

through search for new facts in any branch of knowledge’’ [Hedb89]. The word itself is de-

rived from the French word “rechercher”, which means “to search closely”, and “chercher” 

means “to search”. Its literal meaning is “to investigate thoroughly” [Oful13]. 

Research is an academic activity and the term as such should be used in a technical sense. 

According to Clifford Woody, research comprises defining and redefining problems, formu-

lating hypotheses or suggesting solutions, collecting, organizing and evaluating data, making 

deductions and reaching conclusions, and at last carefully testing the conclusions to determine 

whether they fit the formulated hypotheses [Koth04].  

There are two basic approaches to research, viz., a quantitative approach and a qualitative 

approach. The former involves the generation of data in quantitative form, which can be sub-

jected to rigorous quantitative analysis in a formal and rigid fashion. A qualitative approach to 

research is concerned with the subjective assessment of attitudes, opinions and behavior. Re-

search in such a situation is a function of a researcher’s insights and impressions. Such an 

approach to research generates results either in a non-quantitative form or in a form which is 
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not subjected to rigorous quantitative analysis. Generally, group interviews, projective tech-

niques and depth interviews are used as the techniques of focus [Koth04]. 

The quantitative approach can be further sub-classified into inferential, experimental and sim-

ulation approaches to research. The inferential approach usually means survey research, in 

which a sample of the population is studied. Experimental approach is characterized by a 

much greater control over the research environment, and in this case some variables are ma-

nipulated to observe their effect on other variables. The simulation approach involves the con-

struction of an artificial environment, within which relevant information and data can be gen-

erated. This permits an observation of the dynamic behavior of a system (or its sub-system) 

under controlled conditions [DaSa11]. 

The research approach adopted in the present dissertation is predominantly quantitative. Ex-

perimental and simulation approaches are applied to obtain quantitative results, through which 

the conclusions are based on the observations and experience (empiricism).  However, since 

not all parts of the cutting process may be analyzed through a quantitative approach, addition-

al qualitative observations have been collected, analyzed and converted into quantitative re-

sults. The estimation of chip volume ratio, based on the chip breaking chart, is an example of 

data interpretations from qualitative chip morphology format to quantitative chip volume ra-

tio, based on the fuzzy set theory. On multiple occasions, a qualitative approach is also used 

as a complement to the quantitative approach.  

1.4 Research hypothesis 

 The application of statistical regression and computational optimization techniques in the 

multi-objective optimization of cutting can effectively obtain sets of non-dominated solu-

tions. 

 Fuzzy set theory principles can be proficiently applied to eliminate the discrepancy of the 

ranking system among the multiple attribute decision-making (MADM) methods, thus 

promoting the decision-making process.  

 Coupling the Taguchi method with MADM and meta-heuristic optimization methods can 

suitably provide the decision maker and/or process planner with the skills essential for the 

mono- and multi-objective optimization of cutting processes. 
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 Multiple quality characteristics of the machining surface can be efficiently optimized 

when MADM methods are coupled with fuzzy set theory. 

 The sustainability-based optimization of multi-pass cutting operations is possible if the 

hybridization of input-output modeling and optimization tools and MADM methods is 

systematically performed.  

 The inverse identification of input parameters in numerical modeling of cutting can be 

effectively performed if coupled Java-based material properties (JMatPro) software, de-

sign of experiment (DOE), MADM, computational modeling and meta-heuristic algo-

rithms are applied. The approach can also perform well for hypothetical, numerical opti-

mization studies. 

1.5 Research questions 

In conjunction with the hypotheses, the following research questions are identified: 

 Can the application of statistical regression and computational optimization techniques 

effectively obtain sets of non-dominated solutions in the multi-objective optimization of 

machining DSSs? 

 Is the application of fuzzy set theory advantageous in eliminating the discrepancy of the 

ranking system among the MADM methods and can it achieve better results than other 

optimization approaches? 

 Can the Taguchi-MADM-meta-heuristics concept be conveniently used for the mono- and 

multi-objective optimization of cutting stainless steels? 

 Can multiple quality characteristics of the machining surface be efficiently optimized 

when MADM methods are coupled with fuzzy set theory? 

 Would it be possible for multi-pass cutting operations to be sustainably optimized when 

the hybridization of input-output modeling and optimization tools and MADM methods is 

systematically performed? 

 Is it possible to apply Java-based material properties (JMatPro) software, design of experi-

ment (DOE), MADM, computational modeling and meta-heuristic approach to the inverse 

identification of the input parameters during the finite element simulation of cutting pro-

cesses? If it is possible, can a hypothetical, numerical optimization study be performed as 

a case study? 



Introduction 28 

1.6 Research delimitations 

The important boundaries that have been set for the present dissertation are: 

 The research is primarily focused on the machining of EN 1.4462 and EN 1.4410 DSSs. 

However, in some cases EN 1.4404 austenitic stainless steel grade has been used as a 

benchmark for comparison analyses of machinability. 

 The research has primarily been limited to constant cutting speed facing and longitudinal 

turning operations. The latter was seen suitable for conducting multi-objective optimiza-

tion and for numerical modeling.   

 Coated and uncoated cemented carbide cutting inserts are employed in all experimental 

and numerical investigations as they are generally recommended for machining stainless 

steels by different manufacturers. 

 The literature survey in this dissertation will not review non-traditional machining pro-

cesses, unless they are the only processes through which the adaptability of modeling and 

optimization approaches is first examined.  

 The optimization of the tool geometry and the orientation angles is restricted to the nu-

merical modeling.  

1.7 Outline of the dissertation 

The present work is structured into ten Chapters. Chapter 2 proposes a review of the main 

techniques and tools enabling the modeling and the optimization of the cutting process. The 

basic concepts and the application potential of several modeling and optimization techniques 

in metal cutting processes, classified under several criteria, have been reviewed and critically 

appraised. A universal framework for parameter modeling and optimization in metal cutting 

processes is also proposed.  

A detailed explanation of the experimental setup and the instruments is given in Chapter 3.  

Elements of the cutting measurement systems are characterized using illustrative, schematic 

diagrams. A brief description of the adopted experimental designs and the involved perfor-

mance characteristics is presented. The chapter also contains an introduction into the tempera-

ture-dependent physical and mechanical properties of the work materials, which were gener-

ated using JMatPro software.  
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Chapter 4 presents the experimental investigations into longitudinal turning of duplex stain-

less steel grades with multi-layer coated inserts. The parametric influences of cutting and pro-

cess conditions on the cutting performances are analyzed, and proper interim conclusion 

points are drawn. The chapter also presents the multi-objective optimization of machining 

duplex stainless steels, based on the nature-inspired Multi-Objective Bat Algorithm (MOBA). 

Chapter 5 addresses a new methodology based on Mamdani fuzzy interference of classified 

chip shapes in chip breaking charts to predict the chip volume ratio. Several performance 

characteristics are considered and converted into four indices using four MADM methods. An 

expert system, based on the fuzzy rule modeling approach, is then adopted to combine the 

computed four indices into a single Universal Characteristics Index (UCI). First-ranking UCI 

values are analyzed and compared with the output of the Weighted Sum Method (WSM), us-

ing a constrained, Simulated Annealing algorithm.  

Chapter 6 presents the multi-performance optimization of turning super duplex EN 1.4410, 

standard duplex EN 1.4462 and austenitic EN 1.4404 stainless steels, utilizing coupled 

Taguchi-based designs, MADM and meta-heuristic algorithms. Nature-inspired meta-heuristic 

algorithms such as the Firefly Algorithm (FA), Accelerated Particle Swarm Optimization 

(APSO) and Cuckoo Search (CS) are employed and their corresponding performances com-

pered.  

In Chapter 7, the Taguchi approach is coupled with fuzzy-multiple attribute decision-making 

methods for achieving better surface qualities in constant cutting speed face turning of austen-

itic and duplex stainless steels. Two typical multiple attribute decision-making techniques 

were simultaneously adopted to determine multi-surface quality characteristics indices. The 

differences in rankings among derived indices are solved through converting each crisp value 

into a trapezoidal fuzzy number and unifying them by using the fuzzy simple additive weight 

method. 

In Chapter 8, a systematic approach, which employs different modeling and optimization 

tools under a three phase investigation scheme, is adopted. In phase I, the effect of design 

variables such as cutting parameters, cutting fluids and axial length of cuts are investigated 

using the D-Optimal method. In the phase II, comprehensive experiment-based production 

cost and production rate models are developed. In phase III, expert systems based on the 

fuzzy rule modeling approach are adopted to derive measures for machining operational sus-

tainability, called Operational Sustainability Index (OSI). Finally, a new Cuckoo Search Neu-
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ral Network System (CSNNS) is utilized to constrainedly optimize the cutting process per 

each cutting scenario. 

Chapter 9 provides a novel methodology to inversely calculate the input parameters when 

simulating the machining of duplex stainless steels, based on Taguchi-VIKOR coupled with a 

Firefly Algorithm Neural Network System (FANNS). Thereafter, design of experiments, nu-

merical simulations and fuzzy rule modeling approaches are employed to optimize types of 

cutting tool geometry, process conditions, cutting parameters and tool orientation angles 

based on many important performances. 

While summaries of the research results obtained in chapters 4-9 can be found separately in 

the interim conclusion sections, Chapter 10 serves to provide a concise and overall summary 

of the main achievements of the study. Finally, a schematic illustration of the research meth-

odology and the approximate location of the chapters included in this dissertation can be 

found in Figure 1.17. 
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Figure 1.17: Research methodology and approximate locations of the dissertation’s chapters. 
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2 State of the art in machining modeling and op-

timization: A review 

The history of research practice in metal cutting is well documented by Finnie [Finn56], who 

identified the work of Cocquilhat [Cocq51] in 1851 as the first research in the area of measur-

ing the work required to remove a given material volume by drilling. However, the first who 

argued that the chip is created by shearing ahead of the tool was Time [3] in 1870, when he 

presented the results obtained from observing cutting. Astakhov confirmed in his book “Metal 

cutting mechanics” that this work is one of the first publications that suggestes a shear plane 

theory [Asta98]. It has also been shown that there is no contradiction between Time’s work  

and Tresca’s work [Tres73]. In 1873 Tresca argued that the chip in metal cutting is produced 

by compression ahead of the tool. Also in 1873, Hartig published tabulations of the power and 

work required in cutting metal in his book ‘Versuche über Leistung und Arbeitsverbrauch der 

Werkzeugmaschine’, which seems to have been the authoritative work on the subject for sev-

eral years [Hart73]. In 1896 Zvorykin [Zvor96] was the first to provide a physical explanation 

for this model; his work resulted in an equation predicting the shear angle. In 1881, Mallock 

established the basis of a shear plane model. In his turning experiments, Mallock made hand 

drawings of the chip formation process in the course of their formation by means of a micro-

scope, mounted on the tool holder. He also emphasized the importance of friction in the tool-

chip interface [Mall81]. Finnie also reports that a step backward in the understanding of metal 

cutting process was taken in 1900, when Reuleaux [Reul00] suggested that a crack occurred 

ahead of the tool and that this process could be linked to the splitting of wood. However, it 

was the work of Ernst and Merchant in 1941 that made the shear plane model popular. Most 

of the fundamental works on metal cutting mechanics refer to this paper, and many analytical 

models of orthogonal cutting still use the relations derived from this work [KnBo05, Mark13].  

Many efforts have been made to refine Merchant’s model with the aim of improving the pre-

dictive capability [LeSc51, Oxle98, Zore63]. A modern analytical approach, known as the 

‘‘unified or generalized mechanics approach’’, has been pursued by Armarego and co-

workers [ArHe00, Arma00] for years and then spread as the mechanistic approach in metal 

cutting [EnDK95]. However, due to the nature of the cutting process, which involves plastic 

deformation, heat transfer, diffusion, chemical reactions and other complex phenomena in 

machining, empirical models have been more successful than analytical ones. Hence, one has 
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not to be surprised when seeing that Taylor’s empirical tool life model [Tayl07], which was 

developed in 1907, is still in action today and employed as the basis for many up-to-date stud-

ies of machining economics [QuDa09].  

With the advent of powerful computers in the late 1970s and early 1980s, a number of im-

portant changes in machining modeling have been made. The most significant change to the 

cutting modeling was the introduction of artificial intelligence techniques. Techniques such as 

neural network, fuzzy logic, neuro-fuzzy system, support vector machines [BMUK12, 

ÇaEk12, RaRA09, ShGi06, WKFL13] and hidden Markov models [AtOB00, ErLO01, 

ScEH05, WaMK02, ZhWH09] have been widely applied in metal cutting performance predic-

tions. On the other hand, in numerical modeling, the emergence of the finite element method 

(FEM) must be noted as a powerful numerical method to solve differential equations. In fact, 

efforts to apply the FEM of chip formation processes date back to the early 1970s [OkKa71, 

TaSD74, TSVO76]. However, due to the extensive computational demands, it was not until 

the late 1990s that numerical methods became a useful and practical tool [AÖUD13, 

ArÖz09]. 

In addition, although it is quite important for planning efficient machining processes, the op-

timization of cutting parameters is a complicated target, challenged not only by the complex 

nature of the involved phenomena but also by the need for carefully defining realistic optimi-

zation objectives as well as developing and implementing powerful and versatile optimization 

techniques. In this sense, stochastic optimization techniques, mainly evolutionary algorithms, 

have been widely reported in recent literature [QuDa11]. The discussion here is mainly in-

tended to provide a brief theoretical background to some important machining modeling and 

optimization techniques and review the recently used tools. 

2.1 Input-output parameter relationship of modeling tools 

The first necessary step for process parameter optimization is to understand the principles 

governing the manufacturing process by means of developing an explicit mathematical model, 

which may be of two types: mechanistic or empirical [BoDr87]. The model in which the func-

tional relationship between input–output and in-process parameters is analytically determined 

is called mechanistic model. However, as there is lack of adequate and acceptable mechanistic 

models for manufacturing processes, empirical models are generally used in manufacturing 

processes. The modeling techniques of input–output and in-process parameter relationships 
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are mainly based on statistical regression, fuzzy set theory and artificial neural networks 

[LuSp95]. In terms of the computation methods, modeling based on physics is accomplished 

by the computational tools that may be called hard computing methods. On the other hand, 

modeling based on data is accomplished by soft computing tools, such as neural networks and 

fuzzy sets. Soft computing tools try to generate approximate solutions of the problem in the 

presence of uncertain or imprecise physics and/or the process variables. It differs from con-

ventional (hard) computing in that, it is tolerant of imprecision, uncertainty, partial truth and 

approximation. A hybrid of hard and soft techniques may also be used [DeDi08]. 

The modeling techniques of input–output and in-process parameter relationships are mainly 

based on statistical regression, fuzzy set theory and artificial neural networks. Figure 2.1 pro-

vides a general classification of different modeling tools for input-output parameter relation-

ships in metal cutting processes. In the following sections, some of these tools will be briefly 

explained. 

2.1.1 Statistical regression  

2.1.1.1 Theoretical background 

The data collected through experiments usually exhibits a significant degree of errors or a 

‘‘noise.’’ In such a case, there is no need to intersect every point as the individual data points 

may be incorrect. Rather, the curve is designed to follow the pattern of points taken in groups. 

This approach is known as statistical regression [MoPV12]. It utilizes experimental data on 

the related variables to develop a numerical relationship, showing the influence of the inde-

pendent variables on a dependent variable of the system. If nothing is known from theory 

about the relationship between independent and dependent variables, a function may be as-

sumed and fitted to the experimental data on the system. Usually a linear function is assumed. 

In other cases where a linear function does not properly fit the experimental data, the engineer 

might try a polynomial or exponential function [Lazi06]. Regression has been proved to be a 

conceptually simple technique for investigating functional relationships between output and 

input decision variables of a cutting process and may be useful for cutting process data de-

scription, parameter estimation and control [MuRa06].  
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Figure 2.1: Classification of the modeling tools for input-output relationships in metal cutting process problems. 
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Regression models can be classified based on the number of involved independent and de-

pendent variables. The models with a single independent variable and a single dependent vari-

able are called single regression models. Moreover, models with a single dependent variable 

and two or more independent variables are called multiple regression models. In multivariate 

regression by contrast, there are multiple dependent variables and any number of independent 

variables. Fitting functions to data in each of these categories can be linear or nonlinear, 

hence, the terms of linear and nonlinear regressions. The word ‘linear’ in linear regression 

refers to the function’s being a linear combination of basis functions. With the basis functions 

{1, x}, linear combinations have the form xccy o 1 , which is coincidentally a line. On the 

other hand, non-linear functions fall into one of three cases: intrinsically linear, intrinsically 

nonlinear and intrinsically nonlinear but linearizable. Intrinsically linear functions can be 

written in the form nno xcxcxccy  ..........2211 , where the ci’s are constants and the xi’s 

are the basis functions. Examples of intrinsically nonlinear functions, which can be converted 

to intrinsically linear functions, are power and exponential functions. However, functions 

such as logistic curves are nonlinear and cannot be transformed into a linear function 

[MoSw99].   

If a dependent variable y is the function of n independent variables, viz., nxxx ......,,, 21 , then 

the multiple linear regression model may be written as: 

excxcxccy nno  ..........2211  (2.1) 

where e is the error term. In the case if there are m observations, one can write the following 

m equations:  

112121111 .......... excxcxccy nno  , 

 

(2.2) 

 

222222112 .......... excxcxccy nno  , 

………………………………………...... 

mmnnmmom excxcxccy  ..........2211 , 

In the matrix form, we can write the above set of equations as: 
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 (2.3) 

or 

EXCY   (2.4) 

Our attempt should be to minimize the error vector E. If all the terms in the vector E are zero, 

the model is perfect. Usually we minimize E in least square sense. The sum-squared error is 

given by 

XCXCYXCXCYYYXCYXCYEE  )()(  (2.5) 

By making use of the property that the transpose of a scalar is equal to the scalar itself, we can 

write 

YXCXCY   (2.6) 

Hence, 

XCXCYXCYYEE  2  (2.7) 

Minimizing this with respect to C, we get 

022
)(





XCXYX
C

EE
 (2.8) 

Thus, the error will be minimized if           

YXXCX   (2.9) 

or 

YXXXC 
1

)(  (2.10) 

The coefficient vector can be found by solving for C either from Eq. (2.9) by using any equa-

tion solver routine or from Eq. (2.10). The matrix XXX  1)(  is called the pseudo-inverse of 

.X  The procedure described above for multiple linear regression can also be applied for non-
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linear regression when y can be expressed as a polynomial function of the dependent variables 

[DiDi08].  

2.1.1.2 Reviews of applications 

Several applications of regression equation-based modeling in metal cutting processes are 

reported in literature [ChCh13, ErOz10, GoMG09, KaSR10, MaBh04, MaPa06, MaSa08, 

ÖKFD07, SiDM11, WaSK06]. For instance, Senthilkumar et al. have employed multiple re-

gression analysis to determine the constants of Taylor’s tool life equation in machining mar-

tensitic stainless steels. The tool life of alumina-based ceramic cutting tools is evaluated from 

these tool wear models, and the effect of various types of wear on tool life were analyzed 

[SeRS06]. Aslan et al. have investigated the machining of hardened steel using Al2O3-based 

ceramic cutting tools and obtained relationships between the cutting parameters, namely cut-

ting speed, feed and depth of cut, and performance measures such as flank wear and surface 

roughness using multiple linear regression [AsCB07]. Kaylan and Choudhury have developed 

regression equations for cutting force and flank wear both in dry and cryogenic turning of 

EN1.4373 austenitic stainless steel. It was concluded from this work that cryogenic cooling is 

a possible answer for high-speed, eco-friendly machining [KaCh08]. Ahmadi and Homami 

have developed multiple regression models for analyzing the effect of cutting parameters in 

tool wear when machining PH-hardened duplex stainless steels. The effective parameters of 

tool wear using ceramic cutting tools have been investigated, and the influence of different 

types of wear phenomena has been observed [AhHo12]. Krolczyk et al. examined the influ-

ence of cutting parameters on surface roughness in duplex stainless steel turning processes. 

The study included developing a second-order regression model to determine surface rough-

ness. The established equations clearly showed that the feed rate was the main influencing 

factor of surface roughness. Surface roughness increased with growing feed rate [KrLG13].  

2.1.1.1 Merits and drawbacks of the statistical regression method 

Statistical regression may make a decent modeling technique [LiBK03]. However, this tech-

nique may not precisely describe the underlying non-linear complex relationship between the 

decision variables and responses. A prior assumption regarding functional relationships (such 

as linear, quadratic, higher order polynomial and exponential) between output and input deci-

sion variables is a prerequisite for regression equation-based modeling. Prediction of outputs 

for an unknown set of inputs, based on the regression technique, is valid only for the region of 
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the regression variables contained in the observed data. It is only an aid to confirm the cause–

effect relationship and does not imply a cause and effect relationship. Moreover, error com-

ponents of regression equation need to be mutually independent, normally distributed by hav-

ing constant variance [MoPV12, MuRa06, Rao11a]. It has been proved that the use of the 

computational modeling techniques can further improve the accuracy of the prediction, par-

ticularly if the functional dependency is mostly nonlinear as in machining [AkAs11, AsÇu11, 

ÇaHa08, ErŞe09, KiPa05, ÖKFD07, ÖzCD09, ÖzKa05].  

2.1.2 Neural network   

2.1.2.1 Theoretical background 

Neural networks are non-linear mapping systems that consist of simple processors, which are 

called neurons, linked by weighted connections. Each neuron has inputs and generates an out-

put that is fed to other neurons as input signals via interconnections. The information is pre-

sented by the interconnection weights, which are adjusted during the training phase [Hayk99, 

QuDa11]. A multilayer neural network consists of at least three layers: input, hidden and out-

put layer, where inputs ip , are applied at the input layer, outputs, ia , are obtained at the out-

put layer and learning is achieved when the associations between a specified set of input–

output (target) pairs  ),(.....,),,(),,( 2211 QQ tptptp  are established, as illustrated in Figure 2.2.  

 

Figure 2.2: Components of a typical multi-layer feed forward neural network. 
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The learning or training is achieved by minimizing the sum of square error between the pre-

dicted output of the neural network and the actual output for a number of available training 

data, by continuously adjusting and finally determining the weights connecting neurons in 

adjacent layers. The most common learning algorithm is the back-propagation, used in the 

multi-layer perceptron (MLP), but it also includes most of the training methods for recurrent 

neural networks, time delay neural networks and radial basis networks.  The back-propagation 

training methodology can be summarized as follows. Consider the multilayer feed-forward 

neural network given in Figure 2.2. The net input to unit i in layer k + 1 is 
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The output of unit i will be 
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where ψ is the activation function of neurons in (k + 1)th layer. The performance index, which 

indicates all the aspects of this complex system, is selected as mean squared error. 
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In Eq. (2.13), qa is the output of the network corresponding to thq  input, qt is the target, and 

)( qqq ate  is the error term. In back-propagation learning, weight update can be performed 

either after the presentation of all training data (batch training) or after each input–output pair 

(sequential training). The weight update for the steepest descent algorithm is: 
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where ζ is the learning rate, which should be selected small enough for true approximation 

and also at the same time large enough to speed up convergence. Gradient terms in Eqs. (2.13) 

and (2.14) can be computed by utilizing the chain rule of differentiation. Effects of changes in 

the net input of neuron i in layer k to the performance index are defined as the sensitivity 

shown with Eq. (2.16). 
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The back-propagation algorithm proceeds as follows: first, inputs are presented to the network 

and errors are calculated; second, sensitivities are propagated from the output layer to the first 

layer; then weights and biases )(b  are updated by using Eqs. (2.14) and (2.15) [ÖKFD07, 

ÖzKa05]. A neural network is trained with a number of data and tested with other sets of data 

to arrive at an optimum topology and weight. Once trained, the neural networks can be used 

for prediction [DiDi08]. 

2.1.2.2 Reviews of applications 

An early work for the prediction of machining performance using neural networks is reported 

by Rangwala and Dornfeld [RaDo89]. Thereafter, many researchers have used neural network 

for machining performance predictions. Teshima et al. proposed a system based on neural 

networks to estimate the life and wear type of cutting tools from their image data and cutting 

conditions. The validity of the system was confirmed by the examinations under various cut-

ting conditions in turning [TSTY93]. Chien and Chou developed a predictive model for the 

machinability of AISI 304 stainless steel using the artificial neural network. The artificial neu-

ral network (ANN) theory was used to predict surface roughness of the workpiece, the cutting 

force and the tool life. Then the genetic algorithm and the ANN were coupled to find the op-

timum cutting conditions for the maximum metal removal rate under the constraints of the 

expected surface roughness and the expected surface roughness associated with the tool life 

[ChCh01].  Özel and Nadgir combined a predictive machining approach with neural network 

modeling of tool flank wear in order to estimate the performance of chamfered and honed 

cubic boron nitride (CBN) tools for various cutting conditions. The developed prediction sys-

tem was found to be capable of accurate tool wear classification for the range it had been 

trained [ÖzNa02].  

Chien and Tsai have utilized the back-propagation neural network to construct the predictive 

tool flank wear model in machining 17-4PH stainless steel. It has been shown that the predic-

tive model was capable of predicting the tool flank wear in an agreement behavior. Further-

more, the systematic procedure to develop the models in this paper can be applied to the usage 

of the predictive or optimized problems in metal cutting [ChTs03]. Kohli and Dixit have pro-

posed a neural network-based methodology for predicting the surface roughness in a turning 
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process by taking the acceleration of the radial vibration of the tool holder as feedback. The 

testing datasets were collected from experiments. It was observed that the methodology is 

able to make accurate predictions of surface roughness by utilizing small-sized training and 

testing datasets [KoDi05]. Heisel et al. introduced an algorithm that allows an automated de-

velopment of machine tools in the phase of selecting the optimal structure’s configuration by 

means of neural networks. The learning ability of the neural network guarantees high flexibil-

ity of the algorithm in solving new tasks and also in optimizing configurations of existing 

machine tool structures. No direct changes are required in the program or in its database if the 

extraction conditions are changed [HPSS11]. Finally, Venkata et al. have used ANN to pre-

dict surface roughness, tool wear and amplitude of workpiece vibration in the boring of EN 

1.4404 steel with cemented carbide tool inserts. The predicted values were compared with the 

collected experimental data, and the percentage error was computed. The results have shown 

that neural networks can help with selecting the proper cutting parameters to reduce tool vi-

bration as well as tool wear and can reduce surface roughness [VeMM14].  

2.1.2.3 Merits and drawbacks of neural network modeling 

Neural networks have many attractive properties for the modeling of complex production sys-

tems: (i) a universal function approximation capability resistance to noisy or missing data, (ii) 

the accommodation of multiple non-linear variables with unknown interactions, and a good 

generalization ability (iii) with no need to predefine a functional form to fit the data. A neural 

network-predictive model has the advantages listed above. However, there are drawbacks as 

well: (i) model parameters may be un-interpretable for non-linear relationships; (ii) it is de-

pendent on voluminous data sets, as sparse data relative to the number of input and output 

variables may result in overfitting; (iii) identification of influential observations, outliers, and 

significance of various predictors may not be possible; (iv) there is always an uncertainty in 

finite convergence of algorithms used in ANN-based modeling techniques, and convergence 

criteria are generally set based on prior experiences gained from earlier applications; and (v) 

no universal rules exist regarding the choice of a particular ANN technique for any typical 

metal cutting process problem [CoJS98, Krus12, MuRa06, Rao11a]. 
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2.1.3 Fuzzy set theory 

2.1.3.1 Basic concepts of the fuzzy set theory 

The elements of the universe are either a member or a non-member of a set. Such types of sets 

are called classical or crisp sets. On the other hand, there are sets which have imprecisely or 

vaguely defined boundaries. These sets were named fuzzy sets by Zadeh in his classic paper 

[Zade65]. A fuzzy set can be defined as a set in which its members are allowed to have any 

positive membership grade between 0 and 1. Mathematically, X denotes the universal set (a 

set containing all the possible elements of concern in some particular context). The process by 

which individuals from X are determined to be either members or non-members of a set can 

be defined by a characteristic (discrimination) function. For a given set A, this function as-

signs a value )(xA  to every x   X such that 
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The application of fuzzy sets extends to logic. In the classical binary logic, a statement is ei-

ther true or false. Quantitatively, we can say that the truth value of a statement is either 1 or 0. 

In fuzzy logic, it is possible for a statement to have any truth value in the closed interval [0, 

1]. For example, membership functions for three subsets of the main cutting force Fc are 

shown in Figure 2.3. They are called low, moderate and high. Therefore, for a force of Fc = 

2500 N, the following statements have the indicated degree of truth: 

0 ``High``=  is 

0.8 ``=``Moderate  is 

0.2 ``Low``=  is 

c

c

c

F

F

F

  

 

(2.18) 

 

Figure 2.3: Samples of membership functions: (a) low, (b) moderate and (c) high [QuDa11]. 
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Fuzzy set theory may be called a generalization of conventional crisp set theory. Various set-

theoretic operations commonly used in crisp set theory have been defined for fuzzy set theory 

as well. These operations reduce their conventional forms for crisp sets. For example, the 

intersection of two fuzzy sets A and B, i.e., A⋂B, is defined as a set in which each element has 

a membership grade equal to the minimum of its membership grades in A and B. Similarly, 

the union of two fuzzy sets A and B, i.e., A⋃B, is defined as the set in which each element has 

a membership grade equal to the maximum of its membership grades in A and B. Another 

offshoot of fuzzy set theory is fuzzy arithmetic. Fuzzy arithmetic deals with operations on 

fuzzy numbers. A fuzzy number is defined as a convex and normalized fuzzy set defined on R 

(set of real numbers), of which the membership function is piecewise continuous. If two fuzzy 

numbers are represented by ( 
1a , 

2a ) and ( 
1b , 

2b ) at an α-cut, then the four basic arithmetic 

operations are defined as follows: 

     
22112121 ,,,: bababbaaAddition   (2.19a) 

     
12212121 ,,,: bababbaanSubtractio   (2.19b) 

     
22112121 ,,,: bababbaationMultiplica   (2.19c) 

     
12212121 ,,,: bababbaaDivision   (2.19d) 

The fuzzy set theory can also be used to make predictions from the data by using fuzzy infer-

ence. A fuzzy inference can be defined as a process of mapping from a given input to an out-

put using the theory of fuzzy sets [DiDi08]. The mapping from crisp inputs to crisp outputs is 

performed in fuzzy inference systems (FIS). A typical FIS architecture is shown in Figure 2.4. 

Three types of FISs have been widely used in engineering applications: Mamdani, Sugeno 

and Tsukamoto. Mamdani's fuzzy inference method is the most commonly seen fuzzy meth-

odology. The Mamdani-style fuzzy inference process is performed in four steps: fuzzification 

of the input variables, rule evaluation, aggregation of the rule outputs and finally defuzzifica-

tion.  

To see how things fit together, suppose that the flank wear of the cutting tool is to be predict-

ed for a particular cutting speed and feed in turning processes. The estimation of flank wear in 

this case consists of four steps. In the first step, the crisp values of cutting speed and feed rates 

are fuzzified, i.e., they are assigned to linguistic fuzzy sets. Once the independent variables 

are fuzzified, the rule evaluation is carried out. In this step, the strength of the various rules is 
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evaluated. Various rules are kept in a rule bank, which may be prepared by experts based on 

their experience or may be generated from data following systematic procedures. For the pre-

sent example, let the two rules be: 

 

Figure 2.4: Structure of the fuzzy inference system (FIS). 

Rule 1: If cutting speed is medium and feed rate is medium, then flank wear is high. 

Rule 2: If cutting speed is high and feed rate is high, then flank wear is very high. 

In each rule, the ‘if’-part is called the antecedent and the ‘then’-part is called the consequent. 

The strength of a rule is equal to the truth value of the antecedent. If the antecedent consists of 

the statements separated by ‘and’, which is equivalent to intersection operations, the truth 

value of the antecedent is equal to the minimum of the truth values for each of the statements. 

The third step is rule aggregation. The clipped rules are aggregated by applying union opera-

tion as shown in Figure 2.5. This provides the output, viz., flank wear in this case, in the form 

of a fuzzy variable. This needs to be defuzzified in the fourth step. 

There are various methods of defuzzification. One method is finding out the centroid of the 

area covered by the membership function of the aggregated output. The defuzzified output 

corresponds to the horizontal coordinate of the centroid. Another simpler method is to take the 

output as the mean of the outputs at the maximum membership grade. In this way, the flank 

wear can be predicted for a given set of input variables.  

2.1.3.2 Reviws of applications 

Several applications of a fuzzy set theory-based modeling of metal cutting processes are re-

ported in literature. Fang and Jawahir have introduced a fuzzy set method to quantify the ef-

fects of cutting parameters such as  cutting speed, depth of cut, feed rate, normal rake angle, 

inclination angle, tool cutting edge angle, nose radius, work material chemical composition 
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and chip-breaker on the total machining performance, encompassing surface finish, tool wear 

rate, dimensional accuracy, cutting power and chip breakability [FaJa94]. Biglari and Fang 

developed a fuzzy logic controller based on the on-line diagnosis of drill conditions for auto-

mated small-diameter drilling operations. The methodology presented in this paper was ex-

pected to be applied to automated machining systems for improving the drilling process per-

formance and reducing the production costs, by maximising the use of drill life and prevent-

ing drill failures [BiFa95].  

 

Figure 2.5: Aggregated fuzzy output for prescribed input parameters. 

Hashmi et al. applied the fuzzy logic principles for selecting cutting conditions in machining 

operations. The approach was demonstrated to be an effective way to present a large volume 

of experimental data in a compressed form [HaBR99]. Chung and Tomizuka proposed a fuzzy 

logic model and control strategy to control the thrust force in order to reduce delamination 

when drilling composite laminates. The simulation results showed that the fuzzy model can 

well describe the nonlinear time-varying process [ChTo01]. Kwon et al. used a fuzzy adaptive 

modeling technique, which adapts the membership functions in accordance with the magni-

tude of the process variations to predict surface roughness. The test results showed good 

agreement between the actual process output and the predicted surface roughness [KwFT02]. 
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Kirby and Chen developed a surface roughness prediction system for a turning operation, us-

ing a fuzzy-nets modeling technique. A series of validation runs indicate that this system has a 

mean accuracy of 95% [KiCh07]. Nandi and Davim studied the drilling performances with 

minimum quantity lubricant. Fuzzy logic rules, which were derived based on fuzzy set theory, 

were used to develop fuzzy rule-based models. A comparison of the model predictions with 

experimental results and those published in literature showed that fuzzy rule-based models 

with Tsukamoto-type fuzzy rules excellently describe the trade-off with experimental meas-

urements [NaDa09]. 

Iqbal et al. presented an expert system, incorporating fuzzy reasoning mechanisms, for opti-

mizing parameters and predicting performance measures in high-speed milling of hardened 

AISI D2. This expert system proved to be very effective and efficient for optimizing the hard-

milling process and also for providing important predictions before the start of the actual pro-

cess [IHLD07]. Latha and Senthilkumar predicted the surface roughness of drilled composite 

materials using fuzzy logic. The predicted fuzzy output values and measured values were fair-

ly close to each other, which indicated that the fuzzy logic model can be effectively used to 

predict the surface roughness in the drilling of composite materials [LaSe10].  

2.1.3.3 Merits and drawbacks of fuzzy-based modeling 

Fuzzy set theory has been used to model systems that are hard to define precisely. It allows 

many variables to be considered, places no demands of linearity, is tolerant to noise and a 

suitable technique for manufacturing problems, if multiple quality characteristics exist and the 

hierarchy of importance of each objective is not clearly defined. However, fuzzy set theory 

suffers from some shortcomings: (i) the rules accrued from the experts or a priori experiments 

are not easily amenable to the dynamic change of the underlying process; (ii) an extensive 

amount of rules must be stored into a rule base, of which the management is not an easy task; 

and (iii) they do not provide the means of utilizing any existing analytical model [Sher94, 

ShVi96]. 

2.2 Finite element modeling of chip formation processes 

The basic idea in the finite element method (FEM) is to find the solution of a complicated 

problem by replacing it with a simpler one. Since the actual problem is replaced with a sim-

pler one in finding the solution, we will be able to find only an approximate solution rather 
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than the exact solution. The existing mathematical tools will not be sufficient to find the exact 

solution (and sometimes even an approximate solution) of most practical problems. Thus, in 

the absence of any other convenient method for even finding the approximate solution of a 

given problem, we have to prefer the finite element method. In the finite element method, the 

solution region is considered as built-up of many small, interconnected subregions called fi-

nite elements. In each piece or element, a convenient approximate solution is assumed and the 

conditions of overall equilibrium of the structure are derived. The satisfaction of these condi-

tions will yield an approximate solution for the displacements and stresses [Rao11b]. 

The consideration of a process with the FEM is called finite element analysis (FEA). The fol-

lowing steps are taken in every FEA: 

1. discretization of the continuum, 

2. selection of interpolation functions, 

3. determination of the element properties, 

4. assembly of the element equations and 

5. solution of the equation system. 

The first step is to divide the structure or solution domains (e.g. the workpiece) into subdivi-

sions or elements. Hence, the structure is to be modeled with suitable finite elements. The 

number, type, size, and arrangement of the elements are to be decided. Figure 2.6 shows some 

exemplary element types that are used for discretization. In the next step, interpolation func-

tions, which serve to approximate the profile of state variables within an element, have to be 

selected. The selection of interpolation functions is in practice made simultaneously with the 

selection of the element type. In general, because of their differentiability or integratability, 

polynomials are frequently used as interpolation functions. 

 

Figure 2.6: Types of elements for the discretization of continuum problems. 

After element types and interpolation functions have been selected, the element equations 

(element matrices) are determined. These equations describe the relations between the prima-
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ry unknowns (e.g. speed, displacement, temperature) and the secondary unknowns (e.g. 

stresses). To determine the unknowns, several approaches can be considered. Four possible 

schemes are reviewed below: i) the direct approach, ii) the variational approach, iii) the 

weighted residual approach, iv) the energy balance approach. Since the solution domain is 

composed of several finite elements, the individual element stiffness matrices and load vec-

tors are to be combined (assembled) in the global matrix of the problem. Furthermore, before 

the system equations are ready for solution on the computer, they must incorporate the phys-

ics of the boundary conditions of the problem. For metal cutting they will include friction at 

the interface and the temperature conditions at the boundaries of the workpiece, tool holder 

and the free edge of the chip. In the final step, the assembly process of the preceding step 

gives a very large set of simultaneous equations, which can be solved on a computer to obtain 

the unknown nodal values of the field variable [Hueb01, Kloc11, Rao11b, TrWr00, ZiTZ13].  

2.2.1 Basics of FEM formulations and remeshing techniques 

How do the matrix equations get solved in a situation in which the tool and the work material 

are in relative motion? As summarized by Athavale and Strenkowski, the two basic approach-

es are the Lagrangian and the Eulerian formulations, together with an arbitrary Lagrangian-

Eulerian formulation (see Figure 2.7) [AtSt98]. In a Lagrangian formulation, the mesh is at-

tached to the workpiece. The tool or workpiece is advanced through predefined displacement 

increments, and the finite element solution is obtained. The displacement increment will be a 

function of the time step in explicit solution methods [LiLi92, MaOr95] and can be related to 

the material removal rate during cutting. In an implicit formulation, the time step has no phys-

ical significance, and the stability of the solution does not depend on the size of the time step 

[CaSt88, MaSO96, ObUs96]. The other major difference in the Lagrangian models stems 

from whether the material model is elastic-plastic, only plastic or viscoplastic. Lagrangian 

formulation brings the following advantages to machining simulation: the chip geometry is 

the result of the simulation and provides simpler schemes to simulate transient processes and 

discontinuous chip formation. However, element distortion has been a matter of concern and 

has restricted the analysis to incipient chip formation or machining ductile materials using 

larger rake angles and/or low-friction conditions pre-distorted meshes [GuDo00, HuBl96, 

LiGS02, LiLo01, MaRi06, MHBM01, OhOb05, OSSU97, Shih96] or remeshing [BaRS02, 

BäRS03, BCLS02, CeLA99, FaZe05, HuSh04, MaBM02, ÖzAl00a, Özel06, RhOh06] have 

been used to minimize the problem. In the case of remeshing, when the distortions of the 
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workpiece mesh are extremely high, a new mesh is generated. After the data from the distort-

ed mesh is mapped to the new one, the calculation continues until the criterion that determines 

the regeneration of the mesh is reached again. The criterion that promotes the mesh renova-

tion can be, for example, the plastic strain [ArÖz09, AtSt98, VOKL07].  

 

Figure 2.7: Finite element formulations. 

In Eulerian formulations, the mesh is fixed in space and material flows through the element 

faces, allowing large strains without causing numerical problems. Moreover, this strategy is 

not affected by element distortion and allows steady state machining to be simulated. Howev-

er, Eulerian approaches do not permit element separation or chip breakage and require a prop-

er modeling of the convection terms associated with the material properties. In addition, such 

formulations also require the prior knowledge of the chip geometry and chip–tool contact 

length, thereby restricting the application range. In order to overcome this shortcoming, vari-

ous authors have adopted iterative procedures to adjust the chip geometry and/or chip/tool 

contact length [AtSt98, CaSt88, IwOT84, JoDJ94, KiLS99a, KiLS99b, WuDL96].  

On the other hand, in the arbitrary Lagrangian-Eulerian (ALE) method, the nodes can move 

but always remain inside the defined boundary region. In this way, the major disadvantages of 

the previous formulations are eliminated, conserving their advantages: easy application of the 

boundary conditions, easy treatment of the interfaces, shorter computation times and lower 

distortion of the mesh. Therefore, it is becoming more and more accepted among the re-
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searchers [CMRM13, HaKR08, HoNg13, ÖzZe07, WuJF03]. Despite the above advantages, a 

careful numerical treatment of the advection terms is recommended [VOKL07]. More elabo-

rate discussions about the use of ALE formulations in modeling metal machining are present-

ed by Rakotomalala et al. [RaJT93], Olovsson et al.[OlNS99], Movahhedy et al. [MoGA00], 

Benson and Okazawa [BeOk04], Pantalé [Pant04] and Madhavan and Adibi-Sedeh 

[MaAd05]. 

In metal cutting modeling, the common problem is related to the element distortion during the 

simulations due to severe plastic deformation. The distortion can cause a deterioration of the 

FE simulation in terms of convergence rate and numerical errors, or cause the Jacobian de-

terminant to become negative, which makes further analysis impossible. It is often necessary 

to redefine the mesh after some stages of deformation. Several techniques are used to reduce 

the element distortion: re-meshing, smoothing and refinement. These techniques include the 

generation of a completely new finite element mesh out of the existing mesh, increasing the 

local element density by reducing the local element size (Figure 2.8(a)) and/or reallocating the 

individual nodes to improve the local quality of the elements (Figure 2.8(b)). The discussed 

techniques are used in the so-called adaptive mesh procedure. Adaptive mesh refers to a 

scheme for finite difference and finite element codes, dynamically changing the size and dis-

tribution of the mesh during the simulations. In the regions of strong gradients of variables 

involved, a higher mesh density is needed in order to diminish the solution errors. As these 

gradients are not known a priori, the adaptive mesh generation procedure starts with a rela-

tively coarse primary mesh, and after the solution of this primary mesh has been obtained, the 

mesh density is increased for the strong gradients [AsOu08]. 

 

Figure 2.8: (a) Increase in local mesh density (refinement), (b) reallocation of the nodes 

(smoothing). 

Finally, it should be noted here that many FE programs utilized to calculate large plastic de-

formations make use of “implicit” methods. For highly dynamic applications on the other 

hand, such as crash simulation, explicit time integration is prevalent in FE programs. 
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2.2.2 Historical perspective  

For a historical perspective of how FEA is used in metal cutting research, the reader is first 

referred to the comprehensive reviews in the references [ChBl94, Mack03, Mack98]. These 

contain most of the significant citations up to the early 2000s. Second, the work undertaken 

by Vaz Jr. et al., in which a brief outline of the wide range of complex physical phenomena 

involved in chip formation, has been presented in a descriptive manner. Several numerical 

strategies used for simulation were also reviewed, and a short discussion of their relative mer-

its and drawbacks was presented [VOKL07]. Third, an interesting reviewing contribution re-

garding the simulation of cutting and machining processes was reported by Lorong et al. The 

contributions provided by researchers from all over the world and published in the Proceed-

ings of the European Scientific Association for material FORMing (ESAFORM) Conferences 

were highlighted [LoMT07].  Finally, the collection of papers edited by Arrazola et al. sum-

marizes the state-of-the-art developments in the modeling of machining processes during the 

last 15 years, since the last CIRP keynote paper on the modeling of machining was produced 

in 1998. This includes a critical assessment of the relevant modeling techniques and their ap-

plicability and/or limitations for the prediction of the complex machining operations per-

formed in industry. The paper includes contributions from academia and industry and serves 

as a comprehensive report of recent progress as well as a roadmap for future directions 

[AÖUD13]. 

2.2.3 Scales of the machining modeling  

In order to effectively simulate a typical material removal process, all the input parameters 

that can have a remarkable influence on the attained results, such as machine tool, coolant, 

cutting tool, tool holder, tool clamping, workpiece, assembly, etc., should be considered. 

However, considering the whole machining system, it seems quite complex to solve one given 

problem. Therefore, in many cases the area or elements that are going to be analyzed in depth 

are isolated from the rest of the system. Depending on the problem to be studied, the FEM of 

machining processes can be focused on three scales, namely: (i) macroscale, (ii) mesoscale 

and (iii) microscale (see Figure 2.9). The first scale accounts for the interaction of the ma-

chine tool with the entire workpiece and tool engagement system [RaLB05, RLHB06]. In the 

second scale, only the area where the chip is formed is considered so that performances, such 

as cutting forces, residual stresses, tool temperature and stresses, etc., can be reasonably pre-

dicted [ACRU08, AuBi06, SoAD04, UhSZ07, DiCM01, GrBN05, GuLi02, HeSK13, KlKr05, 
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KoKS08, MHBM01, PiAS05]. In the microscale FEM, the influence of the microstructure, 

grain boundaries and crystalline plasticity are included [JIUA14, JNUM13, MoNE12, 

NoMa13, SHMS02, SiNE07, ZhSS14]. While in the meso- and microscales, the need for a 

fully coupled thermo-mechanical analysis is quite clear, a thermo-mechanical analysis (but 

not necessarily fully coupled) could be sufficient at the macroscale [ArÖz09].   

The present thesis will focus on the modeling of cutting processes at mesoscale, i.e., what 

happens at the cutting edge. 

 

Figure 2.9: Scales of the FEM machining modeling [ArÖz09]. 

2.2.4 Simulation software & phases of metal cutting FEA  

Commercial software products like DEFORMTM and THIRD WAVE/ADVANTEDGETM, 

and general purpose systems like ABAQUS or MSC/Marc or LS-DYNA are frequently used 

in cutting simulations. The software products in the first category are adapted to the require-

ments of machining technology, thus making it easier for the user to build and carry out simu-

lations. On the other hand, general purpose systems are indeed highly flexible and can be used 

for a wide variety of applications, but they demand a large amount of experience for setting 

up the model as well as a larger amount of time. 

Scientific Forming Technologies Corp., Columbus, OH registers DEFORMTM. The finite el-

ement code is based on the flow formulation approach and uses an updated Lagrangian proce-

dure. It has an adaptive remeshing scheme to follow the modeling in steps of large or local-

ized deformations. The software is specialized in modeling forming and machining operations 
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in 2D and 3D, based on an implicit integration method with fully coupled thermo-mechanical 

analysis [AsOu08, Kloc11].  

From the standpoint of the users of the above software products, a typical finite element anal-

ysis takes place in three phases: (i) data preparation with the preprocessor (input), (ii) pro-

cessing (calculation) and (ii) evaluation of the results with the postprocessor (output). Figure 

2.10 summarizes the parameters that are involved in the FEA of metal cutting processes. 

2.2.5 Advantages and problems associated with numerical cutting modeling 

The finite element method can provide a comprehensive and in some cases complementary 

approach to experimental, mechanistic or analytical approaches to study machining process 

[ACRU08, KlBW05, ÖzKS08]. It provides some advantages, basically due to the following 

aspects: access to fields of values of thermo-mechanical variables, consideration of the non-

linear effects of the friction at the tool–chip interface, ability to perform virtual machining 

tests that are difficult to justify experimentally (new tool geometries and materials or coat-

ings) or to study cases that are difficult to carry out (zero friction coefficient, materials with 

ideal behavior, etc.) [AsOu08]. However, at this stage, it can be said that basically three kinds 

of problems can be found that relate to numerical cutting modeling, prior to becoming a relia-

ble tool for industry (see Figure 2.10):  

1. Identification of finite element model input parameters: material constitutive behavior, 

friction, thermal parameters, damage and wear. A sensitivity study showed the influence 

of input parameters on results. From this study, information about the uncertainty origi-

nated by input parameter identification can be estimated, and the remarkable difficulties in 

obtaining quantitative results can be pointed out. For instance, moving the yield stress 

(one of the best-known material coefficients) from 200 MPa to 900 MPa can lead to a 

temperature increase of 30% from an average value of 1240 K (i.e. of around 372 K). 

Thus it can be estimated that an uncertainty of 30 MPa can give an uncertainty in tempera-

ture of approximately 15 K [AsOu08]. 

2. Finite element model definition: boundary conditions, integration frame (explicit, implic-

it), formulations can lead to different quantitative results, calculation times, etc. 
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Figure 2.10: FEM of chip formation processes at mesoscale. 

3. Finite element model validation: except for parameters like forces, chip thickness or tool–

chip contact length, experimental measurement is quite complicated (e.g. temperature, 
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strain, strain rate) and in some cases quite difficult at this stage (strain rate, stresses, etc.). 

Thus model validation is quite difficult because experimental means are not available or 

they are not suitable enough [ArÖz09]. 

2.2.6 Input models and identification of input parameters  

The success and reliability of modeling depends upon accurate mechanical data (elastic con-

stants, flow stress, friction, fracture stress/ strain, etc.) and thermo-physical data (density, 

thermal conductivity, heat capacity, etc.) [ArÖz10, CaCG08, ÖzAl00b, Özel06, ÖzSS10, 

SaAG05, SiÖz10]. Thus, a characterization in the extreme conditions of machining is needed, 

i.e., for strains of 100–700%, strain-rates up to 106 s-1, temperatures between 500 and 1400 

°C, high heating rates close to 106 °C s-1 and high pressures near 2–3 GPa. A realistic material 

model should also include strain-hardening and thermal softening due to dynamic recovery or 

recrystallization. Therefore, other modeling approaches have been proposed, and flow stress 

data has been generated for machining a range of commonly known work materials 

[BWLM14, CaCG08, WaOh02, Chil06, GuWW06, Karp11, OHAS12, OzZe06, RhOh06, 

ShKA01, SLCM01].  

2.2.6.1 Constitutive behavior of the work materials 

The mechanical behavior of materials is an essential component of technology which has re-

ceived considerable attention over many years. Of particular interest is the response of mate-

rials to mechanical and thermal loadings, the influence of environmental factors, and the con-

ditions and mechanisms of failure. The terms “constitutive equations” and “material model-

ing” are usually applied to the analytical representation of the material response characteris-

tics prior to total failure [Bodn02]. As the latter is the major and important module of any 

numerical code used for the simulation of the machining process, the accuracy of the simula-

tion largely depends on the accuracy of the predictability of the material model. The need for 

the greater accuracy of the flow prediction has encouraged many researchers  [LiCh11, 

LiKh99, Zeri04] to develop suitable constitutive models for different materials. In this con-

text, many empirical, semi-empirical and physically-based constitutive equations have been 

proposed over the course of time. The list of these equations can be found in various review 

[LiCh11, LiKh99] and overview articles [SMBS10, VoAb05] on constitutive models 

[SPBA14].  
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Unfortunately, a universal material model suitable for all cutting simulations remains one of 

the important unaccomplished tasks. Due to the typical high strain, strain rate temperature and 

temperature gradient in machining, it is not always easy to determine the flow stress curves by 

experiment. Furthermore, experimental methods such as the Split-Hopkinson-Bar-Test are 

quite expensive and require a large number of experiments to be conducted. On the other 

hand, empirical material laws which describe the flow stress as a function of strain, strain rate 

and temperature contain specific material constants, which have to be determined by regres-

sion analyses or by the least squares method and verified experimentally. During the last three 

decades, a multitude of such models have been suggested [KaTU83, MaOk83, Oxle64]. The 

most notably are the engineering-based and physically-based models. In both fields, the earli-

est contributions were made by Johnson and Cook  [JoCo83, JoCo85] and Zerilli and Arm-

strong in 1980s [ZeAr87, Zeri04] respectively. Additionally, JMatPro, an acronym for Java-

based Materials Properties, can also be employed to calculate a wide range of material proper-

ties. These properties include thermo-physical, physical properties, time-temperature-

transformation diagrams, stress/strain diagrams, proof and tensile stress, hardness, coarsening 

and creep. A feature of this program is that the calculations are based on sound physical prin-

ciples rather than purely statistical methods. Thus, many of the shortcomings of methods such 

as the regression analysis can be overcome. With this program, a sensitivity to microstructures 

can be included for many of the properties and the true inter-relationship between properties 

can be developed, for example, in the modeling of creep and precipitation hardening 

[SGLM03]. Figure 2.11 shows an example of the predicted relationship between true stress 

and true strain for duplex stainless steel materials using JMatPro software. 

It is worthwhile mentioning that in recent years, the inverse identification of the constitutive 

model parameters has been proposed as an alternative method for defining the constitutive 

equation coefficients, so that the models remain valid for large ranges of conditions during 

machining [KlLB13, PAMC07, ShBä11, ShBä12]. 

2.2.6.2 Friction 

Since the rate of tool wear heavily depends on the frictional conditions at the tool–chip inter-

face, an accurate modeling is of critical practical importance [Özel06]. Friction under very 

extreme conditions is prevalent at the tool–chip interface (1-2 GPa, 500–100 °C) [ZMYP11]. 

In the earlier analyses of machining, frictional stresses )( f  on the tool rake face have been 
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considered proportional to the normal stresses )( n with a coefficient of friction )( based on 

the Coulomb friction, as can be seen here.  

 

Figure 2.11: DSS flow stress curves at room temperature. 

nf    (2.20) 

In conventional machining at low cutting speeds, the Coulomb model is found to be effective 

for describing the frictional conditions at the tool flank face but not at the rake face. Moreo-

ver, the contact conditions at the tool–chip and tool–workpiece interfaces are too complicated 

[Asta06] to be expressed in terms of the simple Coulomb friction condition. For instance, in 

FEM predictions of cutting characteristics by Özel [Özel06] and Arrazola et al. [ArUD08], an 

inadequate Coulomb's friction coefficient can generate more than 50% differences in cutting 

forces and the tool-chip contact length in comparison to the measured values. Zorev [Zore63] 

proposed a more realistic representation in a stick-slip friction law based on normal and shear 

stress distributions. According to this model, the normal stress is greatest at the tool tip and 

gradually decreases to zero at the point where the chip separates from the rake face, as shown 

in Figure 2.12. 
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Figure 2.12: Curves representing normal and frictional stress distributions on the tool rake 

face, according to Zorev [Zore63]. 

This is represented mathematically as a sticking region, where the flow stress is equal to the 

plastic yield, and a sliding region, where a Coulomb model is adopted (Eq. (2.21)). 
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Later on, more sophisticated friction models have been proposed by Usui and Shirakashi 

[UsSh82b], Dirikolu et al. [DiCM01] and Zemzemi et al. [ZRSD09]. 

Despite over 100 years of effort, the controversy of the concept of friction in machining still 

exists. An extensive analysis of the inadequacy of the concept of the friction coefficient in 

metal cutting was presented by Kronenberg (pp. 18−25 in [Kron66]) who stated “I do not 

agree with the commonly accepted concept of coefficient of friction in metal cutting and I am 

using the term ‘apparent coefficient of friction’ wherever feasible until this problem has been 

resolved.” Unfortunately, it has never been resolved, although almost half a century have 

passed since Kronenberg made this statement [AsOu08]. 

2.2.6.3 Cockcroft-Latham damage criterion 

In order to improve the physical comprehension of the chip formation during cutting of duc-

tile metals, a proper fracture criterion is needed. In recent decades, several fracture models 

which employed FEA simulations have been proposed for ductile metals. These models have 
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been applied to various applications, including metal forming, high-velocity impact, forging, 

cutting, etc. The most commonly used models include Cockcroft-Latham [Cock68], 

McCintock [Mccl68], Brozzo [BrDR72] and Johnson-Cook [JoCo85] fracture criteria. The 

criterion proposed by Cockcroft and Latham in 1968 assumes that the maximum principal 

stress is the most relevant in the initiation of fracture. This criterion is therefore defined in 

terms of traction plastic work associated to the principal stress along the path of the equivalent 

plastic strain as: 




dD
f


0

1  (2.22) 

where f  is the effective strain, 1  is the principal stress, and D is a material constant 

[ZhCP07]. Cockcroft and Latham’s criterion states that when the integral of the largest tensile 

principal stress component over the plastic strain path in Eq. (2.22) reaches the critical value 

.critD , usually called damage value, fracture occurs or chip segmentation starts, the flow stress 

is reduced to a lower value rp%  (see  Figure 2.13), which is expressed as percentage of the 

original flow stress. In many circumstances, the original Cockcroft-Latham fracture criterion 

and its various modifications have been applied to metal machining processes [AuBi06, 

BiKT04, KlLB13, LoJJ09, UmMO07]. For example, Umbrello employed Cockcroft and Lat-

ham’s criterion to predict the effect of tensile stress on the chip segmentation during orthogo-

nal cutting of Ti-6Al-4V alloys [Umbr08]. Recently, Pu et al. have used Cockcroft and Lat-

ham’s fracture criterion to predict the effect of the stress on the chip segmentation during cry-

ogenic cutting of AZ31B Mg alloys [PUDJ14]. 

 

Figure 2.13: The Cockcroft & Latham damage criterion. 
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2.2.6.4 Thermal contact conductance  

The thermal contact conductance tch , also known as the heat transfer coefficient, describes 

the heat flux of two solids in contact and is defined as follows: 

T
htc 




 (2.23) 

where ΔT is the temperature difference at the contacting surfaces, and the heat flux   is de-

fined as: 









dt

d

dA

d   (2.24) 

where A is the area of contact surface, and   is the conducted heat in (J). It is recognized that 

thermal contact conductance is a function of several parameters, the dominant ones being the 

type of contacting materials, the macro- and micro-geometry of the contacting surfaces, the 

temperature, the interfacial pressure, the type of lubricant or contaminant and its thickness 

[RoBC03]. 

2.2.6.5 Taylor-Quinney coefficient 

As the mechanical behavior is affected by temperature (softening effect), plastic deformation 

is accompanied by heat generation, which results in a temperature rise. The heat generation 

due to this phenomenon is described by the following relationship: 

ptp     (2.25) 

where p  is the volumetric heat generation due to plastic work in (W/m3),   is the von Mises 

equivalent stress in (MPa), p is the von Mises equivalent plastic strain, and t  is the Taylor-

Quinney coefficient, which represents the proportion of plastic works converted into heat. 

Haddag and Nouari have shown a strong dependency of t  on both strain and strain rate for 

various engineering materials. Within the confines of their constitutive framework, the as-

sumption that t  is constant was inconsistent with the rate independence of the stored energy 

of cold work, which was a fundamental consequence of thermodynamics. It would seem that 

the only justification for a priori assumptions on t  is a lack of information on the stored en-
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ergy of cold work. Therefore, this coefficient is considered as an unknown input value, which 

has been specified in cutting simulations [HaNo13].                                                                                       

2.3 Determination of optimal or near-optimal cutting conditions 

Machining optimization is the systematic and scientific approach for solving problems associ-

ated with engineering decision-making in selecting the best production method, process pa-

rameters or operational conditions. The ultimate goal of such problems is to either minimize 

the efforts required or maximize the desired benefits. Efforts required and benefits desired in a 

machining situation can be expressed according to the decision variables. Machining optimi-

zation can be defined as the process of finding such decision variables that give the maximum 

or minimum value of one or more objective functions subject to some resource, capacity or 

process constraint [Özel09].  

With time, complexity in metal cutting process dynamics has increased, and as a conse-

quence, problems related to the determination of optimal or near-optimal decision variables 

are faced with discrete and continuous parameter spaces with multi-modal, differentiable as 

well as non-differentiable objective functions or responses. The search for optimal or accepta-

ble near-optimal solutions by a suitable optimization technique based on input–output and in-

process parameter relationship or objective function formulated from models with or without 

constraints, is a critical and difficult task for researchers and practitioners [BAPS05, BASP06, 

CaGu00, ChTs96, HuLL01, VPAS03, Yild13a]. A large number of techniques has been de-

veloped by researchers to solve these types of parameter optimization problems and may be 

classified as conventional and nonconventional optimization techniques.  

Whereas conventional techniques attempt to provide a local optimal solution, non-

conventional techniques based on developed extrinsic models or objective functions are only 

an approximation and attempt to provide near-optimal cutting conditions. Conventional tech-

niques may be broadly classified into two categories. In the first category, experimental tech-

niques that include statistical design of experiment, such as the Taguchi method, and response 

surface design methodology (RSM) are referred to. In the second category, iterative mathe-

matical search techniques, such as linear programming (LP), non-linear programming (NLP), 

and dynamic programming (DP) algorithms are included. Non-conventional, meta-heuristic 

search-based techniques, which are sufficiently general and extensively used by researchers in 

recent times, are based on biological, molecular or neurological phenomena that mimic the 
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metaphor of natural biological evolution and/or the social behavior of species. To mimic the 

efficient behavior of these species, various researchers have developed computational systems 

that seek fast and robust solutions to complex optimization problems [MuRa06, Rao11a]. Ex-

amples of these algorithms include Simulated Annealing (SA), Genetic Algorithm (GA), Par-

ticle Swarm Optimization (PSO), Firefly Algorithm (FA), Cuckoo Search (CS), Bat Algo-

rithm (BA), etc.  

2.3.1 Taguchi Method 

2.3.1.1 Basic concepts in Taguchi’s design and optimization procedure 

The Taguchi method, named for Genechi Taguchi, the Japanese statistician who developed 

and advocated the method, is a powerful problem-solving tool which can improve the perfor-

mance of the product quality, process, design and system with a great decrease in experiment 

time cost. This method, which contains the design of experiment theory and the quality loss 

function concept, can carry out the robust design of processes and products and solve several 

optimal problems in manufacture industries. Professor Genichi Taguchi used the term robust 

for the product or processes which perform consistently on target and are relatively insensitive 

to factors that are difficult to control. He referred to these uncontrollable factors as noise fac-

tors. He also developed a methodology for finding the optimum settings of control factors and 

making a product or process insensitive to noise factors [Mont09, Ross95]. Various steps of 

the Taguchi method are shown in Figure 2.14. 

To design an experiment means to choose the optimal experiment design to be simultaneously 

used for varying all the analyzed factors. There are many different experimental designs that 

provide options for the investigator, who must perform experiments to address a variety of 

questions under a range of conditions and limitations. Several important considerations de-

termine which experimental design is appropriate for a given investigation. As there are many 

parameters in machining, conducting a large number of experiments employing classical ex-

perimental design methods could be very costly, complex and not easy to use. This problem is 

overcome in the Taguchi method, which uses a special design of orthogonal arrays (OA) to 

study the entire major parameter space with only a small number of experiments. Commonly 

used orthogonal arrays include the L4, L9, L12, L16, L18, L25 and L27. A complete listing of 

OAs is presented by Phadke [Blan04, Phad89].  
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Figure 2.14: The outline for carrying out the Taguchi optimization procedure. 

The selection of OAs begins with the distinct number of levels (L) defined for the number of 

control factors (K). The minimum number of trials in the OAs is  

1)1(min  nt KLN  (2.26) 

In order to minimize the variations in the quality characteristic or response, Taguchi intro-

duced a method to transform the repetition data to another value, which is a measure of varia-

tion present in the scattered response data. This transformation consists of the computation of 

signal-to-noise (S/N) ratio (η), which consolidates several repetitions into one performance 

measure reflecting the amount of variation present. The maximization of the S/N ratio simul-

taneously optimizes the response and minimizes the effect of noise factors. For each entry ‘i’ 

in the OA, if the response (Ob) is repeated ‘n’ times, the S/N ratio can be computed as follow: 
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if Ob needs to be maximized.  

The S/N ratios are further analyzed using statistical analysis of means (ANOM) and statistical 

analysis of variance (ANOVA). The first is used to identify the optimal factor level combina-

tions and to estimate the main effects of each factor, while the second term is used to estimate 

the error variance for the effects and variance of the prediction error. The ANOM consists of 

the determination of the overall means by:    
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The effect of a factor level i for parameter j is defined as: 
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The optimum level for a factor is the level that gives the highest value of S/N ratio. The max-

imization of S/N ratio is determined by ANOM to give the optimum level associated with 

each factor and is given as:  

 jioptimumi Meanj ,, )(max   for j=1,2, . ., K (2.31) 

After determining the optimal levels of control factors, the ANOVA is then performed to es-

timate the relative significance of each factor [GaKD09, Lazi06, Mont09, Phad89, Ross95].  

Analysis of variance (ANOVA), often summarized in a table, is the statistical method used to 

interpret experimental data. ANOVA is used for detecting differences in the average perfor-

mance of groups of items tested. It breaks total variation down into accountable sources. The 

main objective of ANOVA is to extract from the results how much variation each factor caus-

es relative to the total variation observed in the result [Ruth01].  
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An ANOVA table contains the sources of variation, the degrees of freedom (DOF), the sum of 

squares (SS), the mean square (MS), the F-ratio, and sometimes the P-value. As per the 

ANOVA, the model developed is adequate within the specified confidence interval if F-ratio 

exceeds the standard tabulated value of F-value. Alternatively, one could use the P-value ap-

proach to testing. If a researcher finds the P-value to be less than a predetermined significance 

level, often 0.05 or 0.01, he/she will often decide to "reject the null hypothesis". Moreover, 

from ANOVA one can also determine the contribution of a particular control factor, for ex-

ample A, in variance of a response using the ratio between the SSA and the total sum of square 

SST. Finally, Table 2.1 shows a one way ANOVA table for an experimental design with L 

numbers of levels and tN  numbers of trials.  

Source of variation DOF Sum of  square (SS) Mean square (MS) F-ratio 

Factor A  
(Between groups) 1L   
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Table 2.1: The one way ANOVA table (using shortcut formulas). 

2.3.1.2 Reviews of applications 

Taguchi optimization is one of the most frequently applied procedures in metal cutting re-

search. Over the past several years, numerous researchers have extensively applied this tech-

nique in order to improve and optimize the performance of cutting several engineering mate-

rials.  Youssef et al. concluded that Taguchi designs appear to be reliable and more economi-

cal since they permit to reduce the amount of time and effort required to conduct the experi-

mental design drastically without losing valuable information [YoBT94]. Yang and Tarng 

have used Taguchi method to find the optimal cutting parameters for turning operations. An 

orthogonal array, the signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) are 

employed to investigate the cutting characteristics of AISI 1045 steel bars using tungsten car-

bide cutting tools. Through this study, not only can the optimal cutting parameters for turning 

operations be obtained, but also the main cutting parameters that affect the cutting perfor-

mance in turning operations can be found [YaTa98]. Ghani et al. applied Taguchi optimiza-

tion methodology, to optimize cutting parameters in end milling when machining hardened 

steel AISI H13 with TiN coated P10 carbide insert tool under semi-finishing and finishing 
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conditions of high speed cutting. The study shows that the Taguchi method is suitable to solve 

the stated problem with minimum number of trials as compared with a full factorial design 

[GhCH04]. Gaitonde et al. presented the application of Taguchi optimization method for sim-

ultaneous minimization of burr height and burr thickness influenced by cutting conditions and 

drill geometry when drilling EN 1.4404 stainless steel. An approach of Taguchi design for 

multi-objective optimization problem is proposed. The effectiveness of proposed method is 

demonstrated through simulation results and experimental verifications [GKAS06]. Cetin et 

al. evaluated the performances of six cutting fluids for reducing of surface roughness, and 

cutting and feed forces during turning of AISI 304L austenitic stainless steel with carbide 

insert tool under Taguchi's L18 mixed level parameter design. Confirmation tests applied for 

Taguchi results and developed regression equations indicated reliable results [COKD11]. 

Philip et al. have successfully optimized the dry turning parameters of two different grades of 

nitrogen alloyed duplex stainless steel by using Taguchi method. The cutting parameters are 

optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed 

and feed rate on surface roughness, cutting force and tool wear were analyzed. Through 

Taguchi’s optimization procedure,  feed rate has been identified as the more significant pa-

rameter influencing the surface roughness and cutting force and cutting speed as the more 

significant parameter influencing the tool wear [PhCM14].  

2.3.1.3 Strength and limitations of Taguchi optimization procedure 

Taguchi methods of experimental design were introduced into the western industries in the 

early 1980s. For instance, Taguchi’s introduction of the method to several major American 

companies, including AT & T, Xerox and Ford, resulted in significant improvement of prod-

uct and process quality [AnKa96]. It has proved to be successful in many manufacturing areas 

including plastics, automotive, metal fabrication, process and semi-conductors and today even 

the service industry is using this powerful technique for tackling service delivery time-related 

problems [RoAK00]. Maghsoodloo et al. have described the Taguchi's major contributions as:  

 quantifying quality as deviation from the ideal target through quadratic loss function,  

 introduction of OAs to simplify the use of DOE and  

 definition and use of the S/N ratio, which combines the mean and standard deviation into 

one measure [MOJH04].  
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It is important to note that Taguchi’s philosophy is inherently sound and his attempt to inte-

grate statistical methods into the powerful engineering process is absolutely praiseworthy. 

However, his approach to experimental design and of course data analysis methods could be 

enhanced by integrating other alternative but powerful methods developed by researchers in 

the area. The following are the various technical issues which undermine Taguchi’s approach 

to experimental design and optimization. 

 Use of linear graphs which often lead to misleading conclusions. 

 Disregarded modern graphical and analytical methods for rapid understanding [AnPr02]. 

 Taguchi rarely considers interactions among the control variables. In fact, many of the 

designs advocated by Taguchi do not allow estimation of these interactions [MyMA09]. 

 Taguchi proposes a short term, one-time improvement technique to reduce the number and 

cost of experimentations, which may eventually lead to sub-optimal solutions. 

 Taguchi’s method refers to optimization without intrinsic empirical or mechanistic model-

ing during experimentation. This type of technique closes the possibility for greater in-

depth knowledge of the process [Box88, MyMA09]. 

 Alternative methods, claimed to be efficient for simultaneous optimization of multiple 

responses such as data transformation and using dual-response surface technique [MiPe63, 

UmSm59] and Lambda plot [Box88], are available in the literature where basic goals of 

Taguchi method are achieved by simultaneous optimization of mean and standard devia-

tion without the use of controversial S/N ratio. 

 Taguchi method for multiple objective optimization problems, as shown by Phadke 

[Phad89], is purely based on judgmental and subjective process knowledge [MuRa06]. 

2.3.2 Response surface methodology (RSM) 

2.3.2.1 Basic concepts  

The collective term "Response surface methodology" refers to a collection of statistical and 

mathematical techniques useful for developing, improving, and optimizing processes. It also 

has important applications in the design, development, and formulation of new products, as 

well as in the improvement of existing product designs. The separate term "response" refers to 

any characteristic, or variable, where variation has been observed, and this variation is the 

subject of a scientific or engineering research effort. As the word implies, a response is the 
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reaction of an investigated characteristic to the effects exercised on it by external factors. The 

term "surface" refers to the graphical perspective of the problem environment which is often 

used in graphical representation of the "Methodology". The latter refers to the systematic, 

theoretical analysis of the methods applied to a field of study [MyMA09, Shor11]. 

The application of RSM may be divided into the following major steps: 

Step 1: The first step of performing RSM involves the design of a series of experiments that 

will provide adequate and reliable measurements from which information about how the dif-

ferent factors (independent variables) affect the response (dependent variable) can be gath-

ered. Since the predictive capability of RSM is greatly influenced by the distribution of sam-

pling points for fitting, the DOE techniques are applied. The following designs are more fre-

quently used with RSM: 

 Central composite designs: It can fit a full quadratic response surface model. These are 

often used when the design plan calls for sequential experimentation because these de-

signs can incorporate information from a properly planned factorial experiment. 

 Box-Behnken design: Typically it has fewer design points, thus, these are less expensive 

to run than central composite designs with the same number of factors. These allow effi-

cient estimation of the first and second-order coefficients. However, these can’t incorpo-

rate runs from a factorial experiment. 

 Alphabetic optimality designs: optimal designs are a class of experimental designs that are 

optimal with respect to some statistical criterion. To differentiate between different crite-

ria, each statistical criterion is assigned a letter, and thus commonly referred to as ‘alpha-

betic’ nomenclature for experimental designs. Building upon the initial work of Kiefer, 

the alphabetic criteria now includes A, D, E, G and I (also known as V or IV). These de-

sign methods use a single criterion in order to construct designs for RSM; this is especial-

ly relevant when fitting second-order models. For instance, D- and A-optimality criteria 

provide a measure of the variance of the model coefficients through the moment matrix, 

M= X´X/N where X is the model matrix and N is the number of runs in the design. A D-

optimal design is one that maximizes the determinant of M, equivalently minimizing the 

volume of the confidence region on the model coefficients. An A-optimal design is one 

that maximizes the trace of the moment matrix, M, and is directly related to minimizing 

the individual variances of the model coefficients [AnBM09, Monr09]. 
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Step 2: The second step consists in finding the ‘best’ fit for the data by performing regression 

analysis (i.e. least square method) and the pertinent hypothesis tests on the model’s parame-

ters. The most commonly used models are first and second order polynomials or also termed 

as linear and quadratic models respectively. A second-order model can significantly improve 

the optimization process when a first-order model suffers lack of fit due to interaction be-

tween variables and surface curvature. A general second-order model used in RSM designs is 

given in Eq. (2.32) 
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where y is actual response, xi and xj are the design variables (input factors), and c are the co-

efficients calculated based on least-square method (Eq. (2.10)). Next, ANOVA table and sta-

tistical measures such as root mean squared error (RMSE), the coefficient of determination 

)(R 2 and the absolute average deviation )(AADavg.  are used to check the model adequacy: 
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where yactual  represents the actual, ypredicted obtained by RSM and ymean the mean of actual re-

sponse values respectively,  and n is the number of experimentation trials. 

Step 3: The objective of the last step is to find the optimal settings of the experimental factors 

needed to obtain a desired response. Finally the flow chart of performing RSM is shown in 

Figure 2.15 below [AtMS14, GaKD09, Leon08] . 
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Figure 2.15: Response surface methodology. 

2.3.2.2 Applications reviews 

The first application of RSM in optimizing metal cutting parameters dates back to 1972, when 

Taraman and Lambert presented the use of RSM for analysis of material removal processes. 

Mathematical models of tool life, surface finish and cutting force are developed in terms of 

cutting speed, feed, and depth of cut. The models were then used to select the levels of the 

machining variables such that certain criteria could be achieved [TaLa72]. Taraman again 

used RSM to simultaneously optimize tool wear, surface finish, and tool force for finished 

turning operation. Mathematical models for such machining outputs were developed in terms 

of the cutting speed, feed and depth of cut. The developed models were utilized to obtain con-

tours of the machining outputs in planes containing two of the independent variables. The 

methodology presented provided a large amount of information with a small amount of exper-

imentation [Tara74]. Hassan and Suliman developed second-order mathematical models for 

some machining dependent variables, namely, surface roughness, tool vibration, power con-
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sumption and cutting time when turning medium carbon steel using tungsten carbide tools 

under dry conditions. Theory of RSM optimization is then applied using the models devel-

oped as objective and constraint functions to find the optimal cutting conditions [HaSu90]. 

Thereafter, many other researchers have applied RSM in metal cutting optimization problem.  

Recently, El-Tamimi and El-Hossainy investigated the machinability of austenitic EN 1.4310 

stainless steel under oblique cutting. The parameters considered in the experiments were op-

timized to attain maximum tool life using a response graph and a response table [ElEl08]. 

Aggrawal et al. presented the findings of an experimental investigation into the effects of cut-

ting speed, feed rate, depth of cut, nose radius and cutting environment in CNC turning of 

AISI P-20 tool steel. DOE techniques, such as RSM and Taguchi, have been used to accom-

plish the objective of the experimental study. Though both the techniques predicted near simi-

lar results, RSM technique seems to had an edge over the Taguchi's technique [ASKS08]. 

Gaitonde et al. employed RSM-based models using central composite rotatable DOE to inves-

tigate the effects of process parameters on burr size during drilling of EN 1.4404 stainless 

steel [GKAS09]. Bouacha et al. achieved optimal values of cutting parameters in order to ob-

tain the desired value of the machined surface roughness and the lowest cutting forces during 

the hard cubic boron nitrite (CBN) turning of AISI 52100 bearing steel. Campatelli et al. ap-

plied RSM for minimizing power consumption in the milling of carbon steel. Results of their 

study have indicated that, through process parameters optimization using RSM, it could be 

possible to reduce the environmental impact of machining [CaLS14].  

2.3.2.3 Benefits and drawbacks of RSM 

Response surface methodology is a method for constructing global approximations of the ob-

jective and constraint functions based on functional evaluations at various points in the design 

space. The strength of the method is in applications where gradient based methods fail, i.e. 

when design sensitivities are difficult or impossible to evaluate. However, if the response 

dramatically changes, e.g. due to a change in buckling behavior, further iterations are needed 

to capture this with RSM [RFJM02]. Athisankar et al. have summarized the limitations of the 

method as: 

 Large variations in the factors can be misleading the model fitment. 

 Critical factors may not be correctly defined or specified. 

 Range of levels of factors to narrow or to wide and optimum cannot be defined. 
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 Lack of use of good statistical principles, and 

 Over-reliance on computer that make sure the results for good sense [AtMS14]. 

2.3.3 Nature-inspired meta-heuristic algorithms 

Optimization techniques can be grouped into two broad categories: numeric and stochastic 

approaches. The first group comprises exact algorithmic methods, with a solid mathematical 

foundation, for obtaining the global optimum. Numeric approaches commonly use iterative 

algorithms. They include the gradient-based approaches, the descendent method and the sim-

plex algorithm. On the contrary, stochastic optimization tries to imitate some natural process-

es, which, although they do not guarantee the consecution of the global optimum, they allow 

good enough solutions to be obtained. These heuristics have a strong random component. 

Techniques such as evolutionary algorithms and simulated annealing are included in this 

group [QuDa11]. 

Heuristics is a solution strategy by trial-and-error to produce acceptable solutions to a com-

plex problem in a reasonably practical time. The complexity of the problem of interest makes 

it impossible to search every possible solution or combination, the aim is to find good, feasi-

ble solutions in an acceptable timescale. There is no guarantee that the best solutions can be 

found, and we even do not know whether an algorithm will work and why if it does work. The 

idea is that an efficient but practical algorithm that will work most of the time and be able to 

produce good quality solutions. Among the found quality solutions, it is expected that some of 

them are nearly optimal, though there is no guarantee for such optimality [Yang10a]. 

Further development over the heuristic algorithms is the so-called meta-heuristic algorithms. 

Here meta- means ‘beyond’ or ‘higher level’ and they generally perform better than simple 

heuristics [Yang14a]. Meta-heuristics, in their original definition, are solution methods that 

orchestrate an interaction between local improvement procedures and higher level strategies 

to create a process capable of escaping from local optima and performing a robust search of a 

solution space. Over time, these methods have also come to include any procedures that em-

ploy strategies for overcoming the trap of local optimality in complex solution spaces, espe-

cially those procedures that utilize one or more neighborhood structures as a means of defin-

ing admissible moves to transition from one solution to another, or to build or destroy solu-

tions in constructive and destructive processes [GePo10]. 
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In the most generic term, the main source of inspiration for meta-heuristic algorithms is Na-

ture. Therefore, almost all new algorithms can be referred to as nature-inspired. By far the 

majority of nature-inspired algorithms are based on some successful characteristics of biolog-

ical system. Therefore, the largest fraction of nature-inspired algorithms is biology-inspired, 

or bio-inspired for short. Among bio-inspired algorithms, a special class of algorithms has 

been developed by drawing inspiration from swarm intelligence. Therefore, some of the bio- 

inspired algorithms can be called swarm-intelligence based. In fact, algorithms based on 

swarm intelligence are among the most popular. Good examples are Ant Colony Optimization 

[DoCa99], Particle Swarm Optimization [KeEb95], Cuckoo Search [YaDe09], Bat Algorithm 

[Yang10b], and Firefly Algorithm [FiYB13, FYBF13, Yang09].  

Obviously, not all algorithms were based on biological systems. Many algorithms have been 

developed by using inspiration from physical and chemical systems. Some may even be based 

on music [Loga01]. Though not all of them are efficient, a few algorithms have proved to be 

very efficient and thus have become popular tools for solving real-world problems. Among 

these algorithms, many algorithms such as Particle Swarm Optimization, Cuckoo Search and 

Firefly Algorithm, have gained popularity due to their high efficiency. In the current litera-

ture, there are about 40 different algorithms. Fister et al. divided all existing algorithms into 

four major categories: swarm intelligence-based, bio-inspired (but not SI-based), phys-

ics/chemistry-based, and others [FYBF13]. For the sake of more convenience, five examples 

per each of the above categories are shown in Figure 2.16. 

Mathematically speaking, it is possible to write an optimization problem in the generic form: 
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where )(xif , )(xj and )(xk are functions of the design vector 

x T
nxxx ).........,,,( 21  (2.39) 

where the components ix  of x ; are called design or decision variables, and they can be real 

continuous, discrete or a mixture of these two. The functions )(xif  where ).....,,2,1( Mi  are 

called the objective functions, and in the case of M = 1, there is only a single objective. The 
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objective function is sometimes called the cost function or energy function in literature. The 

space spanned by the decision variables is called the search space n , while the space formed 

by the objective function values is called the solution space [Yang10a].  

 

Figure 2.16: Classification of nature-inspired meta-heuristic algorithms. 

In the next incoming subsections, a brief description of some of the efficient algorithms which 

have been adopted for machining processes optimization is provided. 

2.3.3.1 Simulated Annealing (SA) 

SA was proposed by Kirkpatrick, Gelatt, and Vecchi (1983) to find the optimal global cost 

function that may possess several local optima [KiGV83]. Unlike most heuristic optimization 

methods, Simulated Annealing process uses single-point search method. It mimics the anneal-

ing process in material processing when a metal cools and freezes into crystalline state with 

minimum energy and larger crystal size so as to reduce the defects in metallic structures. The 

SA procedure simulates this process of slow cooling of molten metal to achieve the minimum 

function value in a minimization problem. According to the Boltzmann probability distribu-

tion, a system in thermal equilibrium at a temperature T has its energy distributed probalisti-

cally according to: 
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where bk  is the Boltzmann constant. Let us assume at any instant the current point x(t) and the 

function value at that point is E(t)= f (x(t)). Using the Metropolis algorithm, we can say that 

the probability of the next point being at x(t+1) depends on the difference in the function values 

at these two points or on 
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and is calculated using the Boltzmann probability distribution: 
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If ∆E ≤ 0, this probability is one and the point x(t+1) is always accepted. In the function mini-

mization context, this makes sense because if the function value at x(t+1) is better than x(t), the 

point x(t+1) must be accepted. If ∆E > 0, then the function value at x(t+1) is worse than at x(t). 

According to many traditional algorithms, the point x(t+1) must not be chosen in this situation. 

But according the Metropolis algorithm, there is some finite probability of selecting the point 

x(t+1) even though it is a worse than the point x(t). The algorithm terminates when a sufficiently 

small temperature is obtained or small enough change in function value is found [Deb09]. 

This can be summarized in the following steps: 

Step 1: Choose an initial point x(0) and a termination criterion Θ. Set T a sufficiently high val-

ue, number of iterations to be performed at a particular temperature n, and set t =0. 

Step 2: Calculate a neighboring point x(t+1) = N(xt). Usually, a random point in the neighbor-

hood is created. 

Step 3: If ∆E = E(x(t+1)) − E(x(t)) < 0, set t = t + 1; 

Else create a random number (r) in the range (0,1). If r ≤ exp(−∆E/T), set; t = t + 1 

Else go to Step 2. 

Step 4: If  | x(t+1) − xt | < Θ and T is small, Terminate;  

Else if (t mod n) = 0 then lower T according to a cooling schedule. 

Go to Step 2; 

Else go to Step 2.  
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Despite the numerous capabilities of SA, its application in optimization of cutting conditions 

for various machining performances was given less attention by researchers. Earlier, Chen 

and Tsai developed an optimization algorithm based on the SA algorithm and the Hooke-

Jeeves pattern search (PS) for optimization of multi-pass turning operations. Experimental 

results indicate that the proposed nonlinear constrained optimization algorithm, named 

SA/PS, is effective for solving complex machining optimization problems [ChTs96]. Khan et 

al. have concluded that Genetic Algorithm (GA), SA and the continuous SA which are non-

gradient based optimization techniques are reliable and accurate for solving machining opti-

mization problems and offer certain advantages over gradient based methods [KhPS97]. Juan 

et al. applied SA to the polynomial network to determine the optimal cutting parameters for 

minimum production cost in high speed machining SKD61 tool steels [JuYL03]. Wnag et al. 

used Genetic Simulated Annealing (GSA), which is a hybrid of GA and SA, to determine op-

timal machining parameters for milling operations. For comparison, basic GA is also chosen 

as another optimization method. An application example that has previously been solved us-

ing geometric programming method is presented. The results indicate that GSA is more effi-

cient than GA and geometric programming in the application of cutting optimization 

[WaWR04]. Zain et al. presented the estimation of the optimal effect of the radial rake angle 

of the tool, combined with cutting speed and feed in influencing the surface roughness result 

during end milling Ti-6Al-4V alloy. They concluded that SA is an effective tool for estimat-

ing the minimum surface roughness values as compared to the experimental and regression 

modeling results [ZaHS10].  

2.3.3.2 Accelerated Particle Swarm Optimization (APSO) 

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhard (1995) based 

on the swarm behavior such as fish and bird schooling in nature [KeEb95]. Since then, PSO 

has generated much wider interests and forms an exciting, ever expanding research subject 

called swarm intelligence. This algorithm searches the space of an objective function by ad-

justing the trajectories of individual agents, called particles, as the piecewise paths formed by 

positional vectors in a quasi-stochastic manner.  

The PSO selects a number of particles to represent a swarm. Each particle in the swarm is a 

potential solution to the optimization problem under consideration. A particle explores the 

search domain by moving around. This move is decided by making use of its own experience 

and the collective experience of the swarm. Each particle has three main parameters: position, 
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velocity, and fitness. Position represents the decision variables of the optimization problem, 

velocity determines the rate of change of the position, and fitness is the value of the objective 

function at the particle’s current position. The fitness value is a measure of how good is the 

solution it represents for the optimization problem [YaKa13].  

The movement of a swarming particle consists of two major components: a stochastic com-

ponent and a deterministic component. Each particle is attracted toward the position of the 

current global best g*and its own best location *
ix in history, while at the same time it has a 

tendency to move randomly. Let xi and vi be the position vector and velocity of particle i, re-

spectively. The new velocity vector is determined by the following formula: 
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Where 1 and 2 are two random vectors drawn from a uniform distribution and ς is the ran-

domization factor. The parameters ς and Ω are the learning parameters and acceleration con-

stants, which can typically be taken as, say, ς = Ω =2. The initial locations of all particles 

should be distributed relatively uniformly so that they can sample over most regions, which is 

especially important for multimodal problems. The initial velocity of a particle can be taken 

as zero, i.e., 00 t
iv  [YaKa13]. The new positions can then be updated by: 
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In Figure 2.17, a flowchart of the standard PSO algorithm is shown.  

PSO is now widely used in solving tough optimization problems due to its low computational 

complexity, easy implementation and relatively few parameters. However, PSO also has sev-

eral major shortcomings; it may suffer from premature convergence for highly multimodal 

problems. To overcome this, there are many PSO variants, which have been formed mainly by 

slight variations of certain terms and parameters in the PSO, especially by introducing inertia 

parameter and by hybridizing with other algorithms. Among many variants of PSO, the most 

noticeable improvement is possibly the use of inertia function Λ(t) so that t
iv is replaced by 
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where Λ takes the value between 0 and 1. In the simplest case, the inertia function can be tak-

en as a constant, typically Λ≈ 0.5 − 0.9.  
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Figure 2.17: Flow chart of the PSO algorithm. 

The standard PSO uses both the current global best g* and the individual best *
ix . The reason 

of using the individual best is primary to increase the diversity in the quality solutions. How-

ever, this diversity can be simulated using some randomness. Subsequently there is no com-

pelling reason for using the individual best, unless the optimization problem of interest is 

highly nonlinear and multimodal. A simplified version which could accelerate the conver-

gence of algorithm is to use the global best only. Thus, in the accelerated PSO, the velocity is 

generated by a simpler formula: 
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where  is a random variable with values from 0 to 1. Here the shift ½ is purely out of conven-

ience. We can also use a standard normal distribution n  where n is drawn from N (0,1) to 

replace the second term.  

In order to increase the convergence even further, we can also write the update of the location 

in a single step as 

n
t
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t
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This simpler version will give the same order of convergence. It is worth pointing out that the 

velocity does not appear in the last equation, and thus there is no need to deal with the initiali-
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zation of velocity vectors. Therefore, the accelerated PSO is much simpler to implement. Here 

the randomization term n provides the ability for the system to escape any local optima if

is chosen to be consistent with the scales of the problem of interest [Yang14a]. 

Many researchers and practitioners used PSO in metal cutting process parameter optimization 

problems. Chandrasekaran et al. reviewed the application of major soft computing tools such 

as neural networks, fuzzy sets, GA, SA, ACO, and PSO to four traditional machining pro-

cesses, namely turning, milling, drilling, and grinding. The paper highlights the progress 

made in this area and discusses the issues that need to be addressed [CMKD10]. Costa et al. 

addressed the machining economies problem concerning the multi-pass turning by a Hybrid 

Particle Swarm Optimization technique (HPSO). The significant outcomes of the research 

highlighted that HPSO can be taken into account as a useful and powerful technique for opti-

mizing machining problems [CoCF11]. Yusup et al. gave an overview of PSO techniques to 

optimize machining process parameter of both traditional and modern machining from 2007 

to 2011. From their review, the most machining process considered in PSO was multi-pass 

turning while the most considered machining performance was production costs [YuZH12]. 

Escamilla-Salazar et al. used PSO to optimize machining parameters in high speed milling 

processes where multiple conflicting objectives are presented. The relationships between ma-

chining parameters and the performance measures of interest are obtained by using experi-

mental data and a hybrid system using a PSO and a neural network. Results showed that PSO 

is an effective method for solving multi-objective optimization problems and also that an in-

tegrated system of neural networks and swarm intelligence can be used to solve complex ma-

chining optimization problems [ETGZ13]. Recently, Marco et al. presented a proposal, how 

to successfully gain optimal cutting parameters for certain performances using PSO 

[MSTM14]. 

2.3.3.3 Firefly Algorithm (FA) 

FA is one of the recent swarm intelligence methods developed by Yang in 2008 and is a kind 

of stochastic, nature-inspired, meta-heuristic algorithm that can be applied for solving the 

hardest optimization problems. The algorithm is inspired by the flashing lights of fireflies in 

nature. Such flashing light may serve as the primary courtship signals for mating. Besides 

attracting mating partners, the flashing light may also serve to warn off potential predators. 

The algorithm has been formulated by assuming: 
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 All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of 

their sex. 

 Attractiveness is proportional to their light intensities. The less bright will be moving to-

wards the brighter one. It will move randomly if there is no brighter one.  

 The brightness of a firefly is affected or determined by the landscape of the objective 

function. 

The light intensity and attractiveness are in some way synonymous. While the intensity is 

referred to as an absolute measure of emitted light by the firefly, the attractiveness is a relative 

measure of the light that should be seen in the eyes of the beholders and judged by other fire-

flies. The attractiveness )( ra   and light intensities I )( r  of each firefly are considered to 

decrease monotonically depending on the distance r  as: 
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where 
0a  and 

0t
I  denote the maximum attractiveness and  light intensities respectively (i.e. 

at δr = 0), and γa is the light absorption coefficient, which controls the decrease of the light 

intensity. The light intensity It of a firefly representing the solution xi and is proportional to 

the value of fitness function )()( iit xfxI  . The distance between any two fireflies xi and xj is 

expressed as the Euclidean distance by the base Firefly Algorithm, as follows: 
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where dm denotes the dimensionality of the problem. The movement of the i-th firefly is at-

tracted to another more attractive firefly j. In this manner, the following equation is applied: 
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where g is a random number drawn from Gaussian distribution and rand  is the randomiza-

tion parameter.  
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In summary, FA is controlled by three parameters: the attractiveness a , and the absorption 

coefficient a  and the randomization parameter rand  [FiYB13]. The basic steps of the Firefly 

Algorithm (FA) can be summarized as the flow chart and shown in Figure 2.18. 

 

Figure 2.18: Flow chart of the Firefly Algorithm (FA). 

Very few applications of FA in metal cutting process parameter optimization problems have 

been reported in the literature. Raja et al. implemented FA for selecting the optimal electric 

discharge machining parameters to achieve the desired performance measures. The predicted 

and actual machining performances revealed that FA was very much suitable for solving ma-

chining parameters optimization problems [BSVR13]. Belloufi et al. presented FA optimiza-

tion for solving the multi-pass turning operations problem. The results obtained from compar-

ing the Firefly Algorithm with those taken from recent literature proved its effectiveness 

[BeAR14]. 

2.3.3.4 Cuckoo Search (CS) 

CS is one of the latest nature-inspired meta-heuristic algorithms, developed by Xin-She Yang 

and Suash Deb [YaDe09].  It is inspired by lifestyle of a bird family called cuckoo. Specific 

egg laying and breeding of cuckoos is the basis of this optimization algorithm. Like other 

evolutionary algorithms, the proposed algorithm starts with an initial population of cuckoos. 

These initial cuckoos have some eggs to lay in some host birds’ nests. Some of these eggs 

which are more similar to the host bird’s eggs have the opportunity to grow up and become a 
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mature cuckoo. Other eggs are detected by host birds and are killed. The grown eggs reveal 

the suitability of the nests in that area. The more eggs survive in an   

 Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest; 

 The best nest with high-quality eggs will be carried over to the next generation; 

 The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by 

the host bird with a probability ap  between 0 and 1.  In this case, the host bird can either 

get rid of the egg, or simply abandon the nest and build a completely new nest.  

The CS algorithm uses a balanced combination of a local random walk and the global ex-

plorative random walk, controlled by a switching parameter ap . The local random walk can 

be written as 
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where t
jx and t

kx are two different solutions selected randomly by random permutation, H( ) 

is a Heaviside function and   is a random number drawn from a uniform distribution. On the 

other hand, the global random walk is carried out by using Lévy flights 
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where is the expectation of occurrence and s  is the step length, and  
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Here 0z  is the step size scaling factor, which should be related to the scales of the prob-

lem of interest. The above equation is essentially the stochastic equation for a random walk. 

In general, a random walk is a Markov chain whose next state/location only depends on the 

current location (the first term in the above equation) and the transition probability (the sec-

ond term). However, a substantial fraction of the new solutions should be generated by far 

field randomization and their locations should be far enough from the current best solution; 

this will make sure that the system will not be trapped in a local optimum [Yang14b]. Based 

on the previous descriptions, the basic steps of the CS algorithm can be summarized as flow 

chart and is shown in Figure 2.19. 
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Figure 2.19: Flow chart of the Cuckoo Search (CS). 

The algorithm is recently applied for solving manufacturing optimization problems. Yildiz 

successfully implemented CS to the optimization of machining parameters in milling opera-

tions. Significant improvement is obtained with the CS compared to the feasible direction 

method, Ant Colony Algorithm, Immune Algorithm, HPSO, Hybrid Immune Algorithm, Ge-

netic Algorithm and handbook recommendations [Yild13b].  Mellal and Williams carried out 

multi-pass turning parameter optimization using CS. The obtained results are compared with 

previously published results available in the literature. It has been proven that the CS com-

petes robustly with a wide range of optimization algorithms [MeWi14]. 

2.3.3.5 Bat Algorithm (BA) 

Bat Algorithm (BA) is a population-based swarm intelligence algorithm which is inspired by 

the echolocation of microbats. Echolocation is an advanced hearing based navigation system 

used by bats and some other animals to detect objects in their surroundings by emitting a 

sound to the environment. In general echolocation calls are characterized by three features; 

namely pulse frequency, pulse emission rate and loudness (intensity). In general the frequency 

qf  in a range [
minqf ,

maxqf ] corresponds to a range of wavelengths [
minw ,

maxw ]. For example a 

frequency range of [20kHz, 500kHz] corresponds to a range of wave-lengths from 0.7mm to 

17mm in reality. Obviously, one can choose the ranges freely to suit different applications. In 
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order to develop a standard Bat Algorithm, the following approximate or idealized rules are 

applied: 

 All bats use echolocation to sense distance, and they also ‘know’ the difference between 

food/prey and background barriers in some magical way; 

 Bats fly randomly with velocity vi at position xi with a frequency
minqf , varying wavelength 

and loudness 
0l

A  to search for prey. They can automatically adjust the wavelength (or fre-

quency) of their emitted pulses and adjust the rate of pulse emission r  ∊ [0, 1], depend-

ing on the proximity of their target; 

 Although the loudness can vary in many ways, we assume that the loudness varies from a 

large (positive) 
0l

A  to a minimum constant value 
minlA .  

For the bats in simulations, we have to define the rules how their positions xi and velocities vi 

in a d-dimensional search space are updated. The new solutions t
ix and velocities t

iv at time 

step t are given by: 

rqqqq ffff
i

)(
minmaxmin

  (2.55) 

iq
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i
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i
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t
i

t
i

t
i vxx 1  (2.57) 

where r 	∈ [0, 1] is a random vector drawn from a uniform distribution. Here x* is the current 

global best location (solution) which is located after comparing all the solutions among all the 

n bats at each iteration t. The loudness and pulse rate can vary with iteration t in the following 

way: 

t
l

t
l ii

ACA 1
1   (2.58) 

 )exp(1 2
01 tCir

t
ri

   (2.59) 

Here C1 and C2 are constants. In fact, C1 is similar to the cooling factor of a cooling schedule 

in the SA, which is discussed earlier. In the simplest case, we can use C1= C2, and in fact C1 = 

C2 =0.9 can be used in most simulations.  

Bat Algorithm has been extended to Multi-Objective Bat Algorithm (MOBA) by Yang, and 

preliminary results suggested that it is very efficient [YaHo12, YaKa13, Yang10b, Yang11, 
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Yang14a]. Based on the above approximations and idealization, the basic steps of the BA can 

be summarized as the flow chart shown in Figure 2.20. 

 

Figure 2.20: Flow chart of the Bat Algorithm (BA). 

2.3.4 Multiple Attribute Decision Making (MADM) methods 

Making decisions is a part of our daily lives. The major concern is that almost all decision 

problems have multiple, usually conflicting, criteria. Researches on how to solve such prob-

lems has been enormous. Methodologies, as well their applications, appear in professional 

journals of different disciplines. Diversifies as such problems may be, they are broadly classi-

fied into two categories: (1) Multiple Attribute Decision Making (MADM) and (2) Multiple 

Objective Decision Making. MADM is the most well-known branch of decision making. It is 

a branch of a general class of operations research models that deal with decision problems 

under the presence of a number of decision criteria. The MADM approach requires that the 

choice (selection) be made among decision alternatives described by their attributes. MADM 

problems are assumed to have a predetermined, limited number of decision alternatives. Solv-

ing a MADM problem often involves sorting and ranking. On the other hand, in the MODM 

approach, contrary to the MADM approach, the decision alternatives are not given. Instead, 

MODM provides a mathematical framework for designing a set of decision alternatives. Each 

alternative, once identified, is judged by how close it satisfies an objective or multiple objec-
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tives. In the MODM approach, the number of potential decision alternatives may be very 

large [Kahr08, LaHw96]. 

In mathematical terms, that formulation of every MADM method starts with the construction 

of a decision matrix. A decision matrix ( DMA ) is a (m×n) matrix whose element ( ijx ) indi-

cates the performance rating of alternative i, i , with respect to attribute j, j . Hence i , for 

i=1, 2, ….., m is denoted by: 

 (2.60) 

and j  for j=1,2,3,……,n is denoted by: 

 (2.61) 

In Eq. (2.62), an example of typical decision matrix elements is presented:  
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 (2.62) 

It may be added here that in any MADM method, even though the weights of different attrib-

utes with respect to the objective, wj (for j=1, 2, ….. ,m), are decided by the decision maker 

rather arbitrarily, only few systematic methods can be used. Standard deviation, entropy-

based methods analytical hierarchy process (AHP) are among the most commonly used sys-

tematic approaches to estimate the weight of the various attributes from the given payoff ma-

trix. An advantage of utilizing the first two methods is that the estimation of the attribute 

weights is independent of the views of the decision maker. The systematic methods of decid-

ing the weights of attributes are explained below. 

 Standard deviation method 

According to the standard deviation method, the larger the dispersion degree of the attribute j, 

the larger is the corresponding weight ( jw ): 

)........,,,( 21 iniiF xxxA 

)........,,,( 21 mjjjj xxx
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 n

j
j

j
j

STDV

STDV
w

1

 
(2.63) 

where jSTDV  represent the standard deviation of the j attribute.  

 Entropy method 

Shannon and Weaver [ShWe49] proposed the entropy concept and this concept has been high-

lighted by Zeleny [Zele98] for deciding the objective weights of attributes. Entropy is a meas-

ure of uncertainty in the information formulated using probability theory. It indicates that a 

broad distribution represents more uncertainty than does a sharply peaked one. The process of 

calculation of Entropy weights can be divided into the following steps: 

Step1: For a given normalized DMA, ijr , estimate entropy Ej of the set of alternatives for at-

tribute j:  

)ln(
)ln(

1

1
ij

m

i
ijj rr

m
E 



  (2.64) 

for i =1, 2,…., m and  j=1, 2, ...., n.   

Step 2: Compute degree of diversification jDV  of the information provided by the outcomes 

of attribute j:  

jj EDV 1  (2.65) 

Step 3: Normalized weights of the criterion are  




 n

j
j

j
j

DV

DV
w

1

 
(2.66) 

If the entropy value is high, the uncertainty contained in the criterion vector is high (Step 1), 

diversification of the information is low (Step 2) and correspondingly the criterion is less im-

portant (Step 3).  

 AHP 

As mentioned before, both of the standard deviation method and entropy method calculate the 

objective weights of the attributes without giving any consideration to the preferences of the 
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decision maker [RaKu10]. However, if the preferences of the decision maker are to be ad-

dressed, the AHP weight assignment method should be employed. AHP, which is one of the 

most popular analytical techniques for complex decision-making problems, can be effectively 

applied to obtain the weights of non-tangible (i.e., subjective) attributes, especially where the 

subjective judgments of different individuals constitute an important part of the decision pro-

cess. The main procedure of AHP’s weight assignment method is as follows: 

Step 1: Construct a pairwise comparison matrix using scale of relative importance. An attrib-

ute compared with itself is always assigned the value 1, so the main diagonal entries of the 

pair-wise comparison matrix are all 1. Assuming N attributes, the pair-wise comparison of 

attribute i with attribute j yields a square matrix B =N * N. In the matrix, bij = 1 when i = j and 

bij = 1/bij. Where bij denotes the comparative importance of attribute i with respect to attribute 

j. 
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 (2.67) 

Step 2: Find the relative normalized weight (wj) of each attribute by calculating the geometric 

mean of the i-th row and normalizing the geometric means of rows in the comparison matrix. 

These can be represented as; 

n
n

j
ijlM bG

j
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 (2.68) 
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(2.69) 

Step 3:  Perform calculations to find the consistency ratio (CR). A CR of equal or less than 0.1 

indicates that the consistency of individual judgment is acceptable. To determine the CR: 

a) Calculate matrices A3 and A4 such that A3 = B*A2 and A4 = A3 /A2, where A2 = [w1, w2, 

….., wj ]
T.  
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b) Determine the maximum Eigen value λmax that is the average of matrix A4. 

c) Calculate the consistency index (CI) using: 

1
max





n

n
CI


 (2.70) 

d) Calculate the CR: 

RI

CI
CR   (2.71) 

where RI is the random index . 

The next incoming subsections will focus on the MADM methods whose number of alterna-

tives has been predetermined. Through which, the decision maker is guided to se-

lect/prioritize/rank a finite number of courses of action.  

2.3.4.1 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

Multiple attribute decision making methods such as Technique for Order Preference by Simi-

larity to Ideal Solution (TOPSIS) is utilized to convert the multi-objective optimization of 

many objectives into a single objective optimization problem. The technique is based on the 

concept that the chosen alternative should have the shortest Euclidean distance from the ideal 

solution. The ideal solution is a hypothetical solution for which all attribute values correspond 

to the maximum attribute values in the database comprising the satisfying solutions; the nega-

tive-ideal solution is the hypothetical solution for which all attribute values correspond to the 

minimum attribute values in the above-mentioned database. TOPSIS, thus, gives a solution 

that is not only closest to the hypothetically best, but which is also farthest from the hypothet-

ically worst.  The steps involved for calculating the TOPSIS values are as follows: 

Step 1: Formulate the multi-performance problem in DM format as per Eq. (2.62).  

Step 2: Construct the normalized decision matrix, Rij whose elements can be represented as: 





m

i
ij

ij
ij

x

x
r

1

2

 
(2.72) 

Step 3: Construct the weighted normalised decision matrix. This is obtained by the multiplica-

tion of each element of the column of the matrix Rij with its associated weight wj. Hence, the 

elements of the weighted normalized matrix are expressed as:  
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ijjij rw  (2.73) 

Step 4: Determine the “ideal” (best) and “negative ideal” (worst) solutions. The ideal (best) 

and negative ideal (worst) solution can be expressed as: 
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Where, J is the set of cost type criteria and J′ is the set of benefit type criteria.  

Step 5: Obtain the separation measures. The separation of each alternative from the ideal one 

is given by Euclidean distance. Therefore, the separation from positive ideal alternative is: 
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iijiS
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2** )(   (2.76) 

Similarly, the separation from the negative ideal alternative is: 
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Step 6: The relative closeness of a particular alternative to the ideal solution Ci
* can be evalu-

ated as: 

*
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i
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 (2.78) 

10;......,,2,1 *  iCmi  

Step 7: Rank the preference order, so that the alternative that has the shortest distance to the 

ideal solution is ranked first [ChSr13, LaHw96, SiDM11]. 

TOPSIS has been used to solve MADM problem in various scenarios. Rao and Davim sug-

gested a logical procedure based TOPSIS and AHP together to help in selection of a suitable 

material from among a large number of available alternative materials for a given engineering 

application [RaDa08]. Singh et al. adopted TOPSIS in combination with Taguchi’s robust 

design philosophy to optimize multiple surface roughness parameters of machined glass fiber 

reinforced polymer [SiDM11]. Sivapirakasam et al. developed a combination of Taguchi and 
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fuzzy TOPSIS methods to solve multi-response parameter optimization problems in green 

manufacturing.  The model can be used as a systematic framework for parameter optimization 

in environmentally conscious manufacturing processes [SiMS11]. Thirumalai and Senthilku-

maar proposed TOPSIS for selecting a single solution from non-dominated solutions obtained 

by non-sorted genetic algorithm for multi-objective functions of high-speed machining of 

Inconel 718 [ThSe13].  

TOPSIS is useful when dealing with a large number of alternatives and attributes, good for 

both qualitative and quantitative data, relatively easy and fast. The output can be a preferential 

ranking of the candidate materials [JaEd13a]. However, the method based on Euclidean dis-

tance does not consider correlation between indices, thus causing information overlap which, 

in turn, affects the decision results. Thus, the reduction of indicator correlation within the ap-

plication often relies on qualitative analysis, the aim being to try to increase index independ-

ence during the process of index screening. These conditions make this approach strongly 

subjective [WaWa14]. 

2.3.4.2 VIKOR method 

The VIKOR method was originally introduced in 1998 for multi-criteria optimization of com-

plex systems. It determines the compromise ranking-list, the compromise solution, and the 

weight stability intervals for preference stability of the compromise solution obtained with the 

initial (given) weights. This method focuses on ranking and selecting from a set of alterna-

tives in the presence of conflicting criteria. It introduces the multi-criteria ranking index based 

on the particular measure of ‘‘closeness’’ to the ‘‘ideal’’ solution. It is developed from the 

Lp-metric used as an aggregating function in a compromise programming method [Yu73, 

Zele98]. The method involves the following steps: 

Step 1: Arrange the elements of the MADM problem in DMA format as per Eq. (2.62).  

Step 2: Determine the best *
ix  and the worst 

ix values of all attribute functions. If the ith 

function represents a benefit then: 

ij
j

i xx max*   (2.79) 

ij
j

i xx min  (2.80) 

Step 3: Compute the values of utility measure iS and regret iR measure by the relations: 
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Step 4: Compute the VIKOR index ( VQ ) values for attribute  j=1,2,…..,n, by the relation 
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where  

jj SS min*  , jj SS max ,  

jj RR min*   jj RR max . 

 is introduced as weight of the strategy of ‘‘the majority of criteria’’ (or ‘‘the maximum 

group utility’’), usually 5.0 . 

Step 5: Rank the alternatives, sorting by the values S, R and VQ . The results are three ranking 

lists. 

Step 6: For given attribute weights, propose a compromise solution, alternative 
1bA , which is 

the best ranked by VQ , if the following two conditions are satisfied:  

Condition 1: ‘Acceptable advantage  -m/  AQ-AQ bVbV 1))((1)()(
12
  where 

1bA  and 
2bA  are the 

first and second-best alternatives in the ranking order by VQ . 

Condition 2: ‘Acceptable stability in decision making’ alternative 
1bA  must also be the best 

ranked by S and/or R. This compromise solution is stable within a decision-making process, 

which could be: ‘voting by majority rule’ (when ξ > 0.5 is needed) or ‘by consensus’ (when 

ξ≈ 0.5) or ‘with veto’ (when ξ < 0.5). If one of the conditions is not satisfied, then a set of 

compromise solutions is proposed, which consists of:  

 Alternatives 
1bA  and 

2bA  if only condition 2 is not satisfied.   

 Alternatives 
1bA , 

2bA  , ……, 
ibA if condition 1 is not satisfied; Ap is determined by the 

relation  -m/  AQ-AQ bVbV 1))((1)()(
12
 [OpTz04].  

MADM using VIKOR method has attracted the attention of industrial decision makers recent-

ly. For example, Çalıskan et al. solved the material selection problem for the tool holder 

working under hard milling conditions utilizing a decision model. The model included PRO-
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METHEE (Preference Ranking Organization METHod for Enrichment Evaluation), TOPSIS 

and VIKOR methods for the ranking of the alternative materials according to determined cri-

teria [ÇKKG13]. Jahan and Edwards presented new VIKOR method for ranking materials 

with simultaneous availability of interval data and all types of criteria. It has been shown that 

the proposed method is able to address effectively mixed data, with precise and imprecise 

values, and with interval data [JaEd13b]. 

The VIKOR is an effective tool in the MADM, particularly in a situation where the decision 

maker is not able, or does not know how to describe his/her preference at the beginning of 

system design. The obtained compromise solution can be accepted by the decision maker’s 

because it provides a maximum group utility of the majority represented by min S and a min-

imum of the individual regret of the opponent represented by min R. The compromise solu-

tions can be the basis for negotiations containing the decision maker’s preference by criteria 

weights [OpTz04]. Although the VIKOR method is an effective tool for MADM problems, 

some errors would occur when some attributes have no difference among the alternatives, the 

utility measure has no difference among the alternatives and the regret measure has no differ-

ence among the alternatives [Chan10]. 

2.3.4.3 Grey relational analysis  

A system that has none of information is defined as a black system, while a system that is full 

of information is called white. Systems between these extremes are described as being grey, 

hazy, or fuzzy. Therefore, a grey system means that a system in which a part of information is 

known and a part of information is unknown. Grey systems theory was initiated by Deng in 

1982. The system has three approaches such as grey relational analysis (GRA), grey cluster-

ing, grey decision making [Julo82, Julo89].  

GRA is an impact evaluation model that measures the degree of similarity or difference be-

tween the comparability sequence and the reference sequence based on the grade of relation 

known as grey relational grade (GRG) [ChTo07]. So that, if an alternative gets the highest 

gray relational grade with the reference sequence, it means that comparability sequence is 

most similar to the reference sequence and that alternative would be the best choice [Fung03]. 

In recent years, the grey relational analysis has become the powerful tool to analyse the pro-

cesses with multiple performance characteristics. It has been widely applied in the last fifteen 

years in several research fields [Yin13]. It provides an efficient solution to multi-input and 

discrete data problems. In grey relational analysis, the complex multiple response optimiza-
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tion problem can be simplified into an optimization of single response grey relational grade 

[Rao11a]. The procedure for determining the grey relational grade is discussed below: 

Step 1: Perform grey relational generation 

In GRA, when the range of sequences is large or the standard value is large, the function of 

factors is neglected. However, if the factors measured unit, goals and directions are different, 

the Grey Relational Analysis might produce incorrect results. Therefore, original experi-

mental data must be pre-processed to avoid such effects. Data pre-processing is the process of 

transforming the original sequence to a comparable sequence. For this purpose, the experi-

mental results are normalized in the range of zero and one, the process is called grey relational 

generation. The normalized values rij are determined by use of the Eq. (2.84), based on the 

response types which are for beneficial type (i.e. larger-the-better), target type (nominal-the-

best) and non-beneficial type (i.e. smaller-the-better). 
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where *
jx is closer to the desired value of jth response. 

Step 2: Generate references  

In comparability sequence, all performance values are scaled to [0, 1]. For a response j of ex-

periment i, if the value rij which has been processed by data pre-processing procedure is equal 

to 1 or nearer to 1 than the value for any other experiment, then the performance of experi-

ment i is considered as best for the response j. The reference sequence R0 is defined as (r01, r02, 

…, r0j,…, r0n) = (1, 1, …, 1, …, 1), where r0j is the reference value for jth response and it aims 

to find the experiment whose comparability sequence is the closest to the reference sequence. 

Step 3: Find the deviation sequence )( ij , global minimum )( min  and maximum value 

)( max in the difference series using the following Eqs.: 

,0 ijjij rr   (2.85) 
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 ,.....,,2,1;.....,,2,1,minmin njmiij   (2.86) 

 ,.....,,2,1;.....,,2,1,maxmax njmiij   (2.87) 

Step 4: Gray relational coefficient ( g ):  

Gray relational coefficient is used for determining how close rij is to r0j. The larger the grey 

relational coefficient, the closer rij and r0j are. The gray relational coefficient can be calculated 

by Eq.2.83 . 
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The factor d  is the distinguishing coefficient used to compensate for the effect of the data 

series and is defined as ]1,0[d . Generally, for equal weight performance characteristics, the 

value of d can be set to 0.5. 

Step 5: Grey relational grade (GRG): the measurement formula for quantification in gray rela-

tional space is called the gray relational grade. A gray relational grade (gray relational degree) 

is a weighted sum of the grey relational coefficients and it can be calculated using Eq. (2.84). 
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Many papers have proposed GRA as aids in multi-performance optimization of machining 

processes. Kao and Hocheng applied the grey relational analysis for optimizing the elec-

tropolishing of EN 1.4404 stainless steel with multiple performance characteristics. The con-

ducted validation experiments approved the effectiveness of the GRA [KaHo03]. Lin ad-

dressed an approach based on the Taguchi method with grey relational analysis for optimizing 

turning operations with multiple performance characteristics. It is shown that the performance 

characteristics of the turning operations such as tool life, cutting force, and surface roughness 

are improved together by using the method proposed by this study [Lin04]. Tosun used GRA 

for optimizing the drilling process parameters for the work piece surface roughness and the 

burr height is introduced. Experimental results have shown that both performances can be 

improved effectively through the new approach [Tosu06]. Ching and Lu employed orthogonal 
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array with grey-fuzzy logics to optimize the multiple performance characteristics of heavy 

cutting in side milling for EN 1.4301 stainless steel. The grey relational coefficients are used 

as indications to the relational degree of the multiple performance characteristics and Fuzzy 

logic to perform the fuzzy reasoning of the multiple performance characteristics. The results 

of confirmation experiments reveal that grey-fuzzy logics can effectively acquire an optimal 

combination of the cutting parameters [ChLu07]. Horng and Chiang focused on the develop-

ment of a fast and effective algorithm to determine the optimum manufacturing conditions for 

turning Hadfield steel with Al2O3/TiC mixed ceramic tool by coupling the grey relational 

analysis with the fuzzy logic [HoCh08]. Lu et al. presented the application of GRA coupled 

with principal component analysis for optimizing the cutting parameters of rough cutting pro-

cess in high-speed end milling operation for SKD61 tool steel. The authors claimed that the 

proposed algorithm have greatly simplified the optimization design of cutting parameters with 

multiple performance characteristics [LCHC09]. Ranganathan and Senthilvelan considered 

the multi-response optimization of machining parameters in hot turning of stainless steel EN 

1.4404 based on a coupled Taguchi technique and GRA. Significant improvement in hot turn-

ing performances has been achieved using the coupled approach [RaSe11]. Yan and Li evalu-

ated trade-offs between sustainability, production rate and cutting quality through a multi-

objective optimization approach based on weighted GRA and RSM during milling AISI 1045 

carbon steel. The optimization results confirmed the usefulness of the proposed optimization 

method in multi-objective optimization of cutting parameters [YaLi13]. Nayak et al. opti-

mized the influence of machining parameters on material removal rate, cutting force and sur-

face roughness during dry machining of EN 1.4301 austenitic stainless steel. The GRA was 

adopted to optimize the machining parameters in turning operation. A conducted confirmatory 

test observed an improvement of 88.78% in GRG in supporting the findings of the research 

[NPDG14].  

Finally, GRA is a multi-factor analysis method with good and broad applicability. It can de-

fine system or factor boundary, analyze the influence of system and behavior, distinguish 

primary and secondary factors and so on [JiLi12]. However, GRA only presents the similarity 

between two curve collections. It cannot figure out the similar level of two curve collections’ 

trend [ZhXi14].  
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2.3.4.4 Utility concept (UC) 

Utility can be defined as the usefulness of a product in response to the expectations of the 

customers/users. It is the measure of the characteristic of a product to meet the customers’ 

requirements. The overall usefulness of a process/product can be represented by a unified 

index termed as utility which is the sum of the individual utilities of various quality character-

istics of the process/product. The methodological basis for the utility approach is to transform 

the estimated response of each quality characteristic into a common index. If xj is the measure 

of performance of jth attribute and there are i=1, 2, …., m alternatives in the entire selection 

space, then the joint utility function can be expressed as: 

))(),.....,(),((),.....,,( 221121 nnn xUxUxUfxxxU   (2.91) 

where )( 11 xU  is the utility of jth attribute and n is the total number of evaluation attributes. 

The overall utility function is the sum of individual utilities if the attributes are independent, 

and is given as follows: 
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Depending upon the requirements, the attributes may be given priorities and weights. Hence, 

the weighted form of Eq. 22 is: 
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where, jw is the weight of jth attribute. To determine the utility values the following proce-

dural steps are necessary: 

Step 1: Assign best values of each attribute ( *
jx ) based on the preference measure. For exam-

ple, if the performance is of non-beneficiary type, then   

)min(*
jj xx   (2.94) 

Step 2: Calculate the utility constant ( CU ). The value of  CU  can be found using the expres-

sion: 
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where jx  is just acceptable value of quality characteristic for jth attribute. Hence, jx is equal 

to the )(min jx  for beneficial attribute and )(max jx for non-beneficial attribute.  

Step 3: Determine the preference number. Utility concept adopts an idea of preference num-

ber to show the performance measure of each alternative against each criterion, calculated on 

a logarithmic scale. A preference scale for each attribute is constructed for determining its 

utility value. The preference numbers vary from 0 (representing the lowest performance val-

ue) to 9 (denoting the highest performance value). Thus, a preference number of 0 represents 

the just acceptable attribute and the best value of the attribute is denoted by preference num-

ber 9 [GuMu80]. The preference number )(PN  for jth attribute can be expressed on a loga-

rithmic scale as follows: 
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Step 4: Calculate the overall utility value iU . 

The overall utility value can now be calculated as follows: 
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Step 5: Rank the alternatives. The best alternative, ranked by iU , is the one that will return 

maximum value of iU [KaGC13].  

In the proposed approach utility values of individual responses are accumulated to calculate 

overall utility index. Overall utility index servers as the single objective function for optimiza-

tion. 

A number of literature review papers showed the validity of coupled Taguchi-UC in multi-

performance optimization of machining processes. Singh and Kumar introduced a simplified 

multi-characteristic model based on Taguchi’s approach and UC to determine the optimal 

settings of EN 1.6582 steel turning process [SiKu06]. Gaitonde et al. employed the UC and 

multi-response Taguchi design to predict an optimum drilling process parameters setting for 

simultaneous minimization of delamination factor both at the entry and exit of the holes with 

minimum number of experiments [GaKD08a]. In their second contribution, Gaitonde et al. 

proposed Taguchi technique with the utility concept for simultaneous minimization of surface 

roughness and specific cutting force in determining the optimum amount of minimum quality 
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lubrication and the most appropriate cutting speed and feed rate during turning of brass using 

K10 carbide tool [GaKD08b]. Dubey presented a utility-based Taguchi loss function strategy 

for the multi-response optimization of electro-chemical honing process. The experimental 

results confirmed the validity of the approach for simultaneous optimization of multiple re-

sponses in electro-chemical honing [Dube09]. 

2.3.4.5 Graph Theory and Matrix Approach (GTMA) 

Graph theory is a logical and systematic approach. The advanced theory of graphs and its ap-

plications are very well documented [DaYS09]. Graph/digraph model representations have 

proved to be useful for modeling and analyzing various kinds of systems and problems in 

numerous fields of science and technology. The matrix approach is useful in analyzing the 

graph/digraph models expeditiously to derive the system function and index to meet the ob-

jectives [Rao13]. The main procedure of GTMA methodology is as follows: 

Step 1: Construct the normalized decision matrix, Rij using Eq. (2.84). 

Step 2: Assign the values of relative importance of normalized attributes rij. The number of 

nodes shall be equal to the number of attributes.  This is represented by a binary matrix (Iij), 

where Iij represents the relative importance between attributes i and j. The relative importance 

between i, j and j, i is distributed on a scale 0 to L, so that if  Iij represents the relative im-

portance of the i-th surface quality attribute over the j-th surface quality attribute, then the 

relative importance of the j-th surface quality attribute over the i-th surface quality attribute is 

evaluated using: 

ijji ILI   (2.98) 

For example, let the decision maker select the following assignments (DMA):  
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Step 3: Develop the attributes matrix for the attributes digraph. This will be the n*n matrix 

with diagonal elements as rij and off-diagonal elements as Iij. Repeat the process for n-number 

of rows in normalized decision matrix. For example, for the first raw of normalized decision 

matrix the attribute diagraph can be represented by: 
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 (2.100) 

Step 4: Obtain the permanent function )(Per DMA for each generated attributes matrix.  

Step 5: Rank the alternatives, sorting by the values of the corresponding )(Per DMA . The best 

alternative is the one with the maximum value of )(Per DMA . 

GTMA techniques have already been applied by the past researchers in some industrial appli-

cations. The pioneer researcher in this field is R. Venkata Rao. He has demonstrated the ap-

plication of GTMA in several different occasions. In 2001, he and Gandhi presented a meth-

odology to select a cutting fluid for a given machining application using the digraph and ma-

trix method. They concluded that the proposed graph theory and matrix approach is applicable 

to any type of metal-cutting operation [RaGa01]. Thereafter, he applied GTMA to evaluate 

the machinability of work materials for a given machining operation [VeGa02]. He also ex-

tended the application of GTMA to the material selection problem for engineering design 

[Rao06a] and the evaluation of flexible manufacturing systems [Rao06b].   

GTMA can consider any number of quantitative and qualitative factors. However, it does not 

have a condition for checking the consistency made in the judgments of relative importance of 

the attributes. The method may be difficult to deal with if the number of attributes is more 

than 20 [JaEd13a].  
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2.4 A systematic methodology for modeling and optimization of 

cutting processes 

Comprehensive schemes for modeling and optimizing turning process parameters are present-

ed in Figure 2.21 and Figure 2.22, respectively. The schemes also suggest various approaches 

suitable for single and multi-objective problems. The detailed steps of the schemes are de-

scribed below. 

Step 1: Formulate the cutting process optimization problem spotlighting its significance in 

terms of the adopted criteria, such as production cost, quality characteristics and/or process 

performance measures. 

Step 2: Designate the relevant process decision and response variables. Independent cutting 

variables such as cutting and process conditions, tool materials and coatings, tool shape, sur-

face finish and sharpness, workpiece material and condition, characteristics of the machine 

tool and workpiece holding and fixturing can be potential decisions variables. Meanwhile,  

dependent cutting variables such as type of chip produced, energy dissipated during cutting, 

temperature rise in the workpiece, the tool  and the chip, tool wear and failure, surface finish 

and surface integrity are potential response variables.  

Step 3: Plan and design of the cutting experiments using factorial designs, Taguchi designs, 

response surface designs, …., etc. Selecting appropriate experimental layout will reduce the 

number of experiments, which in turn reduces the cost and time involved in the experimenta-

tion.  

Step 4: Represent the collected technical data graphically employing histograms, contour 

maps, surface plots, …., etc. This will provide a primary insight into the mean, the variability, 

and the control state of critical quality characteristics and identify the need for further im-

provement.  

Step 5: In the case of Taguchi’s robust design methodology, compute the S/N ratio to mini-

mize the variations in the response. Otherwise, model the process through:  

 Developing empirical models to express the complex relationship between decision and 

response variables based on prevailing constraints and assumptions need to be applied. 

The type of optimization modeling techniques used to express the objective function de-

termines its accuracy and the possibility of reaching a global optimum solution. Therefore, 

a great attention has to be made to find a model expressing the case with simplest form 



State of the art in machining modeling and optimization: A review  103 

and highest possible precision. Statistical regression, neural networks and fuzzy set theory 

will be useful at this stage.  

 Performing FEM analysis. FEM can provide a more comprehensive approach than the 

empirical ones as it can more flexibly cope with the introduction of new machining meth-

ods, fast introduction of new tool materials and new tool designs, and the introduction of 

an ever widening spectrum of work materials. It can also act as a complementary approach 

to the empirical models with an exclusive capability to predict what could happen during 

turning processes.  

 

Figure 2.21: A systematic framework for modeling of cutting processes.  

Following the selection of the suitable approach for modeling, the model(s) has to be verified 

and validated. Verification refers to the processes and techniques that the model developer 

uses to assure that his or her model is correct and matches any agreed-upon specifications and 

assumptions. While validation refers to the processes and techniques that the model develop-

er, model customer and decision makers jointly use to assure that the model represents the 

real system (or proposed real system) to a sufficient level of accuracy. It should also be noted 
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that no model is ever 100% verified or validated. The latter is not an absolute. Any model is a 

representation of a system, and the model’s behavior is at best an approximation to the sys-

tem’s behavior. When loosely saying that a model has been verified or validated, it means that 

a series of tasks have explicitly being carried out to verify and validate our model to the de-

gree necessary for practical purposes [Cars02]. 

 

Figure 2.22: A systematic framework for optimization of cutting processes.  

Step 6: Select the suitable optimization approach based on the form and number of objective 

function (response). Optimization can be broadly classified into mono and multiple objective 

optimization processes. Conventional optimization procedure such as Taguchi method and 

RSM or non-conventional optimization procedures such as meta-heuristic optimization algo-

rithms can be dedicated to solving single objective optimization problems. However, when 

the objectives are more than one, multiple criteria decision analysis can be applied. Based on 
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the predetermination and limitations on the number of decision alternatives, the optimization 

problem can be solved employing a typical multi-objective optimization algorithm or a 

MADM method. When multiple near optimal solutions are necessary, nature inspired multi-

objective optimization algorithms such as MOBA can be utilized. However, when the number 

of decision alternatives is pre-determined, MADM methods should be employed. The out-

come of the MADM methods can be related to the decision variables using input/output pro-

cess parameter relationship modeling techniques and further optimized as a mono-objective 

optimization problem using meta-heuristic or any other optimization algorithms.  

Step 7:  Conduct confirmation tests to verify the optimized process parameter(s).  
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3 Experimental details 

The four major sections of this chapter describe the technical and experimental fundamentals 

of the present dissertation. In the first section, mechanical properties and chemical composi-

tions of the adopted workpiece materials is briefly described. Additionally, results of 

JMatPro’s software to predict temperature-dependent mechanical and physical behavior of the 

workpiece materials are presented. In the second section, a brief description of the involved 

cutting tools and machine tool is given. The utilized DOE techniques to plan the experiments 

are reported in the third section of the present chapter. The last section is dedicated to the ex-

perimental techniques employed to measure the machining performance characteristics. 

3.1 Workpiece materials 

3.1.1 Mechanical properties and chemical compositions 

Altogether, three grades of stainless steels are used, namely austenitic EN 1.4404 (or AISI 

316L), standard duplex EN 1.4462 (or SAF 2205) and super duplex EN 1.4410 (or SAF 

2507). The first grade which is chosen as benchmark for machinability comparison analyses is 

an extra low carbon modification of type 1.4401. EN 1.4404 is a molybdenum-containing 

austenitic stainless steel intended to provide improved corrosion resistance relative to type 

1.4307 in moderately corrosive process environments, particularly those containing chlorides 

or other halides. It has been used in handling many chemicals used by the process industries, 

including pulp and paper, textile, food, pharmaceutical, medical, and other chemical pro-

cessing equipment. EN 1.4462 with equal amounts of ferrite and austenite is a duplex stain-

less steel that exhibits approximately two times higher mechanical strength, lower thermal 

expansion, better corrosion resistance and higher thermal conductivity than EN 1.4404. The 

material is suitable for use in production tubing and flow lines for the extraction of oil and gas 

from sour wells, in refineries and in process solutions contaminated with chlorides. The good 

mechanical and corrosion properties make EN 1.4462 an economical choice in many applica-

tions by reducing the life cycle cost of the equipment. Additionally, EN 1.4410 is also ferritic-

austenitic stainless steel. It combines the most desirable properties of both ferritic and austen-

itic steels. The higher chromium and molybdenum contents provide higher mechanical 

strength, resistance to pitting, crevice, and corrosion resistance than type 1.4462. The duplex 
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microstructure results in good resistance to stress corrosion cracking. EN 1.4410 can be used 

in dilute hydrochloric acid. It is specially designed for service in aggressive chloride-

containing environments. Typical applications fields are oil and gas industry, food industry, 

petrochemical industry and refineries, pulp and paper industry, chemical industry, seawater 

cooling, salt evaporation industry, desalination plants, geothermal wells and mechanical com-

ponents requiring high strength [ArDe09, Fran08]. 

Finally, the chemical compositions and mechanical properties of workpiece materials are 

shown in Table 3.1 and Table 3.2, respectively. It is worth pointing out that the effect of dif-

ferent chemical elements, mechanical and physical properties on the machinability perfor-

mance of stainless steels has been evaluated by Bertelli et al. [BCMC05].  

Composition  
 

EN 1.4404 
% weight 

EN 1.4462 
% weight 

EN 1.4410 
% weight 

Fe 68.893 67.583 62.703 
C 0.008 0.018 0.015 
Cr 16.74 22.42 24.92 
Ni 10.19 5.44 6.91 
Mo 2.02 3.12 4.06 
Mn 1.75 0.84 0.75 
Si 0.25 0.37 0.25 
P 0.032 0.025 0.021 
S 0.025 0.0033 0.0007 
N 0.035 0.18 0.3 
Cu - - 0.1 
V 0.057 - - 
Table 3.1: Chemical composition of the workpiece materials. 

Composition Unit EN 1.4404 EN 1.4462 EN 1.4410 
Yield strength  MPa 264 514 579 
Hardness HB 148 212 236 
% Elongation - 58% 41%   40% 
Table 3.2: Mechanical properties of the workpiece materials. 

3.1.2 Temperature-dependent physical and mechanical properties of the 

workpiece materials 

In the incoming subsections, the essential temperature-dependent physical and mechanical 

properties intended for numerical simulation of cutting DSSs is briefly described. 
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3.1.2.1 Temperature-dependent Young’s modulus of elasticity 

Young’s modulus of elasticity is an elastic material property of solids. It strongly depends on 

temperature and directly influences the values of the element stiffness matrix.  For the applied 

cutting materials the Young’s modulus of elasticity decreases if the temperature is increased. 

The dependency relation of Young’s modulus on the temperature for EN 1.4462 and EN 

1.4410 DSS grades is generated by JMatPro software and shown in Figure 3.1(a). 

Unfortunately, modulus of elasticity is inversely proportional to the temperature. This will 

lead to an extrapolation that could return negative modulus of elasticity, especially at high 

temperatures, and consequently causes the simulation to shut down. Therefore, it is recom-

mended to prevent the simulation from uncontrolled extrapolation, so that higher temperatures 

do not lead to further decrease of the modulus.  

 

Figure 3.1: Dependence of the physical and mechanical properties of DSS on the temperature. 

3.1.2.2 Temperature-dependent Poisson ratio 

Poisson’s ratio is one of the mechanical parameters which are required to fully describe the 

elastic property of the material. Poisson’s ratio is defined as the ratio of the negative of trans-

verse strain to the strain in the longitudinal direction. It is also a measure of material’s relative 

resistance to dilatation and shearing. It has a value between 0 and 0.5 depending on the com-

pressibility of the material  [FAMS12]. The Poisson’s ratio dependence on temperature for 

DSSs is shown in Figure 3.1(b). 

0 500 1000

1

1.5

2

x 10
5

Temperature [°C]

Y
o

u
n

g
 M

o
d

u
lu

s
   

  
 

  
  

 [
M

P
a

] 
  

  
  

  

 

 

0 500 1000

0.3

0.32

0.34

0.36

Temperature [°C]

P
o

is
s

o
n

 r
at

io

 

 

0 500 1000
1.4

1.5

1.6

1.7

1.8

x 10
-5

Temperature [°C]

T
h

er
m

a
l 

e
x

p
an

s
io

n
   

  
   

  
  

  
[1

/K
] 

  
  

  
   

  
 

 

 

0 500 1000
15

20

25

30

35

Temperature [°C]T
h

e
rm

a
l 

co
n

d
u

c
ti

v
it

y
  

   
  

  
  

  
  [

W
/m

.°
C

] 
  

  
  

   
 

 

 

0 500 1000
3.5

4

4.5

5

5.5

6

Temperature [°C]

S
p

e
ci

fi
c

 h
e

a
t 

  
  

  
   

  
   

  
   

   
  

  c
a

p
a

c
it

y 
[J

/k
g

.K
] 

   
  

   

 

 
EN 1.4410 EN 1.4462 ×100

(d)

(c)(b)(a)

(e)



Experimental details  109 

3.1.2.3 Temperature-dependent specific heat capacity 

In machining and forming, the lower the specific heat of a certain material, the higher the 

temperature will rise [YoEA11]. When different materials are machined with the same tool, 

cutting fluid and feed rate, the proportionality relation of temperature generated will be as per 

the following expression: 













pmth

rc
T Ck

fv
k


 c~  

(3.1) 

where T  is the mean tool face temperature; ck is the specific cutting pressure; thk  is the ther-

mal conductivity; m is the density and pC is the specific heat capacity of the workmaterial 

[Shaw89].  In Figure 3.1(c), the specific heat capacities for the described DSSs as functions of 

temperature are visible.  

3.1.2.4 Temperature-dependent thermal conductivity  

When a material is deformed elastically, the energy required for the operation is stored in the 

material as strain energy, and no heat is generated. However, when a material is deformed 

plastically, most of the energy used is converted into heat. In metal cutting, the material is 

subjected to extremely high strains, and elastic deformation forms a very small proportion of 

the total deformation; therefore, it may be assumed that all the energy is converted into heat. 

Heat generation in metal cutting leads to temperature rise at the tool-chip interface. Among 

the factors that affect the cutting temperature, heat dispersion into the work and thickness of 

the tensile layer in the cutting process is thermal conductivity. Materials with higher thermal 

conductivity are responsible for production of lower temperature at cutting edge. Thermal 

conductivity ( thk ) has a significant effect on the thickness of the tensile layer, where higher 

thk  results in thicker tensile layers [Jkau08]. As expected, the thermal conductivity is predict-

ed to be mainly affected by the temperature. Figure 3.1(d) shows the effects of temperature on 

the thermal conductivity of DSSs.   

3.1.2.5 Temperature-dependent coefficient of thermal expansion 

DSSs have lower thermal expansion coefficients than austenitic stainless steels, similar to 

those of carbon steel and can therefore offer certain design advantages. Thermal expansion 
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coefficients have also shown dependence on the temperature as can be observed in Figure 3.1 

(e).  

In addition to the flow stress curves (shown in Figure 2.11), aforementioned physical and me-

chanical properties of the workpiece materials are expected to affect the outcome of the FEM 

simulations substantially. Therefore, a great deal of attention is needed to be paid when enter-

ing the data to the material module of the utilized FEM software. 

3.2 Machine tool and cutting tool 

A CNC lathe CTX 420 Linear V5 with maximum drive power 25kW and a speed range of 35-

7000rpm is used to perform the experiments. In Figure 3.2, a brief description of the machine 

and its technical data are presented.  

Recommended by SANDVIK Coromant, for medium-duty turning operations of stainless 

steels, negative 80° rhombic-shape coated carbide inserts with ISO codes of CNMG 120408-

MM 2025 and CNMG 120408-QM 2025 are used throughout most of the empirical investiga-

tions. The basic difference between the two inserts lies in the employed chip breaker geome-

tries. The MM designation has a sharp positive edge and open chip breaker which promotes 

low cutting force and more stable cutting operation. The QM designation has also a positive 

edge but 5-7° less in sharpness. It can be considered as an alternative solution to the chip-

breaker geometry MM when more machining stability is needed. Both inserts have a 5.5 μm 

thick multilayer chemical vapor deposition (CVD) coating (TiN/TiCN/Al2O3) on a cemented 

carbide substrate. The CVD coating consists of a thick, moderate temperature chemical vapor 

deposition of TiN for wear resistance and with low coefficient of friction, TiCN for wear re-

sistance and thermal stability and Al2O3 for heat and crater wear resistance. The overall per-

formance of the inserts is expected to show excellent resistance to both mechanical and ther-

mal shock. On the other hand, in order to facilitate the optimization of insert shape and chip 

breaker geometry through numerical investigations, rhombic cemented carbide of ISO desig-

nation; CNMA 120412-IC20 is employed. IC20 is an uncoated carbide grade suitable for 

semi-finishing, finishing and semi-roughing of aluminum, cast iron and stainless steel. All the 

inserts were mounted on a right hand style PCLNL-2525M-12 ISO type tool holder with tool 

geometry as follows: including angle 80°, back rake angle n ,6  clearance angle c 5° 

and approach angle 95°.  
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Figure 3.2: Utilized machine tool to perform cutting operations. 
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3.3 Design of experiments (DOE) 

An experiment takes a central place in science, particularly nowadays, due to the complexity 

of problems science deals with. The question of efficiency of using an experiment is therefore 

imposed. J. Bernal has made estimation that scientific research is organized and done fairly 

chaotically so that the coefficient of its usability is about 2%. To increase research efficiency, 

it is necessary to introduce something completely new into classical experimental research. 

One kind of innovation could be, to apply statistical mathematical methods or to develop de-

sign of experiments. DOE is a planned approach for determining cause and effect relation-

ships [Lazi06].  

In machining processes, when the objective is to find the correlation between the response(s) 

and the control factors included, it is possible to plan the experiments using DOE approach so 

as to reduce the number of experiments, which in turn reduces the time and cost involved in 

the experimentation. All the factors included in the DOE are varied simultaneously. The in-

fluence of unknown or non-included factors is minimized by properly randomizing the exper-

iment. Mathematical methods are used not only at the final stage of the study, when the eval-

uation and analysis of the experimental data are conducted, but also throughout all the stages 

of DOE, i.e. from the formalization of a priori information till the decision-making stage. This 

allows answering of important questions: “What is the minimum number of tests that should 

be conducted? Which parameters should be taken into consideration? Which method(s) is 

(are) better to use in the evaluation and analysis of experimental data [Asta06, Mont09]?  

Based on the general purpose of experimentation, which essentially included the development 

of modeling and/or optimization of machining, the following DOE approaches have been ap-

plied in the present dissertation: 

3.3.1 Full factorial design  

A full factorial design (FFD) includes all possible combinations of the levels for all control 

factors. It allows the study of the effect of each control factor on the response variable, as well 

as the effects of interactions between control factors on the response variable. In the early 

stages of experimental work, FFD has been applied to  

 determine the specific cutting pressure c1.1k ,  

 define sets of non-dominated optimal straight turning solutions using MOBA, 
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 draw the chip breaking charts and 

 estimate the UCI of constant cutting speed facing of duplex and austenitic stainless steels.   

The experimental factors and their levels for the first two and last two applications are sum-

marized in Table 3.3 and Table 3.4, respectively. 

Control factors Symbol Unit 
Level 
1 2 3 4 5 6 

Cutting speed  
cv  m/min 100 180     

Feed rate  
rf  mm/rev 0.15 0.2 0.25 0.3 0.35 0.4 

Cutting depth 
pa  mm 1      

Cooling medium  CM - Dry Wet     
Table 3.3: Control factors and levels selected in straight turning of DSSs. 

Control factors Symbol Unit 
Level 
1 2 3 4 5 6 7 

Feed rate  
rf  mm/rev 0.1 0.175 0.25 0.325 0.4   

Depth of cut  
pa  mm 0.5 1 1.5 2 2.5 3 3.5 

Table 3.4: Control factors and levels selected in constant cutting speed facing of duplex and 

austenitic stainless steels at. 

3.3.2 Taguchi designs 

To estimate the effects of control factors on the response mean and variation, Taguchi designs 

use orthogonal arrays. The latter refers to a design which is balanced so that factor levels are 

weighted equally. Hence, each factor can be analyzed independently of all the other factors, 

so the effect of one factor does not affect the estimation of other factors. This can effectively 

reduce the time and cost associated with the experiment. Therefore, they have been extensive-

ly applied for conducting experiments. The applications of OAs include:  

1. Optimization surface quality characteristics in constant cutting speed facing of austenitic 

and duplex stainless steels using L16 (4
5) OA. Table 3.5 summarizes the control factors 

and levels planned for this objective 

Control factors Symbol Unit 
Level 
1 2 3 4 

Cutting speed  
cv  m/min 50 100 150 200 

Feed rate  
rf  mm/rev 0.1 0.25 0.4 0.55 

Depth of cut  
pa  mm 0.5 1.5 2.5 3.5 

Table 3.5: Control factors and their levels chosen to optimize surface quality characteristics in 

constant cutting speed facing of duplex and austenitic stainless steels. 
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2. Multiple performance optimization in constant cutting speed facing of austenitic and du-

plex stainless steels using L25 (5
5) OA using Taguchi-VIKOR-Meta-heuristic concept. It is 

worth mentioning here that the second column in the orthogonal array is dedicated to the 

interaction effects of cutting speed and feed rate as this interaction is expected to have 

substantial effects on some of the considered performances. Table 3.6 gives the control 

factors and their chosen levels designed for this purpose.  

Control factors Symbol Unit 
Level 
1 2 3 4 5 

Cutting speed  
cv  m/min 40 80 120 160 200 

Feed rate  
rf  mm/rev 0.1 0.175 0.25 0.325 0.4 

Depth of cut  
pa  mm 0.5 1 1.5 2 2.5 

Table 3.6: Control factors and their levels chosen to apply Taguchi-VIKOR-Metaheuristic 

concept in optimizing the cutting of duplex and austenitic stainless steels. 

3. Inverse identification of FEM input parameters and Taguchi-based FEM optimization of 

straight turning DSSs. In the first stage, L18 (2
1×37) is proposed to conduct the FEM simu-

lations in order to inversely identify the FEM input parameters using the control factors 

and levels shown in Table 3.7.  

Control factors Symbol Unit 
Level 
1 2 3 

Thermal contact conductance 
tch  N/(mm.sec.K) 100 1000  

Cutting speed  
cv  m/min 80 160 240 

Feed rate  
rf  mm/rev 0.15 0.225 0.3 

Coulomb friction coefficient 
cμ  - 0.5 0.75 1 

Shear friction coefficient 
sμ  - 0.6 0.9 1.2 

Taylor-Quinney coefficient 
tκ  - 0.8 0.9 1 

Reduction in flow stress 
rp%  - 10 30 50 

Critical damage value 
crit.D%  MPa 50 100 150 

Table 3.7: Control factors and levels planned to be inversely identified during 3D-FEM of 

cutting DSSs. 

In the second stage of the numerical analyses, the mixed Taguchi design L18 (2
1×37) once 

again is suggested to optimize many categorical and numerical parameters during straight 

turning of DSSs. The 3D-FEM simulations are planned to optimize types of chip breaker, 

insert shapes, process conditions, cutting parameters and tool orientation angles utilizing 

the control factors and levels given in Table 3.8.   
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Control factors Symbol Unit 
Level 
1 2 3 

Chip-breaker type CB  - M3M PP  
Insert shape .Geo  - DNMG CNMG WNMG 

Cooling medium CM  - Still air Water Cryogenic

Cutting speed  
cv  m/min 75 150 225 

Feed rate 
rf  mm/rev 0.1 0.175 0.25 

Normal rake angle 
n  degree 0 -6 -12 

Inclination angle 
i  degree 0  6 12 

Table 3.8: Control factors and their levels planned to numerically optimize the cutting of 

DSSs. 

3.3.3 D-Optimal design 

In order to estimate the operational sustainability performance of cutting DSSs, D-Optimal 

design is proposed for conducting the experiments. The design is especially suitable for con-

ditions when categorical factors are desired to be included in experimentation plans, models, 

the full quadratic models have to be obtained and existing designs have to be augmented. As 

with completely randomized designs, computer generated designs are available to optimize 

based on various criteria. If interest lies primarily in estimating the machining parameters and 

generate flexible designs that meet the needs of particular experimental design situations then 

the D-optimal criterion can be well adapted to this objective. Based on the practical considera-

tions, numerical parameters such us cutting speed cv , feed rate rf , depth of cut pa  and total 

length of cut cL , and categorical parameter such as process conditions have been selected as 

input factors to the experimental design. Table 3.9 presents the low and high levels of the in-

volved numerical and categorical factors. 

It’s worth pointing out that using of the D-optimal design is often involved with insufficient 

dispersion due to fewer degrees of freedom; therefore, the design has been bulked up to total 

48 runs, i.e., 24 run for each category. Design-Expert V8 statistical package has been used to 

obtain the D-optimal plan. The program has identified 113 candidate points for each of the 2 

the process conditions for a total of 226, from which 36 points have been selected as a mini-

mum for the expected non-linear model. Eight more runs with unique factor combinations to 

test lack of fit. Finally, 4 of the 44 points already identified have been replicated. 
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Control factors Symbol Unit 
Level 
Low High 

Cutting speed  
cv  m/min 75 200 

Feed rate  
rf  mm/rev 0.1 0.25 

Depth of cut  
pa  mm 0.5 1.5 

Length of cut 
cL  mm 3 12 

Process conditions CM - Wet Dry 
Table 3.9: Upper and lower bounds of control factors intended for D-Optimal design of exper-

imentations. 

3.4 Measurement of the machining performance characteristics 

Qualitative assessment of machinability of any material can be easily appreciated. However, 

the quantitate assessment seems to be far more complex as there is no unique and unambigu-

ous methodology applicable to all the combinations of cutting operations, cutting materials, 

tooling and cutting conditions. Accordingly, in order to quantitatively assess the machinabil-

ity of DSSs, certain criteria (performance characteristics) have to be specified, measured and 

analyzed beforehand. The measurement procedure of such performance characteristics are 

described as below. 

3.4.1 Measurement of cutting forces and effective cutting power 

During the turning tests, the main cutting force ( cF ), feed force ( fF ), and trust force ( tF ), are 

measured using Kistler type 9129A three component piezo-electric dynamometer, which was 

connected to a charged Kistler type 5070A amplifier and personal computer through an ana-

log to digital converter card. To obtain and record the force softly, Windows software for data 

acquisition and evaluation DynoWare type 2825A was installed. Before conducting the exper-

iments, the lathe tool dynamometer was calibrated for data accuracy. A standard force of 

100N was applied on the tool dynamometer and the forces were measured. Then the force 

data were compared with the standard applied force. The result of this pretest found that the 

tool dynamometer had errors, but within the acceptable limit.  

On the other hand, the power consumed by the motor of a machine tool is composed of an 

effective and an idle component. Because of its proportionality to the torque emitted by the 

motor, the effective power is often used as a signal within the control system for quantifying 

the motor load. External effective-power modules are installed in machine tools between the 
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frequency converter and the motor. To read the current, hall sensors are used that measure the 

current along with its phasing via the magnetic field surrounding the conductor in a circular 

shape. The effective power is obtained from these using the Eq. 3.2 below [Kloc11].  

acl IUP cos3e   (3.2) 

where lU  is the line voltage in volts, cI  is the line current in ampere and acos  is the power 

factor. The experimental set up is shown in Figure 3.3. 

 

Figure 3.3: Experimental set-up for measuring cutting forces and cutting power.  

3.4.2 Measurement of the chip volume ratio 

During cutting tests, the metal chips posed great challenges to the machine tool and the work-

piece. To deal with this problem, the chips are collected after each machining trial and later 

analyzed. Chip volume ratios ( R ) were then calculated by; a) measuring the mass of the sam-

ple chip, b) dividing the mass by density of the steels hence calculating the volume of the cut 

material prior to machining, c) gently placing the chips inside plastic bags, d) gently vacuum 

packaging which removed air from the package prior to sealing, e) measuring the volume of 

the gently packed chips using the water displacement procedure and f) dividing the volume of 

the gently packed chips by the volume of the cut material prior to machining, (refer to Eq. 

(1.10)). The ratio corresponds to the intended R . 

3.4.3 Measurement of surface quality characteristics 

The surface roughness values are measured immediately after the face turning process at three 

different locations on workpiece using Taylor-Hobson, Form Talysurf 120 Series 2 surface 
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roughness tester. The average of three Ra , Rz and Rt measurements according to the DIN EN 

ISO 3274 are recorded. The stylus tip angle and radius were 600 and 2µm respectively. 

3.4.4 Measurement of the flank wear 

The average VB  and maximum maxVB  width of flank wear (VB ) are periodically measured 

during progressive tool-wear experiments using Leica MZ6 stereomicroscopes after every 

cutting pass of machining operation. The basic magnification range the microscope is 6.3x to 

40x with a maximum magnification of 320x. It has been connected to a PC through Image 

Manager software for archiving and for post-processing the images. The adopted criterion for 

tool life on the coated carbide tools are mmVB 4.0 or mmVB 6.0max  or catastrophic tool 

failure of the tool edge. 

As an indirect tool wear monitoring technique, using measured signals of cutting forces offers 

many advantages like easy to measure and having a clear phenomenological relationship with 

tool wear. In terms of both magnitude and shape of the signals, the more the tool wears, the 

more the signals of worn tool differs from signals of sharp tool. As there is no agreement in 

which component of cutting force has the closest relationship with the tool wear, the resultant 

of cutting forces often adopted as an indirect wear signal. An example of indirect tool wear 

monitoring during wet constant cutting speed facing of EN 1.4404, EN 1.4462 and EN 1.4410 

is depicted in Figure 3.4. Components of cutting forces have been measured and the resultant 

cutting forces are calculated employing Eq. (1.4). Tool life of coated carbide cutting tool with 

an ISO designation CNMG 120408-MM 2025 and cutting condition of min,/m300cv  

 mm5.0 andmm/rev1.0  pr af has been estimated based on 0.4mm flank wear criteria. It 

can be obviously seen that the shapes of the cR  curves are similar to the typical wear curves 

of the cutting tools. Noteworthy, under similar cutting conditions, it can also be seen that the 

tool life when machining EN 1.4404 was almost triple that of EN 1.4410. 
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Figure 3.4: Progressive increase in resultant cutting force during face turning of stainless 

steels at 300m/min. 

Owing to the dynamometer’s relative high cost, negative impact on machining system rigidi-

ty, requirement of a wiring harness and extra space for installation, indirect tool wear moni-

toring systems such acoustic emission, vibrations, cutting temperature, surface quality and 

signals from spindle or feed motors are used to monitor the tool wear. The latter have the ad-

vantage of simplicity in hardware implementation that does not interfere with the process and 

does not require high cost devices. Usually, spindle current signals correspond to torque, 

hence cutting force which is closely related to the cutting parameters. The signals can also be 

used for tool-breakage detection where the machining operation is interrupted after tool 

breakage. An example of adopting the consumed spindle motor current as an indirect tool 

wear monitoring technique is shown in Figure 3.5. Cutting tool, workmaterial, feed rate and 

depth of cut were all identical to the previous case except cutting speed which has been low-

ered to 50m/min. Results have shown that lowering cutting speed by six folds had remarkably 

increased the tool life of the mentioned workmaterials by almost 17, 19 and 40 folds, respec-

tively.  
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Figure 3.5: Progressive increase in electrical current consumption during face turning of stain-

less steels at 50m/min. 

3.4.5 Infrared temperature measurement system 

Although, infrared (IR) cameras are quite expensive, they remain one of the most promising 

solutions for temperature measurement since they allow for a non-contact, extensive meas-

urement of temperature. Thus, the problem of perturbation of the heat flow in the tool and 

changes the results is avoided. The fast response of the IR camera lets high, cutting speeds to 

be used in machining experiments, since it can capture the transient changes and the stages of 

chip formation and entanglement around the workpiece, the tool holder and the tool post. In 

the present dissertation, high-resolution thermo-graphic camera of brand VarioCam head 

Hires 640 by InfraTec is used to film the chip formation and measure the chip temperature at 

a resolution of 640×480 pixels, spectral range of 7.5-14 µm, temperature measuring range -40 

-1200°C, measurement accuracy of ±2% and an external data storage at 60 Hz on external 

computer via FireWire. The IR camera is placed straight above the rake face of the tool. The 

lens of the camera is protected against possible impacts of the chips flying about. The images 

in the films are examined and the mean of maximum temperature in the middle of the chips 

are recorded. A schematic diagram of the cutting temperature measurement system using IR 

camera is shown in Figure 3.6. 
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Figure 3.6: Experimental setup for temperature measurement in cutting. 

3.4.6 Chip thickness and chip serration ratio 

The serrated chip geometries, which were detected in some machining occasions, have to be 

correctly configured and measured. Among many chip-related measurements, maximum and 

minimum chip thickness and degree of serration are recorded using two different techniques. 

In the first, the collected chips are embedded in transparent epoxy, polished using increasingly 

finer diamond grit and etched in chemical solution. Despite the process time consuming 

nature and reduction of the 3D structures to 2D planes, this method enabled the ease tracings 

of the streamline of material flow and paths of the grains. In the second measurement 

technique, the chips are photographed and measured using a Leica MZ6 stereomicroscope. 

The average values of five consecutive chip thickness ratios (
i

hmax /
i

hmin ) are measured and 

defined as the degree of serration: 





5

1 min

max

5

1

i i

i

h

h
H  

(3.3) 

where 
i

hmax  and 
i

hmin  are the perpendicular distances measured from the bottom of the chip to 

the peaks and valleys respectively. 
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4 Experimental investigation and multi-objective 

optimization of turning DSSs: A case study  

In this chapter, experimental investigations on turning EN 1.4462 and EN 1.4410 DSS grades 

with multi-layer coated carbide inserts are presented. Single-point wet and dry longitudinal 

turning tests of 55 mm diameter cylindrical bars are conducted as per Table 3.3. Performance 

characteristics such as cutting forces and tool wears are measured employing the measure-

ment techniques described in the previous chapter. The parametric influences of cutting 

speed, feed rate and process conditions on the cutting performances such as resultant cutting 

forces and tool wear are analyzed and proper interim conclusions are drawn. Nature-inspired 

meta-heuristic Bat Algorithm is then employed to handle the multi-objective optimization of 

the conflicting performances. Finally, the optimum cutting condition for each process condi-

tion can be selected from calculated Pareto-optimal fronts by the user according to the plan-

ning requirements. 

4.1 Pareto optimality 

Multi-objective optimization problems are more complicated than single objective optimiza-

tion as in many cases the decision maker has to find and/or approximate the Pareto optimality 

fronts. In addition, algorithms have to be modified to accommodate multi-objectives properly. 

The concept of Pareto optimum was formulated by Vilfredo Pareto in the 19th century, and 

constitutes by itself the origin of research in multi-objective optimization. A solution vector 

 T
nuuuu ),.....,,( 21  is said to dominate another vector T

nvvvv ),.....,,( 21 if and only if 

ii vu  ≤ for     ii vunini  :.....,,2,1and.....,,2,1 . In other words, no component of u  

is larger than the corresponding component of v , and at least one component is smaller. Simi-

larly, we can define another dominance relationship ≼ by: 

u ≼	v ⟺ u ≺	v ˅	u = v (4.1) 

It is worth pointing out that for maximization problems, the dominance can be defined by 

replacing ≺ with ≻. Therefore, a point *x  is called a non-dominated solution if no solu-

tion can be found that dominates it [Coel99]. The Pareto front PF  of a multi-objective can be 

defined as the set of non-dominated solutions so that  
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 ssSsSsPF  :  (4.2) 

or in term of the Pareto optimal set in the search space 

 )()(:* xxxxPF GG   (4.3) 

where T
KGGG ),.....,,( 21G . To obtain a good approximation to Pareto front, a diverse range 

of solutions should be generated using efficient techniques [GuBa09, KoCS06]. 

In the present chapter, Bat Algorithm (BA) is extended to find and/or approximate Pareto 

fronts, hence solving multi-objective machining optimization problem.  

4.2 Performance characteristics 

4.2.1 Specific cutting pressures  

The specific cutting pressure is often considered as an indication to the machinability of a 

given workmaterial. The higher the specific cutting pressure the lower is the machinability of 

the workmaterial. The specific cutting pressures for turning EN 1.4462 and EN 1.4410 were 

calculated from the cutting data employing Eqs. (1.6-8) and the results are shown in Figure 

4.1. Based on a quick review of the results; 

 No drastic difference between the cutting pressures of dry and wet conditions was ob-

served. However, overall wet machining shows an improvement in the machining perfor-

mance through lower cutting pressures. 

 Generally, lower average values of the specific cutting pressures are noticed when cutting 

EN 1.4462 than EN 1.4410.  

 The cutting pressures are generally showed a decreasing trend with increasing cutting 

speed and feed rate. The maximum values are located in low ranges of cutting speed and 

feed rate.  

 Modified Kienzle’s formula (Eq. (1.9)) can be applied to evaluate the parametric effects of 

cutting conditions on the cutting forces empirically. The model fitting has employed the 

least square method. Summary of models coefficients are listed in Table 4.1. It should be 

noted that the average at wet cutting is generally 5% lower than  at dry cutting for both 

workmaterials and of turning EN 1.4410 is generally 25.281% higher than  of turning EN 

1.4462.      
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Figure 4.1: Computed specific cutting pressure. 
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Model 
Process 
conditions 

EN 1.4462 EN 1.4410 

1.1k  

[MPa] 

a b
1.1k  

[MPa] 

a  b

cF  Dry 2366.8 -0.28495 0.10208 2920.01 -0.29361 0.07897 
Wet 2215.1 -0.26097 0.13359 2471.22 -0.26308 0.19012 

fF  Dry 851.82 -0.47921 0.47351 1182.12 -0.41215 0.46722 
Wet 737.12 -0.48811 0.53402 1126.13 -0.63874 0.50341 

tF  Dry 740.92 -0.27476 0.23299 920.84 -0.21903 0.31662 
Wet 899.16 -0.45785 0.18046 907.54 -0.22609 0.30137 

cR  Dry 2550.01 -0.32271 0.19634 3144.71 -0.31265 0.21344 
Wet 2431.4 -0.32448 0.21924 2811.09 -0.34563 0.28440 

Table 4.1: Summary of the cutting force models coefficients. 

To avoid misleading conclusions, the adequacy of the fitted models should be checked. There-

fore, analysis of variance (ANOVA) for 95% a level of confidence was performed in order to 

estimate the predictive accuracy of the models and to determine the relative significances of 

the different factors. From the ANOVA shown in Table 4.2, it is apparent that almost all cor-

relation coefficients are near from 1, showing that significant terms have been included in the 

model and that the model is capable of predicting the responses, P-value estimators are all 

close to zero (much lower than 0.05 corresponding to the confidence interval) which show the 

significant effect of factors on the corresponding response and F-values are much larger than 

one, which indicates that the factors have a significant effect on the response. Moreover, vari-

ations of the main, feed and thrust cutting forces towards cutting speed and feed rate are stud-

ied in each process conditions separately.  

Model 
Process 
Cond. 

EN 1.4462 EN 1.4410 
2R  adj.R  value-F value-P 2R  adj.R  value-F  value-P

cF  Dry 0.996 0.995 8.43e+03 7.83e-16 0.993 0.992 5.31e+03 6.25e-15 
Wet 0.991 0.988 4.01e+03 2.21e-14 0.994 0.993 7.90e+03 1.05e-15 

fF  Dry 0.964 0.955 1.66e+03 1.17e-12 0.842 0.807 3.50e+02 1.24e-09 
Wet 0.942 0.929 1.13e+03 6.58e-12 0.950 0.939 9.49e+02 1.43e-11 

tF  Dry 0.972 0.966 1.72e+03 9.91e-13 0.732 0.672 1.59e+02 4.14e-08 
Wet 0.965 0.958 1.06e+03 8.80e-12 0.884 0.858 4.57e+02 3.76e-10 

cR  Dry 0.989 0.986 3.87e+03 2.60e-14 0.962 0.953 1.12e+03 6.73e-12 
Dry 0.996 0.995 8.43e+03 7.83e-16 0.993 0.992 5.31e+03 6.25e-15 

Table 4.2: Analysis of variance for cutting force models. 

4.2.2 The width of maximum flank wear land ( maxVB ) 

The impacts of cutting parameters cv  and rf , and process conditions on the maxVB  are shown 

in Figure 4.2 and the summary of the findings are presented below. 
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 Based on the measurements of maxVB with respect to the machining time, EN 1.4410 is 

considered more difficult-to-machine than EN 1.4462. For instance, in dry machining of 

EN 1.4410 at min/m180cv and mm/rev35.0rf , significantly higher wear rates thus 

shorter tool life, higher cutting temperature, higher cutting forces and higher energy con-

sumption than machining EN 1.4462 was observed. Figure 4.3 presents the resulted wear 

patterns at different machining times. In Figure 4.4, the average value of recorded cutting 

forces in dry conditions after the first 60sec and 20sec and second 320sec and 40sec of 

machining EN 1.4462 and EN 1.4410 are illustrated, respectively. 

 

Figure 4.2: The width of maximum flank wear (VBmax). 

 The illustration of typical wear cases when machining DSSs are shown in Figure 4.5. It 

can be observed that in cases: 

1. Severe adhesion between the chip and the rake face of the tool (BUE) was visible 

throughout the worn crater area. High pressure and temperature encountered in machining 

ductile materials are the potential reasons behind this phenomenon. In Figure 4.5(a) ex-

amples of the BUE formation at dry cutting and cutting conditions of min/m100cv  and 

mm/rev,30.0rf and cutting time of sec615ct  for EN 1.4462 and sec406ct  for EN 

1.4410 are shown. 
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Figure 4.3: Progression of the maximum chip temperature and tool wear pattern with cutting 

time in dry cutting of DSSs using CNMG 120408-MM 2025 coated carbide tools at 

min/m180cv and mm/rev.35.0rf  

 

Figure 4.4: Variation of cutting forces with respect to the cutting time. 
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2. Regardless of the adopted process conditions, chipping of the cutting edge at high feed 

rate was often observed which has significantly contributed to the acceleration of tool 

failure. Heavy load and impact when the tool entered and/or extracted the workpice are 

considered to be the basic cause of this type of tool failure. Figure 4.5(b) shows examples 

of the chip hammering at dry cutting of DSSs and cutting conditions of min/m180cv  

and mm/rev30.0rf , and cutting time of sec374ct  for EN 1.4462 and sec103ct  for 

EN 1.4410.  

 

Figure 4.5: Wear patterns observed on the flank and rake face of cutting tools under dry 

and wet machining of DSSs using CNMG 120408-MM 2025 coated carbide tools. 

3. The most dominant tool wear mode under low cutting speed conditions was the notch 

wear which was typically located near the depth of cut line. These notches acted as stress 
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and temperature raisers of the already high mechanical strength, strain hardening rate, 

fracture toughness and low conductivity DSSs chips. Flaking occurrence because of the 

concentrated thermal load is more possible there. Ultimately, the combination of notch 

wear and flaking caused the cutting edge to fail abruptly. Figure 4.5(c) illustrates exam-

ples of the notch wear at wet cutting of DSSs and cutting conditions of  min/m100cv  

and mm/rev20.0rf and cutting time of ( sec1141ct for EN 1.4462 and sec922ct  for 

EN 1.4410.  

4. Another form of the main cutting edge damage is caused by the unfavorable chip mor-

phology and chip flow. Cutting DSSs at low cutting speed and feed rate has contributed in 

the formation of strong ribbon and snarled chips with dominant side-curl flow.  The chips 

were entangled around the cutting tool, tool post and workpiece and damaged to the cut-

ting edge and the workpiece surface. The damage is often propagated along the main cut-

ting edge of the tool with cutting time and had exceeded 5mm length of damage especially 

in feed rate ranges of 0.15-0.20mm/rev. Figure 4.5(d) presents examples of the spalling of 

the cutting due to the continuous chip impact during dry cutting of DSSs and cutting con-

ditions of min/m100cv  and mm/rev15.0rf and cutting time of sec1020ct for EN 

1.4462 and sec728ct  for EN 1.4410.   

5. In addition to the combined notching and flaking effects, nearly equal proportions of soft 

ferrite and hard austenite grains in the DSS structure, makes the cutting tool alternate cut-

ting between soft and hard grains, this leads to an automatic tendency to initiate chatter in 

the cutting system and promote the catastrophic failure of the cutting tools. Examples of 

the flaking layers beneath the flank wear land and plastic deformation of the nose is de-

picted in Figure 4.5(e) during wet cutting of DSSs and cutting conditions of 

min/m180cv  and mm/rev35.0rf and cutting time of sec482ct for EN 1.4462 and 

sec186ct  for EN 1.4410.   

 To model maxVB , an empirical formula described by the following equation is applied: 

2
7

3
65

2
4321max rcrrcrrc fvcfcfvcfcfcvccVB   (4.4) 

where 71c are model constants calculated using Eqs. 2.1-10. To check for the adequacy of 

derived models, ANOVA for 95% confidence interval has been applied. Table 4.3 sum-

marizes the values of correlation coefficients and adequacy criterion. The 2R of the mod-
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els are in reasonable agreement with the adj.R . The large valueF  and small valueP  of 

the models imply that they are significant.   

4.3 Bat Algorithm for multi-objective optimization of turning 

DSSs. 

The objective is to simultaneously minimize the resultant cutting force, and the width of max-

imum flank wear. Thus, the mathematical formulation of the current optimization problem 

can be stated as follow: 

),(:

),(:

max rc

rcc

fvVBMin

fvRMin
 

(4.5) 

For the sake of simplicity, a weighted sum to combine above objectives into a G single objec-

tive is proposed as follow:  

Process 
Conditions 

EN 1.4462 EN 1.4410 
Dry Wet Dry Wet 

1c  628.46 304.86 655.08 558.46 

2c  0.33901 -0.88715 1.4101 -1.3256 

3c  -6266.4 -1948.1 -6873.2 -5051.6 

4c  16459 4507.9 19258 14408 

5c  4.6714 6.6947 -3.2372 12.517 

6c  -3703.7 -1851.9 -8666.7 -7777.8 

7c  -8.9286 -4.4643 11.964 -15.179 

Check for models adequacy 
2R  0.991 0.990 0.987 0.962 

adj.R  0.985 0.975 0.966 0.943 

value-F  7.42e+03 3.99e+03 1.42e+2 0.47e+2 
value-P  1.05e-09 4.95e-09 2.04e-05 3.05e-4 

Table 4.3: maxVB models coefficients along with the model adequacy tests. 

max21 VBwRwG c   (4.6) 

As the weights 1w  and 2w  are generated randomly from a uniform distribution, it is possible 

to vary the weight with sufficient diversity so that the Pareto front can be approximated cor-

rectly. The proposed MOO algorithm the optimization is implemented Matlab. The compu-

ting time was generally less than a minute on an Intel(R) Core™2 Quad CPU @2.66 GHz and 
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3.49 GB RAM. It was found that the best population size (n), loudness reduction ( lA ), and 

pulse reduction rate ( r ) were 20, 0.8 and 0.8 respectively.  Based on the previous approxi-

mations and idealizations, the basic steps of the MOBA can be summarized as the pseudo 

code shown in Figure 4.6. 

Objective functions cR and maxVB , x = (x1, ..., xd)
T  

Initialize the bat population xi (i = 1, 2, ..., 20) and vi 
for j = 1 to 20 (points on Pareto fronts) 
         Generate two weights w1,2 ≥ 0 so that 121 ww  

         Form a single objective max11 )1( VBwRwG c    

         while (t <Max number of iterations) 
             Generate new solutions and update by Eqs. (2.55-57) 
             if )(rand

ir
  

                 Random walk around a selected best solution 
             end if 
             Generate a new solution by flying randomly 
             If )()(&(rand *xfxfA qiqli

        

                 Accept the new solutions, 
                 and increase 

ir
  & reduce 

il
A  

             end if 
             Rank the bats and find the current best *x  
         end while 
         Record *x as a non-dominated solution 
end 
Postprocess results and visualization 

Figure 4.6: Multi-objective Bat Algorithm (MOBA). 

The optimum results should not violate the following: 

1. Arithmetic average roughness ( Ra ) 

m
r

f
Ra r 



2
032.0 2

  
(4.7) 

where r  is the tool nose radius for CNMG 120408-MM 2025 coated carbide cutting tools 

(i.e. r  =0.8mm). 

2. Cutting parameters upper and lower bounds as per Table 3.3. 

Optimization results have shown that MOBA is very efficient and consistently converges to 

the sets of optimal solutions. Figure 4.7 shows the Pareto-optimal frontier points for different 

process conditions, at which the designers can determine the final solutions depending on 
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their preferences. The final optimum cutting parameters and performance characteristics are 

listed in Table A1. These process parameters are the Pareto-optimal process parameters that 

should be shown to the decision maker to simultaneously achieve the desired objectives in 

turning of the DSSs 

Figure 4.7: Pareto front points. 

4.4 Interim conclusions 

An experimental investigation on cutting of EN 1.4462 and EN 1.4410 DSSs is presented. 

Statistical regression modeling techniques are adopted to model the performance characteris-

tics and ANOVA tests were performed to check the models adequacies. With the aid of three 

dimensional surface plots, the effects of workpiece materials, process and cutting conditions 

on the different cutting performances have been analyzed and proper conclusion points have 

been drawn. Results of the early analyses have shown that the values of no-beneficial perfor-

mances during cutting EN 1.4410 were generally higher than those encountered during cutting 

EN 1.4462. Moreover, compared to the dry cutting, wet cutting has shown an improvement in 

the overall machining performance through lowering cutting forces and promoting tool life. 

The chapter also presented multi-objective optimization of machining DSSs based on the na-

ture-inspired Multi-Objective Bat Algorithm (MOBA). Two objectives are minimized simul-

taneously: resultant cutting force and maximum width of the flank wear. Arithmetic average 

roughness has been included in the formulation of the optimization problem as a constraint. 
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Results of optimization have shown that MOBA is very efficient and highly reliable. It has 

provided Pareto frontiers of non-dominated solution sets for optimum cutting conditions, ena-

bling decision maker and/or process planner with a resourceful and efficient means of achiev-

ing the optimum cutting conditions.  
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5 Universal Characteristics Index 

In this chapter, a comparative machining study of austenitic EN 1.4404, standard duplex EN 

1.4462 and super duplex EN 1.4410 stainless steels through an extensive experimental study 

is introduced. A new methodology based on Mamdani fuzzy interference of classified chip 

shapes in chip breaking charts to predict the chip volume ratio is presented. Chip volume rati-

os, specific cutting pressures, cutting powers and resultant cutting forces are considered as 

performance characteristics and converted into single indices using TOPSIS, GRA, VIKOR 

and UC. An expert system based on fuzzy rule modeling approach is then adopted to combine 

the computed indices into a single Universal Characteristics Index (UCI). Constrained simu-

lated annealing optimization algorithm is then employed to evaluate the optimal process pa-

rameters thereby satisfying conflicting requirements of each of performance factors. First 

ranking UCI values are analyzed and compared with the output of Multi-Objective Optimiza-

tion (MOO) techniques using multiple regression and weighted sum method. The block dia-

gram of the first phase is presented in Figure 5.1. 

 

Figure 5.1: Framework for UCI determination and comparison. 
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5.1 Estimation of the chip volume ratio  

One of the useful tools for investigating the machinability of materials is the chip breaking 

chart, which maps the sizes and shapes of chip forms across a feed rate × depth of cut matrix. 

In order to draw the chart, a full factorial design as per Table 3.4 is adopted and the results are 

presented in Figure 5.2.  

Detailed observations of the chip chart provide important visual information of the influence 

of cutting parameters and workpiece materials on the breakability of produced chips. Com-

pared to the duplex grades, chips produced during cutting austenitic stainless steel EN 1.4404 

were mainly in the form helical and spiral chips at higher feed ranges and less ribbon and 

snarled chip proportions at lower feed rates. On the other hand, in cutting DSS grades EN 

1.4462 and EN 1.4410, snarled and ribbon chips were produced at low feed ranges and nearly 

all higher depth of cut ranges. At intermediate feed ranges, the produced chips were rather of 

flat-helical and cylindrical-helical forms. Helical and less spiral were the predominant form of 

chips when higher feed rates are used. Therefore, it can be roughly deduced that EN 1.4404 

chips are expected to be less troublesome to the machine operator and friendlier to the ma-

chine tool. 

In an attempt to quantify the information presented visually, fuzzy logic principles were nom-

inated to loosely predict the chip volume ratio. A new chip classification system in conjunc-

tion with forms of chip and their loose chip volume ratio is proposed. The triangular member-

ship function is applied for both input and output variables. Each level of input parameter is 

assigned with a corresponding fuzzy set. Accordingly, feed rate is classified into five fuzzy 

sets as: Very Low (VL), Low (L), Fair (F), High (H) and Very High (VH), and depth of cut 

into seven fuzzy sets as: Very Low (VL), Low (L), Moderately Low (ML), Moderate (M), 

Moderately High (MH), High (H) and Very High (VH). In order to increase the accuracy of 

prediction, chip forms in Figure 1.14 are further divided into shorter and longer subcategories. 

Hence, the output is divided into the following fuzzy sets as: Discontinuous chips (DC), Short 

Spiral Chips (SSC), Long Spiral Chips (LSC), Short Helical Chip Segments (SHCS), Long 

Helical Chip Segments (LHCS), Short Cylindrical and Flat helical Chips (SCFC), Long Cy-

lindrical and Flat helical Chips (LCFC), Short Ribbon and Snarled Chips (SRSC) and Long 

Ribbon and Snarled Chips (LRSC). Figure 5.3 shows the proposed fuzzy membership func-

tions which were employed to predict chip volume ratio (R). 
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Figure 5.2: Chip breaking chart. 
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Figure 5.3: Chip volume ratio membership functions. 

A set of 35 rules per each workmaterial case is written for activating the fuzzy inference sys-

tem (FIS). For a fuzzy system involving two input parameters, rules can be described in a 5×7 

matrix form. Table 5.1 presents the governing rules controlling the relations between feed rate 

and depth of cut on one hand and chip volume ratio on the other hand. Once the rules are for-

mulated, center-of-gravity method is applied to defuzzify the rules and obtain the crisp chip 

volume ratio values. 

Chip volume ratio along with other important performance characteristics are mapped as sur-

face and contour plots and shown in Figure 5.4. The optimum and near optimum regions are 

filled with dark blue and light blue colors. This argument initially suggests that the optimum 

point should locate somewhere within shown dark blue regions. From these collective plots, 

one can easily depict the conflicting nature of the performances. 

It is worth mentioning that spP is the net spindle power calculated through subtracting the av-

erage power fed to the spindle when freely spinning from the power fed to spindle when in-

volved in cutting action. Resultant cutting forces cR and specific cutting pressures ck are com-

puted using Eqs. (1.4) and (1.6) respectively.  

5.2 Universal characteristics index 

Since there is no single MADM method considered as the most suitable or the most acknowl-

edged for multi-performance optimization in machining, therefore, adoption of more than one 

technique is recommended. In this section, MADM techniques such as TOPSIS, GRA, VI-

KOR and UA are separately applied to find the best alternative which can simultaneously 

minimize the described performance characteristics (attributes). Furthermore, through adopt-
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ing the equal priority scenario, a weighting factor of 0.25 for each one of the four perfor-

mances is employed.  

 

Figure 5.4: Surface plots and contour maps of machining performance characteristics. 

5.2.1 TOPSIS 

The first step in any MADM application is to represent all the information available of select-

ed performance characteristics (attributes) in the form of a decision matrix. The performance 

characteristics are arranged as decision matrix )435( DMA using Eq. 2.62. The attribute val-

ues are then normalized utilizing Eq. (2.72). Afterwards, Eq. (2.73) is employed to define 

weighted normalized matrix. Next, the ideal best *  and ideal worst - values are determined 

through adopting Eqs. (2.74) and (2.75) respectively. The distances from the ideal best *
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ideal worst 
iS solutions and the relative closeness to the ideal solution ( *

iC ) are measured 

utilizing Eqs. (2.76-78). Finally, The results are ranked by the relative degree of approxima-

tion. The best alternative is the one which has the shortest Euclidean distance to the ideal so-

lution. 

5.2.2 VIKOR method 

The best 
ix and the worst *

ix values of all criterion functions are computed using Eqs. (2.79) 

and (2.80) respectively. Thereafter, Eqs. (2.81-83) are utilized to compute the utility iS  and 

regret iR  measures, and VIKOR index VQ . The alternatives are then ranked by the values iS , 

iR  and VQ . The results are three ranking lists with no difference in ranking order. The values 

of first rank alternative were in acceptable advantage range and both iS  and iR  by consensus 

proved the stability in decision making.  

5.2.3 GRA 

The adopted attributes are of non-beneficial kind where low values are always desired. There-

fore, when using GRA as a MADM method, the ‘smaller-the-better’ option should be em-

ployed as a normalizing method using the last term in Eq. (2.84). The values of deviation se-

quence ij , which is the absolute difference between reference sequence	 jr0 , and the compa-

rability sequence ijr values, are computed using Eq. (2.85). The global minimum ( min ) and 

maximum values ( max ) are directly computed employing Eqs. (2.86) and (2.87) respectively. 

In all cases, min  and max  were equal to 0 and 1 respectively. Since, all the attributes have 

equal weighting, d  is assigned to be 0.5. Afterwards, Grey relational coefficients g  and 

Grey relational grade GRG  are evaluated using Eqs. (2.88) and (2.89) respectively. Finally, 

the alternatives are ranked based on theGRG  values so that the largest has specified the best.   

5.2.4 UC 

Owing to the non-beneficial nature of performances, Eq. (2.94) is directly used to specify the 

best value of each attribute. Afterwards, Eqs. (2.95-97) are employed to determine the values 

the utility constant 
jCU , preference number jPN  and the overall utility value iU , respective-

ly. The best alternative is then ranked according to the iU  values. 
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5.2.5 Fuzzy-MADM 

The output of the previous MADM methods showed different ranking outcomes, which will 

cause uncertainty and confusions to the decision maker and/or process planne. In order to 

eliminate the discrepancy of these methods and obtain a more general solution, fuzzy logic 

principles is proposed to solve the problem. The individual MADM-indices are combined into 

a single and comprehensive index called the Universal Characteristics Index (UCI).   

Matlab software was used to construct the inference model of the UCI. The MADM-indices 

were first adjusted to a notionally common scale between null and one, using simple normali-

zation methods. So that the digit ‘one’ represents the most desirable and ‘null’ is the least de-

sirable alternative. The outputs of the previous MADM-methods are designated as input vari-

ables to the FIS and are assigned with the following fuzzy sets: Small (S), Medium (M) and 

Large (Lg). The output variable has the following nine levels: Extremely Low (EL), Very 

Low (VL), Low (L), Lower Medium (LM), Medium (M), Upper Medium (UM), High (H), 

Very High (VH) and Extremely High (EH). Mamdani implication method is employed for the 

fuzzy inference reasoning. The relationship between system input and output is expressed by 

an “If-Then” type. Totally 81 fuzzy rules per material were formulated. A sample of the for-

mulated fuzzy rules is listed below.  

(EL) is    then UCI(S) is UA and  (S) isGRA   and (S) is VIKOR and  (S) is TOPSIS:1Rule
(VL) is    then UCI(M) is UA and  (S) isGRA   and (S) is VIKOR and  (S) is TOPSIS:2Rule
(L) is    then UCI(Lg) is UA and  (S) isGRA   and (S) is VIKOR and  (S) is TOPSIS:3Rule  

. 

(VH) is  then UCI(M) is UA and (Lg) isGRA   and is(Lg) VIKOR and (Lg) is TOPSIS:80Rule
(EH) is  then UCI(Lg) is UA and (Lg) isGRA   and is(Lg) VIKOR and (Lg) is TOPSIS:81Rule  

The values of cutting performances and the developed UCIs are shown in Table A2. In order 

to evaluate the strength of the statistical relationship between the computed MADM-indices 

and the developed UCIs, Spearman’s rank-order correlation is applied, see Table 5.2. The 

near to one values of UCI coefficients are good indications of strong statistical relationship 

with other MADM-indices. The ranks of the estimated UCI values along with the ranks of the 

four MADM methods are shown in Figure 5.5. Noteworthy is the problem of MADM-

methods rank differences which justifies the application of fuzzy logic to solve it. 
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Depth 
of cut 

EN 1.4404 EN 1.4462 EN 1.4410 
Feed rate  Feed rate  Feed rate  
VL L F H VH VL L F H VH VL L F H VH 

VL LHCS SHCS SHCS SSC SSC SRSC SCFC SHCS LHCS SHCS SRSC SCFC SHCS SHCS SHCS 
L LHCS LSC SHCS SSC SSC SCFC SCFC LHCS LHCS SSC URSC SCFC LHCS LHCS SHCS 
ML SHCS LSC LSC LSC SSC LRSC LCFC SCFC SCFC LSC URSC LCFC SCFC LHCS LSC 
M SCFC LSC LSC LSC SSC LRSC LCFC LCFC LHCS LHCS URSC LCFC SRSC LCFC LHCS 
MH LRSC LHCS LHCS LHCS LSC LRSC LRSC LRSC LRSC LHCS URSC LRSC LRSC LRSC LHCS 
H LRSC LCFC LCFC LHCS SHCS LRSC LCFC LRSC LRSC LRSC URSC LRSC LRSC LRSC LRSC 
VH LRSC LCFC LCFC LCFC LHCS LRSC LRSC LRSC LRSC LRSC URSC LCFC LRSC LRSC LRSC 
Table 5.1: Chip classification fuzzy-based rules. 

 EN 1.4404 EN 1.4462 EN 1.4410 
TOPSIS VIKOR GRA UA UCI TOPSIS VIKOR GRA UA UCI TOPSIS VIKOR GRA UA UCI 

TOPSIS 1.000 0.925 0.9 0.936 0.986 1.000 0.819 0.895 0.918 0.906 1.000 0.815 0.825 0.872 0.918 
VIKOR 0.925 1.000 0.738 0.808 0.914 0.819 1.000 0.78 0.798 0.877 0.815 1.000 0.735 0.824 0.922 
GRA 0.90 0.738 1.000 0.983 0.929 0.895 0.78 1.000 0.996 0.911 0.825 0.735 1.000 0.98 0.914 
UA 0.936 0.808 0.983 1.000 0.963 0.918 0.798 0.996 1.000 0.924 0.872 0.824 0.98 1.000 0.963 
UCI 0.986 0.914 0.929 0.963 1.000 0.906 0.877 0.911 0.924 1.000 0.918 0.922 0.914 0.963 1.000 
Table 5.2: Spearman’s rank correlation coefficients. 
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Figure 5.5: Ranking the output of MADA methods and UCI. 

5.3 Optimization 

After combining the MADM-indices into one universal index, the next step is to find the ex-

act optimal settings of the process parameters using SA algorithm. Two approaches are simul-

taneously adopted to optimize the process: Weighted Sum Method (WSM) and UCI. The de-

cision variables are feed rate and depth of cut. The following objective function is developed 

for Multi-Objective Optimization (MOO) of the performance characteristics based on the 

WSM: 
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where 41w  are the weight values assigned to R , cR , ck  and spP  respectively. The weight 

values can be anything provided that 1 iw . Here, equal weights for all responses are con-

sidered, i.e. 25.04321  wwww . Using multiple regressions, a second model based on 

computed UCI values has been developed. Since the possibility of determining a global opti-

mum solution and its accuracy depends on the nature of the modeling used to express the ob-

jective function, hence, a great attention has been paid to select an accurate and reliable mod-

el. Consequently, the following objective function is employed for predicting UCI values: 
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 (5.2) 

where 141c  are model coefficients calculated using Eqs. 2.1-10. Performance characteristics 

are formulated using multiple nonlinear regression analysis, and applied as constraints on 

both objective functions separately. Simplest forms of constraints are suggested and tabulated 

in Table 5.3. The constraint models are considered adequate to represent the system based on 

the adjusted correlation factor adj.R . The boundaries of the decision variables are expressed as: 

mm5.35.0

mm/rev4.01.0




p

r

a

f
 (5.3) 

Constraints EN 1.4404 EN 1.4462 EN 1.4410 
R  

max
077.1767.0776.5 Raf pr   max

549.029.037 Raf pr   max
445.0318.074.39 Raf pr   

cR  
max

606.0752.03641 cpr Raf   
max

615.0808.04368 cpr Raf   
max

614.0746.04196 cpr Raf   

ck  
max

445.0185.03474 cpr kaf   
max

429.0291.03163 cpr kaf   
max

435.0278.03412 cpr kaf   

spP  
max

346.0867.01094 sppr Paf   
max

367.0694.04.915 sppr Paf   
max

375.0797.01071 sppr Paf   

      0.612 = R:1.4410 EN      0.605= R : 1.4462 EN      0.609,= R:1.4404 EN : models adj.adj.adj.R

        0.941 = R:1.4410 EN      0.939= R : 1.4462 EN      0.961,= R:1.4404 EN :models adj.adj.adj.cR

       0.883 = R:1.4410 EN      0.791= R : 1.4462 EN      0.943,= R:1.4404 EN :models adj.adj.adj.ck

 0.891 = R:1.4410 EN      0.913= R : 1.4462 EN      0.902,= R:1.4404 EN :models adj.adj.adj.spP  

Table 5.3: Performance characteristic models as constraints with 95% confidence interval. 

 

The initializing optimization parameters for simulated annealing algorithms were: initial 

T=1.0, final stopping temperature 10101  , maximum number of rejection 2500 , maximum 

number of runs 500 , maximum number of accept 250 , Boltzmann constant bk =1 and en-

ergy norm 5101 E . The obtained optimization results showed that SA is highly reliable 

and converges consistently to the optimum solution. Following the application of SA, opti-

mum results of optimizations using the above objective and constraint models are compared 

with the first ranking alternatives given in Table A2. Table 5.4 presents the results of optimi-

zation, UCI and performance values at optimal level. 
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  Objective function 
Per-Table A2 first 
rank UCI, cutting 
parameters and per-
formance values  

Average im-
provement 

Factors 
Model I (Eq. 5.1) Model II (Eq. 5.2) Model 

    I 
  (%) 

Model 
   II 
  (%) 

EN 1. 
4404 

EN 1. 
4462 

EN 1. 
4410 

EN 1. 
4404 

EN 1. 
4462 

EN 1. 
4410 

EN 1. 
4404 

EN 1. 
4462 

EN 1. 
4410 

R  20.8 36.55 48.69 37.9 70.3 46 31.7 61.7 31.7 -28.7 19.89 

cR [N] 617.5 1021 824.0 959.8 660.1 938.3 717.6 560.3 896.7 6.700 14.92 

ck [MPa] 5891 6174 7227 4401 6315 6885 3905 4614 6207 24.36 16.01 

spP [W] 157.8 293.6 228.7 146.5 181.7 262.8 172.2 130.9 182.5 22.14 13.63 

rf [mm/rev] 0.121 0.28 0.20 0.132 0.101 0.238 0.102 0.101 0.25   

pa  [mm] 0.732 0.50 0.50 1.365 0.959 0.501 1.502 101 0.5   

Results 0.323 0.329 0.384 0.898 0.743 0.828 0.959 0.887 0.886   
Table 5.4: Process optimization results. 

It should be noted here that ranking the alternatives according to UCI values offers many ad-

vantages like, simplicity, accuracy, generally lower non-beneficial performance values and 

the reducing the necessity of performing optimization process. At optimum UCI values, when 

simple ranking UCI results is used and compared to the optimum results obtained in model I 

(Eq. 5.1), the average improvement in cutting power consumption is 22.147%, specific cut-

ting pressure is 24.364% and resultant cutting force is 6.7%. In contrast, optimization with 

model I could reach lower chip volume ratio with an average rate of deterioration of -28.77%. 

This relative large percentage is attributed to the inaccurate models used to predict chip vol-

ume ratio with margins of errors to up to 23.54, 23.08 and 14.622 for EN 1.4410, EN 1.4462 

and EN 1.4404 respectively. To compensate for this inconvenience, all root mean square of 

errors are added to the models and optimization process ran again. Results has shown that the 

average improve in  cutting power consumption would raise to a new level of 41.433%, spe-

cific cutting pressure of 30.961%, resultant cutting forces of 30.081% and the chip volume 

ratio could raise of 14.675%. This confirms the viability of derived UCI values when com-

pared with conventional multi-objective optimization algorithms. Although an accurate and 

relatively complex objective function which could best model UCI is used as a model for a 

second optimization process and the optimizations were ran under the same set of constraints, 

no traces of any improvement is reported. 
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5.4 Interim conclusions 

 For the studied range of process parameters, the resulting chip form was strongly influ-

enced by the workpiece material and cutting conditions. When machining super duplex 

EN 1.4410 and standard duplex EN 1.4462 stainless steels, snarled and ribbon chips were 

the dominant at lower feed ranges and nearly all higher depth of cut ranges. Meanwhile, 

flat helical and cylindrical helical chips at medium feed ranges and helical and less spiral 

chips at higher feed ranges were the dominant. Chips obtained when machining austenitic 

EN 1.4404 stainless steel are friendlier to the machine and generally produce lower rib-

bon, snarled and flat helical chips. Fuzzy logic principles were applied to quantify the in-

formation presented in chip breaking chart and could successfully predicts the chip vol-

ume ratio. 

 In the present chapter, the objective was to simultaneously minimize performance charac-

teristics such as chip volume ratio, resultant cutting forces, specific cutting pressures and 

net spindle powers. Because the values of above non-beneficial performance characteris-

tics when machining austenitic EN 1.4404 were generally lower than standard duplex EN 

1.4462 and super duplex EN 1.4410 grades, therefore, one can roughly conclude that the 

machinability of EN 1.4404 is better than EN 1.4462 and EN 1.4410.  

 The multiple performance characteristics were successfully converted into single MADM-

indices using TOPSIS, VIKOR, GRA and UA. Due to the differences among MADM 

preferences and rankings, and the absence of a reference defining a ‘super method’, fuzzy 

rule modeling approach was proposed to eliminate the discrepancy among the MADM 

methods and derive a single characterization index called UCI. Spearman’s rank correla-

tion coefficients have confirmed that the proposed index had a very good correlation with 

the output of other MPCI methods. Predicted UCI values have been analyzed and com-

pared with output of other optimization techniques. A remarkable improvement in reduc-

tion of cutting power consumption, specific cutting pressure and resultant cutting forces 

has been reported when direct ranking system of predicted UCI indices are set as opti-

mum. 
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6 Taguchi-MADM-Meta-heuristic concept 

The main objective of this chapter is to examine the machinability of different grades of stain-

less steels in seeking simultaneous improvement in performance characteristics (or response 

factors) using different statistical and mathematical tools. Accordingly, multi-performance 

optimization of turning austenitic EN 1.4404, standard duplex EN 1.4462 and super duplex 

EN 1.4410 stainless steels utilizing coupled Taguchi-based designs, multiple attribute deci-

sion making (MADM) and meta-heuristic algorithms is experimentally addressed. The flow 

chart of the methodology presented in this chapter is shown in Figure 6.1. Surface roughness, 

specific cutting energy, cutting power and resultant cutting forces are optimized per each ma-

terial under Taguchi optimization procedure and combined as a single, cutting parameter de-

pendent Multi-Performance Characteristics Index (MPCI) using VIKOR method. Analysis of 

means (ANOM) and Analysis of variance (ANOVA) are employed to designate the optimum 

level of cutting parameters and to investigate the influence of cutting parameters and their 

interactions on the computed index, respectively. Nature-inspired meta-heuristic algorithms 

such as; Firefly Algorithm (FA), Accelerated Particle Swarm Optimization (APSO) and 

Cuckoo Search (CS) are used to constrainedly optimize the developed MPCIs and find the 

exact setting of optimum cutting parameter. Finally, a comparison analysis is conducted in 

order to designate the algorithm which has shown the best performance in quickly and con-

sistently converge to the global optimum point. 

6.1 Taguchi method 

In order to systematically approach the variance in controllable input factors and to observe 

the effect of these factors and their interactions on the output performance parameters, an L25 

(56) orthogonal array proposed by Taguchi is used in the experimental procedure per each 

workpiece material (see Table 3.6) using coated carbide cutting tool of ISO designation 

CNMG 120408-MM 2025. The control factors are the three known cutting parameters which 

are cutting speed ( cv ), feed rate ( rf ) and depth of cut ( pa ). Under a full factorial run and in 

the case of three factors with five levels, 53=125 experiments should be conducted. In accord-

ance with Taguchi’s method the standard orthogonal array L25 with only one fifth of that 

number of experiments could be used. However, the selection of L25 orthogonal array, that 
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can have six control factors for a saturated design of three factors leaves unassigned column 

in the matrix which can be used to investigate first order interactions among the cutting pa-

rameters. Therefore, the first, the second and the fourth columns of the matrix represent dif-

ferent levels of the cutting parameters and the third column is employed for studying the in-

teraction between the first two (i.e. cutting speed and feed rate interaction).  

 

Figure 6.1: The flow chart of the Taguchi-VIKOR-Meta-heuristic methodology. 

In order to minimize the variations in the performance characteristics, Taguchi introduced a 

method to transform the repetition data to another value, which is a measure of variation pre-

sent in the scattered response data. This transformation consists of the computation of signal-

to-noise (S/N) ratio ( ) that consolidates several repetitions into one performance measure 

which reflects the amount of variation present. Since, all the adopted performance characteris-

tics are of non-beneficial kind, thus Eq. 2.27 must be adopted to calculate the S/N ratios. They 

are further analyzed using statistical analysis of means (ANOM) employing Eqs. 2.29 & 2.30. 

Furthermore, in order to simultaneously optimize the performance characteristics and mini-

mizes the effect of noise factors, Eq. 2.31 is applied to maximize the mean S/N ratio. The op-
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timum level for a performance characteristic is the level that gives the highest value of the 

mean S/N ratio.   

Figure 6.2 presents the results of applying ANOM on the computed S/N ratios. Accordingly, 

the optimum control levelfactor combinations during turning EN 1.4404 were: 215
prc afv  for sur-

face roughness, 554
prc afv  for specific cutting energy, 111

prc afv  for cutting power and 114
prc afv   for 

resultant cutting forces. In turning EN 1.4462, the following optimum levelfactor combinations 

were optimum: 215
prc afv  for surface roughness, 533

prc afv  for specific cutting energy, 111
prc afv   for 

cutting power and 113
prc afv   for resultant cutting forces. Finally, for turning EN 1.4410 the op-

timum levelfactor combinations were: 214
prc afv   for surface roughness, 534

prc afv  for specific cut-

ting energy, 111
prc afv  for cutting power and 114

prc afv   for resultant cutting forces. 

Figure 6.2: Main effect plot of SN ratio in machining stainless steels. 

Following the determination the optimal levels of control factors, ANOVA of S/N ratios of all 

performance characteristics are performed to estimate the relative significance of each factor. 
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Table 6.1 shows the result of ANOVA on SN ratios for 95% level of confidence. The P-

values of cutting speed, feed rate and depth of cut smaller than 0.05 are marked in bold re-

vealing the statistical and physical impact of control factors. The last three column of the table 

presents the percent contribution (%Contribution) which indicates the contribution of the con-

trol factors in total variation of performance characteristics. 

Fac-
tors 

DOF SS F-value P-value %Contribution 
EN 1. 
4404 

EN 1. 
4462 

EN 1.
4410 

EN 1.
4404

EN 1.
4462 

EN 1.
4410 

EN 1.
4404 

EN 1.
4462 

EN 1. 
4410 

EN 1. 
4404 

EN 1.
4462 

EN 1.
4410 

Surface roughness ( Ra ) 

cv  4 13.13 11.54 4.152 5.51 2.91 1.63 0.02* 0.093 0.257 1.291 1.219 0.469

rf  4 977.4 907.3 862.7 410.1 228.7 339.6 0.000 0.000 0.000 96.05 95.84 97.63

rc fv  4 5.506 5.506 1.535 2.41 1.39 0.6 0.135 0.32 0.671 0.564 0.581 0.173

pa  4 14.31 14.31 10.12 6.82 3.61 3.98 0.011 0.058 0.046 1.624 1.512 1.145

Error 8 7.932 7.932 5.080 F-table(4,16,0.05)=3.0069 0.84 0.84 0.469
Total 24 946.6 946.6 883.5 100 100 100 
Specific cutting energy ( ce ) 

cv  4 13.08 13.67 12.80 1.97 1.78 1.32 0.192 0.226 0.341 7.749 9.875 7.734

rf  4 20.90 18.91 22.13 3.15 2.46 2.28 0.079 0.129 0.149 12.38 13.66 13.36

rc fv  4 4.044 3.176 2.559 0.61 0.41 0.26 0.668 0.795 0.893 2.394 2.293 1.545

pa  4 117.5 87.32 108.6 17.69 11.36 11.19 0.000 0.002 0.002 69.60 63.06 65.62

Error 8 13.29 15.36 19.41 F-table(4,16,0.05)=3.0069 7.871 11.10 7.871
Total 24 168.8 138.4 165.5 100 100 100 
Cutting power ( cP ) 

cv  4 463.2 475.8 473.3 69.69 61.93 48.77 0.171 0.000 0.000 47.79 45.12 46.66

rf  4 295.8 320.7 311.2 44.52 41.74 32.06 0.000 0.000 0.000 30.52 30.41 30.68

rc fv  4 4.044 3.176 2.559 0.61 0.41 0.26 0.771 0.795 0.893 0.417 0.301 0.252

pa  4 192.7 239.5 207.7 29.00 31.17 21.4 0.000 0.000 0.000 19.88 22.70 20.48

Error 8 13.29 15.36 19.41 F-table(4,16,0.05)=3.0069 1.374 1.456 1.374
Total 24 969.1 1054. 1014. 100 100 100 
Resultant cutting force ( cR ) 

cv  4 16.72 19.01 16.81 2.11 2.31 1.4 0.171 0.146 0.317 3.313 3.541 2.978

rf  4 226.1 229.2 290.5 33.56 36.35 24.19 0.000 0.000 0.000 52.71 42.7 51.46

rc fv  4 3.557 3.126 2.349 0.45 0.38 0.2 0.771 0.817 0.934 0.704 0.582 0.416

pa  4 202.6 269.0 230.8 25.55 32.68 19.21 0.000 0.000 0.000 40.13 50.11 40.88

Error 8 15.86 16.46 24.02 F-table(4,16,0.05)=3.0069 3.141 3.066 3.141
Total 24 504.9 536.9 564.5 100 100 100 
*Bold P-values are less than 0.05 
Table 6.1: ANOVA of S/N ratios. 
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According to above table, the most influential cutting parameters affecting the performance 

characteristics: (a) Ra  is rf  with average contribution percentage of 96.512%, (b) ce  is  pa  

with an average contribution percentage of 66.098%, (c) cP  are cv  and rf  with average con-

tribution percentages of 46.528%  and 30.54%  respectively, and (d) cR  are rf and pa  with 

contribution percentages of 48.959%  and 43.707%  respectively. In all of the above condi-

tions, the contribution percentage of rc fv  interaction did not exceed 3%. Therefore, it can be 

neglected. 

6.2 VIKOR method 

Taguchi method is seen suitable only for single objective optimization, in order to perform 

multi-objective optimization of the problem, VIKOR method is utilized. S/N ratios of the per-

formance characteristics are first normalized between ‘0’ and ‘1’ and the weights are deter-

mined using the entropy method which makes the weight designation process independent of 

the views of the decision maker. Eqs (2.64-68) are employed to define the weights of perfor-

mance characteristics and the weights are tabulated in Table 6.2. Thereafter, utility and regret 

measures, and MPCIs are computed utilizing Eqs. (2.81-83), respectively.  

Performance characteristics 
Entropy weights ( )jw  

EN 1.4404 EN 1.4462 EN 1.4410 
Surface roughness ( Ra ) 0.269 0.265 0.275 
Specific cutting energy ( ce ) 0.205 0.215 0.214 

Cutting power ( cP ) 0.284 0.279 0.286 

Resultant cutting force ( cR ) 0.242 0.241 0.225 

Table 6.2: Entropy weights. 

The values of first rank alternatives are in acceptable advantage range (i.e. )(MPCI
2bA  

)(MPCI
1bA ) is always greater than 1))-(1/(25 . Both regret and utility measure values by con-

sensus have proved the stability in decision making. Therefore, the values of MPCIs are di-

rectly used in the next analyses.  

In order to indicate the sensitivity of calculated MPCIs to changing cutting parameters, con-

tour plots for newly computed MPCIs are mapped as shown in Figure 6.3. The optimum and 

near optimum regions are filled with dark blue and light blue colors. This argument initially 

suggests that the optimum point should locate somewhere within shown dark blue regions.  
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Performing ANOM on the computed MPCIs, an optimum global level for any control factor 

is a level that returns minimum value of the mean MPCI. Figure 6.4 presents the main effect 

plot of cutting parameters on the computed MPCIs. The global optimum levelfactor  combina-

tions while turning EN 1.4410 and both of EN 1.4404 and EN 1.4462 were: 212
prc afv  and 

213
prc afv , respectively. 

 

Figure 6.3: Topography of computed MPCI. 

 

Figure 6.4: Main effect plot of MPCI values in machining stainless steels. 
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Table 6.3 presents the results of applying ANOVA to the MPCIs so as to define the global 

significant control factor. Compared to cutting speed and depth of cut, results have shown that 

the feed rate has the most significant effect of the MPCIs. This contribution is partly attribut-

ed to the weights that were assigned to the performances on which feed rate has the impact. 

Furthermore, the interaction effect of cutting speed and feed rate was insignificant. 

Fac-
tors 

DOF SS F-value P-value %Contribution 
EN 1. 
4404 

EN 1. 
4462 

EN 1.
4410 

EN 1.
4404

EN 1.
4462 

EN 1.
4410 

EN 1.
4404 

EN 1.
4462 

EN 1. 
4410 

EN 1. 
4404 

EN 1.
4462 

EN 1.
4410 

cv  4 0.119 0.110 0.128 2.05 1.94 2.33 0.179 0.198 0.143 5.969 6.031 6.783

rf  4 1.518 1.335 1.431 26.05 23.42 25.97 0.00* 0.000 0.000 75.72 72.90 75.58

rc fv  4 0.056 0.062 0.056 0.98 1.09 1.02 0.471 0.424 0.453 2.837 3.389 2.961

pa  4 0.193 0.209 0.167 3.32 3.68 3.04 0.070 0.055 0.085 9.654 11.45 8.853

Error 8 0.116 0.114 0.117 F-table(4,16,0.05)=3.0069 5.811 6.229 5.823
Total 24 2.005 1.832 1.894 100 100 100 
*Bold P-values are less than 0.05 
Table 6.3:  ANOVA of the computed MPCIs. 

6.3 Meta-heuristic optimization 

In the two previous sections, the conflicting responses are converted into one single dimen-

sionless index called MPCI (VIKOR index). Through this approach, the exact values of the 

control factors at which the performance characteristics are simultaneously minimum without 

exceeding certain design limits was not possible. Therefore, the need for employing a more 

comprehensive approach arises. For this purpose, the application of nature-inspired meta-

heuristic algorithms is one of the most versatile options. 

In this section, recently developed nature-inspired meta-heuristic algorithms such as FA, AP-

SO and CS are systematically applied to the problem and the performances are compared. The 

systematic optimization procedure involves the following basic steps:    

Step 1. Designation of decision variables:  The adopted decision variables in present work are 

cv , rf  and pa . 

Step 2. Formulation of objective functions:  Formulation of optimization model is one of the 

most important tasks in optimization process.  The type of optimization modeling techniques 

used to express the objective function determines its accuracy and the possibility of reaching a 

global optimum solution.  Therefore, a great attention is made to find a model expressing the 
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case with simplest form and highest possible precision. Many linear and nonlinear models are 

examined using NonLinearModel.fit function in Matlab.  Finally, the most realistic, reliable, 

and easier to solve (from optimization point of view) model selected is in the format of:  

pcrcprcprc avcfvcacfcvcacfcvcc 98
2

7
2

6
2

54321MPCI   (6.1) 

where 91c  are coefficients of the model, calculated using Eqs. 2.1-10 and are presented in 

Table 6.4 below.  

Workmaterial 
1c  2c  3c  4c  5c  6c  7c  8c  9c  

EN 1.4404 0.177 -0.006 2.566 -0.149 18e-6 -1.076 0.051 0.003 0.001 
EN 1.4462 0.365 -0.007 1.427 -0.158 19e-6 0.685 0.053 0.004 0.001 
EN 1.4410 0.233 -0.005 2.197 -0.181 20e-6 0.163 0.053 98e-5 0.001 
Table 6.4: Objective function coefficients. 

Step 3. Formulation of constraints: For the process of effective optimization, nonlinear con-

straint models need to be derived and incorporated in optimization model. The mathematical 

model for the prediction of constraint variables in terms of the decision variables can be ex-

pressed as: 

pijrijcijijij afvKCn lnlnlnlnl    (6.2) 

where ijC is the predicted constraint for ith material and jth number of performances. ,ijK  

,ij ,ij  and ,ij  are the model constant parameters. Exponentiate both sides of above equa-

tion using e, transform it into a power regression Eq.: 

ijijij

prcijij afvKC    (6.3) 

In other words, minimization of each VIKOR index model is imposed by different nonlinear 

constraints namely: 

averageprci RaafvKRa iii  111
1min:constraintroughnessSurface   

average

iii
cprcic eafvKe  222

min 2:constraintenergyCutt. Spec.   

average

iii
cprcic PafvKP  333

min 3:constraintpowerCutting   

average

iii
cprcic RafvKR  444

min 4:constraintforcecutt.Rslt.   

(6.4) 

Table 6.5: presents the estimates of the proposed constraint models and the corresponding 

numerical bounds. It should be noted that the minimum and maximum adjusted correlation 

coefficients for the models were 0.762 and 0.967 respectively.  
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Performance Material 
1iK  1i  1i  1i  Min Average 

Ra  
[µm] 

EN 1.4404 22.405 -0.091 1.241 0.1444 0.25 2.808 
EN 1.4462 18.166 -0.058 1.202 0.1746 0.25 2.801 
EN 1.4410 16.432 -0.043 1.12 0.131 0.25 2.977 

Performance Material 
2iK  2i  2i  2i  Min Average 

ce  

[J/mm3] 

EN 1.4404 5.7772 -0.130 -0.198 -0.427 2 3.938 
EN 1.4462 6.262 0.119 -0.163 -0.369 2 4.284 
EN 1.4410 6.5016 -0.114 -0.164 -0.416 2 4.538 

Performance Material 
3iK  3i  3i  3i  Min Average 

cP  

[W] 

EN 1.4404 73.51 0.9254 0.802 0.5655 200 2379.93 
EN 1.4462 59.564 0.9995 0.8645 0.662 200 2667.39 
EN 1.4410 85.078 0.9305 0.8226 0.590 200 2775.13 

Performance Material 
4iK  4i  4i  4i  Min Average 

cR  

[N] 

EN 1.4404 7660.2 -0.163 0.777 0.5761 200 1479.08 
EN 1.4462 8076 -0.127 0.8671 0.665 200 1710.35 
EN 1.4410 9597.9 -0.149 0.8711 0.609 200 1778.42 

Table 6.5: Constraint models coefficients and bounds. 

Step 4. Setting up decision variables bounds: The bounds of decision variables were selected 

based on their maximum and minimum values in Table 3.5, i.e.: 

min]/m[20040  cv  

]rev/mm[4.01.0  rf  

]mm[5.25.0  pa  

(6.5) 

Step 5. Running typical nature-inspired meta-heuristic algorithms: Nature inspired meta-

heuristic algorithms are among the most powerful algorithms for engineering optimizations 

nowadays. Out of many meta-heuristic optimization algorithms, the present chapter compares 

the performances of three different algorithms namely: FA, APSO and CS. The algorithms are 

recently developed and simultaneously employed for comparison purposes. For more details, 

the reader is recommended to refer to the Chapter 2 of the present dissertation. Table 6.6 

summarizes the typical initializing optimization parameters for each algorithm. 

FA APSO CS 
Population size 20  Randomness amplt. ( ) 2.0 Number of nests 20  

Number of iterations 4000  Speed of converg. ( ) 5.0  Probability ( ap ) 25.0  

Randomization  ( rand ) 5.0  Number of particles 25  Number of iterations 4000  

Attractiveness  ( a ) 2.0  Number of iterations 4000   

Attractiveness variat. 1)( a  Randomness 95.0   

Table 6.6: Initializing parameters. 
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The obtained optimization results showed that all three methods are highly reliable and con-

verge consistently to the optimum solution. Table 6.7 presents the result of optimization for 

each workmaterial case. Results have showed that higher values of depth of cuts were needed 

to get the optimum conditions when machining austenitic stainless steel compared to standard 

and super duplex stainless steels. The optimization of the latter has required lower cutting 

speed and higher depth of cut than standard duplex steels. 

Optimum 
Parameter 

FA APSO CS 
EN 

1.4404 
EN 

1.4462 
EN
1.4410 

EN 
1.4404 

EN
1.4462 

EN
1.4410 

EN 
1.4404 

EN 

1.4462 
EN
1.4410 

cv [m/min] 123.88 129.62 112.57 123.47 134.7 112.07 139.35 148.55 130.18 

rf [mm/rev] 0.101 0.1000 0.1000 0.1000 0.1040 0.1000 0.1000 0.1000 0.1000 

pa [mm] 1.642 1.6063 1.6144 1.6437 1.5863 1.6163 0.5000 0.5000 0.5000 

.MPCIopt  0.106 0.1201 0.09241 0.10633 0.1198 0.09244 0.0031 0.00945 0.0286 

no. Iter.  3811 3989 3844 2515 2416 2494 1189 1286 1092 
Table 6.7: Summary of optimization results and meta-heuristic algorithms performances. 

The efficiency of algorithms is measured in terms of the required iteration numbers per each 

algorithm to reach the global optimum or near global optimum and in terms of the extent of 

minimization.  Based on this statement along with running optimization algorithms on an Intel 

® Xeon ® CPU 3.47 GHz and 24GB RAM computer, CS was seen the most efficient fol-

lowed by APSO and the least efficient FA. Figure 6.5 shows the performance of each algo-

rithm in converging to the global optimum solutions. 

Figure 6.5: Performance of meta-heuristic algorithms in optimization of cutting process. 

6.4 Interim conclusions 

The present chapter has experimentally addressed the multi-performance optimization of turn-

ing of austenitic EN 1.4404, standard duplex EN 1.4462 and super duplex EN 1.4410 stainless 
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steels utilizing Taguchi-VIKOR-Meta-heuristic concept. Surface roughness, specific cutting 

energy, cutting power and resultant cutting forces are optimized per each material employing 

Taguchi optimization procedure and combined as a single, cutting parameter dependent multi-

performance characteristics index (MPCI) using VIKOR method. In order to select a meta-

heuristics algorithm which could fit the problem the best and determine the optimum global 

cutting parameter setting, constrained meta-heuristic algorithms such as FA, APSO and CS 

are simultaneously adopted. 

 Under Taguchi optimization procedure, the optimum control levelfactor combinations for 

optimizing ccc RPeRa and,,  during turning EN 1.4404 were: 215
prc afv , 554

prc afv , 111
prc afv  

and 114
prc afv , respectively. In the same respective manner, the optimum levelfactor for turn-

ing EN 1.4462 were: 215
prc afv , 533

prc afv , 111
prc afv  and 113

prc afv , and for turning EN 1.4410 

were: 214
prc afv , 534

prc afv , 111
prc afv   and 114

prc afv . 

 Under the utilization of VIKOR as a multi-performance optimization method, the global 

optimum levelfactor  combinations while turning EN 1.4410, and both of EN 1.4404 and 

EN 1.4462 were: 212
prc afv , and 213

prc afv , respectively. 

 Under the application of meta-heuristic algorithms, constrained optimizations of the de-

veloped MPCIs are performed, performances of FA, APSO and CS are compared, and the 

exact settings of optimum cutting parameters are determined. The obtained optimization 

results showed that the algorithms are highly reliable and converge consistently to the op-

timum solution. However, when it comes to comparisons based on the iteration numbers 

required for convergence and computation results, APSO outperformed the FA and CS 

was seen far more efficient than both. 
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7 Application of Fuzzy–MADM approach in opti-

mizing surface quality of stainless steels 

In this chapter, Taguchi approach is coupled with fuzzy-MADM methods for achieving better 

surface quality in constant cutting speed face turning of EN 1.4404 austenitic, EN 1.4462 

standard duplex and EN 1.4410 super duplex stainless steels. MADM methods such as 

GTMA and AHP-TOPSIS are simultaneously adopted to combine well-known surface quality 

characteristics like arithmetic average ( Ra ), average distance between the highest peak and 

lowest valley ( Rz ) and maximum height of the profile ( Rt ) into a single index called multi-

surface quality characteristics index ( MSQCI ). The differences in rankings between derived 

indices are solved through converting each crisp values into trapezoidal fuzzy number and 

unifying them using fuzzy simple additive weight method. The fuzzy numbers are then def-

fuzified into crisp values employing techniques like; the spread, mode and area between cen-

troid of centroids. The results are further analyzed using analysis of means (ANOM) and 

analysis of variance (ANOVA). Finally, confirmation tests are conducted to verify the ob-

tained optimal results.  

7.1 Proposed methodology 

The novel approach proposed in this chapter can be summarized into five stages as shown in 

Figure 7.1. Following the determination of MSQCI crisp values for each alternative using 

described MADM approaches, they are converted into fuzzy numbers. The reason behind the 

conversion into fuzzy refers to the fact that none of MADM methods can be considered as the 

‘super method’ appropriate to all decision making situations. This implies that it is critical to 

select the most appropriate method to solve the problem under consideration, since the use of 

unsuitable method always leads to misleading decisions. Therefore, to avoid risking, a level of 

uncertainty in each computed MSQCI  is accounted for, so that the decision maker is uncer-

tain or partially certain based on the values of adopted membership functions. 

The fuzzification process of crisp MSQCI  values (CV ) into fuzzy number MSQCI  

),,,( 4321 aaaa is governed by the following expressions: 
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Figure 7.1: Framework of the research. 
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(7.1) 

The value of   which defines the degree of uncertainty among the crisp MSQCI  ranks has to 

be assumed by decision maker. Typical 10% value of   is supposed to give satisfactory re-

sults. Consider the generalized trapezoidal function shown in Figure 7.2, the centroids of the 
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three planes are 1G , 2G  and 3G  respectively. These centroids are taken as the point of refer-

ence to define the ranking of generalized trapezoidal fuzzy numbers. The reason for selecting 

this point as a point of reference is that each centroid point represents balancing points of each 

individual plane figure and the centroid of these centroid points i.e. 0G  is a much more bal-

ancing point for a generalized trapezoidal fuzzy number. Thus, the ranking function of the 

generalized trapezoidal fuzzy number ),,,(MSQCI 4321 aaaa  is expressed in terms of its cen-

troid ( R
~

), Mode and Spread  as follow: 
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Figure 7.2: Typical fuzzification process of sMSQCI'  crisp value of 0.5 and 1.0 . 

Using the above definitions, the ranking procedure of two generalized trapezoidal fuzzy num-

bers, say ),,,(MSQCI 4321 iiiii aaaa  and ),,,(MSQCI 4321 jjjjj aaaa  as follow: 

Step 1: Find  iR )MSQCI(
~

 and jR )MSQCI(
~

: 
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 If ji RR )MSQCI(
~

)MSQCI(
~   then i)MSQCI( outperforms j)MSQCI( . 

 If ji RR )MSQCI(
~

)MSQCI(
~   then j)MSQCI( outperforms i)MSQCI( . 

Otherwise, comparisons are not possible and proceed to the next step. 

Step 2: Find i)MSQCI(Mode and j)MSQCI(Mode : 

 If ji )MSQCI(Mode)MSQCI(Mode  then i)MSQCI( outperforms .)MSQCI( j  

 If ji )MSQCI(Mode)MSQCI(Mode  then j)MSQCI( outperforms .)MSQCI( i  

Otherwise, comparisons are not possible and proceed to the next step. 

Step 3: Find i)MSQCI(Spread and j)MSQCI(Spread : 

 If ji )MSQCI(Spread)MSQCI(Spread  then j)MSQCI( outperforms i)MSQCI( . 

 If ji )MSQCI(Spread)MSQCI(Spread  then i)MSQCI( outperforms j)MSQCI( . 

Otherwise, comparisons are not possible and proceed to the next step. 

Step 4: Find i)MSQCI(spreadLeft  and j)MSQCI(spreadLeft : 

 If ji )MSQCI(spreadLeft )MSQCI(spreadLeft  then i)MSQCI( outperforms j)MSQCI( . 

 If ji )MSQCI(spreadLeft )MSQCI(spreadLeft  then j)MSQCI( outperforms i)MSQCI( . 

Otherwise, comparisons are not possible and proceed to the next step. 

Step 5: Find i)MSQCI(spreadRight  and j)MSQCI(spreadRight : 

 If ji )MSQCI(spreadRight )MSQCI(spreadRight  then j)MSQCI( outperforms i)MSQCI(  

 If ji )MSQCI(spreadRight )MSQCI(spreadRight  then i)MSQCI( outperforms j)MSQCI(  

Otherwise, comparisons are not possible and proceed to the next step. 

7.2 Results and discussions  

7.2.1  Computation of the MSQCIs 

The experimental layout plan and result as per Taguchi orthogonal array for the current inves-

tigation is illustrated in Table A3. From this layout, one can easily conclude that the mean 
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values of non-beneficial surface quality characteristics during turning super DSS EN 1.4410 

are higher than of standard DSS EN 1.4462 and austenitic stainless steel EN 1.4404. The lat-

ter has the least mean values of non-beneficial surface quality characteristics. 

MADM methods are coupled with Taguchi design to overcome the problem of finding the 

best alternative for situations where there is more than one performance. Because the selected 

quality characteristics are of non-beneficial nature, the smaller-the-better criterion is adopted 

in this study. Therefore, Eq. (2.27) is utilized to transform the real roughness values into S/N 

ratio values. The following sections briefly describe the procedure of MSQCI  calculations. 

7.2.1.1 Computation of MSQCIs using GTMA 

The decision problem is formulated in matrix format using Eq. (2.60-62). Then, larger-the-

better term of Eq. (2.84) is used to normalize the S/N ratio to minimize the scale effect. In 

order to assign the weight to each normalized performance, the superiority of one perfor-

mance over another has to be considered. In industry, the arithmetic average roughness ( Ra ) 

is more pronounced when it comes to the evaluation of surface quality. Therefore, the follow-

ing relative importance scheme is adopted (refer to Eq. (2.99)): 
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 (7.7) 

Then attributes matrix can be written based on Eq. (2.100). It is similar to matrix equation 

above but also with presence of diagonal elements. To estimate the permanent of matrices, a 

Matlab code has been programmed. The determined permanent values represent MSQCI  

using GTMA. From the values of MSQCI  it is understood that alternatives A5, A13 and A1 

are the best choices among the considered sixteen alternatives when surface qualities of EN 

1.4404, EN 1.4462 and EN 1.4410 are needed to be optimized respectively. 

7.2.1.2 Computation of MSQCI using AHP-TOPSIS 

To determine the MSQCI  values using AHP-TOPSIS method, Eq. (2.72) is employed first to 

normalize the computed S/N ratios. The comparison process requires that the relative normal-

ized weights used in AHP-TOPSIS to be equal to those used in the GTMA method. Following 
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the described procedure for AHP weight calculations, the relative normalized weights of 

above GTMADMA  matrix are calculated using Eqs. (2.67-69) and the outcomes were; 

45.0Raw and 275.0 RtRz ww . However, using the same decision maker assignment matrix 

as a pairwise comparison matrix will not give satisfactory CR  values which are essential to 

assess the consistency in the judgment made by AHP and also do not conform to the rule of 

pairwise comparison. Therefore, the following pairwise matrix is adopted: 
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 (7.8) 

With above matrix configuration, the relative normalized weights are the same as those 

adopted by GTMA.  The values of max  and CR  are 3.003 and 0.0031 respectively. The latter 

is calculated using Eq. (2.71). There is a good consistency in the judgments made, as the cal-

culated value of CR  is less than the allowed CR  value of 0.1. Weighted normalized matrix is 

then calculated using Eq. (2.73). The positive ideal * and negative ideal  values are de-

termined by Eqs. (2.74) and (2.75). The distances from the positive ideal *
iS , negative ideal 

solutions 
iS and the relative closeness to the ideal solution *

iC are measured using Eqs. (2.76-

78). The AHP-TOPSIS method revealed different ranking structure from that of GTMA alt-

hough the two methods have the same weight values (see Figure 7.3). The ranking suggests 

optimal alternatives to be A13, A9 and A1 for each of EN 1.4404, EN 1.4462 and EN 1.4410 

respectively.  

The above calculation results showed that, while a specified alternative is the best choice ac-

cording to a specified MADM method, the same specified alternative is not necessarily re-

garded as optimum when another MADM method is adopted. To avoid inconsistency in the 

decision process, the fuzzy logic concept is advised to deal with the problem. 

7.2.2 Fuzzy-MADM method 

In order to eliminate the scale effect, MSQCI  numbers are first normalized between ‘0’ the 

worst and ‘1’ the best using the normalization technique expressed in Eq. (2.84). Figure 7.4 

depicts the effect of cutting speed, feed rate and depth of cut on the MSQCI  values. The pre-

dominant effect of feed rate can be clearly observed from the slopes of the MSQCI  surfaces. 
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Further, at a medium feed rate value, the interaction of cutting speed and depth of cut reveals 

that surface quality is optimum when both cutting speed and depth of cut are simultaneously 

low or high. 

 

Figure 7.3: Ranking of the MSQCIs.  

MSQCI  crisp values are then converted into fuzzy trapezoidal number based on the overall 

10% uncertainty level using terms in Eq. (7.1). For example, for the normalized crisp value 

)(CV of A1 when face turning EN 1.4404, the fuzzification process is accomplished as follow: 

917.0965.0
2

1.0
11 






 a  

941.0965.0
4

1.0
12 






 a  

989.0965.0
4

1.0
13 






 a  

013.1965.0
2

1.0
14 






 a  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
4
8

12
16

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
4
8

12
16

A
lte

rn
at

iv
e 

ra
nk

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
4
8

12
16

Alternative number

 

 

GTMA AHP-TOPSIS

EN 
1.4410

EN 
1.4462

EN 
1.4404



 Application of Fuzzy–MADM approach in optimizing surface quality of stainless steels 164 

 
                                                         

Figure 7.4: Surface plots of the normalized MSQCI values. 

Thus, the newly generated number is expressed as fuzzy number (0.917, 0.941, 0.989, 1.013) 

instead of the crisp value of CVGTMA=0.965.  Similarly, the fuzzy conversion of A1 calculated 

by the AHP-TOPSIS (CVAHP-TOPSIS= 0.998) is (0.95, 0.973, 1.023, 1.048). The weight vector 

for each MADM process is kept constant to (0.2, 0.4, 0.6, 0.8). The fuzzy simple additive 

weighting approach is then applied to the problem. The final score for above numbers is cal-

culated using the arithmetic process described in Eq. (2.19):  

)649.1,207.1,766.0,373.0()8.0,6.0,4.0,2.0(
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A

  

Thereafter, Eqs.(7.2-6) are consecutively applied to calculate the area between centroid of 

centroids, mode and spreads of each alter alternative. For example, alternative A1 will have 

the following fuzzy measures: 
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  987.0207.1766.0
2

1
Mode1   

  276.1373.0649.11Spread1   

  393.0373.0766.01spreadLeft 1   

  442.0207.1649.11spreadRight 1   

The same procedure is repeated for the reminder of alternatives. These parameters have 

shown much less sensitivity toward change in weights than their MSQCI  counterparts.  For 

example changing the weight vector to (0.25, 0.5, 0.75, 1) will not cause any change in rank-

ing order. The optimum alternative is defined as an alternative which gives maximum ( R
~

),

Mode  and Spread  values. Since the values of these criterions do not present any conflict 

numbers and no difference in ranking order is noticed among R
~

, mode and spread values, 

therefore, the alternatives could be ranked directly depending on R
~

. Table A4 lists the com-

puted R
~

, mode, spread values. It also shows the ranking of the alternatives according to the R
~

 

values. 

Performing analysis of means on computed R
~

 values, the levels of optimum cutting condition 

which corresponds to the levels of maximum R
~

 value could be determined as shown in Fig-

ure 7.5. The reason behind the preference of higher optimum depth of cut in cutting EN1.4410 

workmaterial refers to the more breakable, less entangled and better morphology of the chips 

which often tended to accumulate around the cutting area.  

Analysis of variance is then conducted on the computed R
~

 values suggesting linear models as 

per Table 7.1. Statistically significant relationship between cutting variables and performance 

characteristics at the 95% confidence level were proved based on relatively big differences 

between 49.3F ,0.05)table(3,12   and individual model ratioF values. The adjusted correlation factor 

)(R adj.  is in very good agreement with predicted correlation factor )(R pred.  which supports the 

prediction power of the model. value-P of terms which are less than 0.05 are designated as 

significant terms and marked bold. The last three column of the table shows the percent con-

tribution (%Contribution) of each factor. Notably, the contribution of feed rate in determining 

the surface quality is in average over 90%. However, one has to expect less pronouncing ef-

fect when the feed domain is covering smaller ranges. 
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Figure 7.5: Main effect of cutting parameters on R
~

 values. 

 

 
Parameter 

 
DOF 

Sum of squares P-Value % Contribution 
EN  
1.4404 

EN  
1.4462 

EN  
1.4410 

EN  
1.4404 

EN  
1.4462 

EN  
1.4410 

EN  
1.4404 

EN  
1.4462 

EN  
1.4410 

cv  1 0.0015 0.0026 0.0023 0.378 0.237 0.293 0.558 0.905 1.014 

rf  1 0.2424 0.2631 0.1999 0.000 0.000 0.000 90.17 91.61 88.18 

pa  1 0.0026 0.0012 0.0016 0.260 0.415 0.374 0.967 0.417 0.705 

Error 12 0.0223 0.0203 0.0229  8.305 7.068 10.10 
Total 15 0.2688 0.2872 0.2267 100 100 100 
EN 1.4404 model: Radj. = 0.8960, Rpred.=0.8367, Fratio=44.060≫Ftable(3,12,0.05)=3.49 
EN 1.4462 model: Radj. = 0.9117, Rpred.=0.8702, Fratio=52.655≫Ftable(3,12,0.05)=3.49 
EN 1.4410 model: Radj. = 0.8987, Rpred.=0.8152, Fratio=35.489≫Ftable(3,12,0.05)=3.49 
Table 7.1: ANOVA of R ̃ values. 

7.3 Confirmation tests  

The final step after determining the optimal level of the process parameters is to verify the 

improvement of the overall performance using the optimal setting of the process parameters. 

As per Figure 7.5, the optimum levelfactor  combinations for machining both EN 1.4404 and 

EN 1.4462 were 114
prc afv  and for machining EN 1.4410 were 113

prc afv . The averages of three 

confirmation run experiments (see Table 7.2) at optimum factor-level combinations are com-

pared with the minimum roughness measured as per Table A3. The positive percentage con-

firms the advantage of fuzzy application in improving the surface qualities while machining 

austenitic and duplex stainless steels. The average percentage improvement in surface quality 

during facing EN 1.4404, EN 1.4462 and EN 1.4410 were: 26.302%, 10.62% and 12.679% 
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respectively. Thus, the optimal cutting parameters were obtained successfully and the pro-

posed methodology has proved its efficiency. 

Facing at optimum  
cutting conditions  

EN 1.4404 EN 1.4462 EN 1.4410 
Ra 
[µm] 

Rz 
[µm] 

Rt 
[µm] 

Ra 
[µm] 

Rz 
[µm] 

Rt 
[µm] 

Ra 
[µm] 

Rz 
[µm] 

Rt 
[µm] 

Sample 1 0.340 1.640 1.702 0.500 2.010 2.090 0.390 2.120 2.270
Sample 2 0.360 1.730 1.870 0.510 2.160 2.440 0.380 2.030 2.150
Sample 3 0.350 1.870 1.890 0.570 2.420 2.450 0.410 2.340 2.350
Average 0.350 1.746 1.821 0.526 2.196 2.326 0.393 2.163 2.256
Minimum measured 
roughness in Table 
A3. 

0.453 2.355 2.613 0.558 2.506 2.697 0.482 2.461 2.438

% Improvement  22.737 25.859 30.31 5.734 12.37 13.756 18.465 12.108 7.465
Table 7.2: Confirmation tests results. 

7.4 Interim conclusions  

Machining of stainless steel grades such as; EN 1.4404, EN 1.4462 and EN 1.4410 have been 

systematically investigated under a constant cutting speed facing operation. Taguchi method 

applied on an L16 (4
3) orthogonal array. As a result, 16 experiments per material were con-

ducted instead of the full factorial 64 experiments. S/N ratios of quality characteristics like 

arithmetic average  roughness (Ra), average distance between the highest peak and lowest  

valley (Rz) and maximum height of the profile (Rt) were analyzed using ‘the smaller the bet-

ter’ criteria. For each performance and material, the optimum cutting parameter level which 

corresponds to the level of maximum S/N ratio was determined. In this investigation, the fol-

lowing conclusion points are drawn:   

 The mean values of non-beneficial surface quality characteristics during turning super 

duplex stainless steel EN 1.4410 were found to be higher than of standard duplex stainless 

steel EN 1.4462 and austenitic stainless steel EN 1.4404. 

 Through ANOVA and from the percentages of contribution to the stainless steel’s final 

surface quality, the feed rate was proved to be the predominant controlled factor. 

 The ranking conflict among the outputs of different MADM methods has been solved us-

ing the Fuzzy approach. The outcomes proved to be far less sensitive to the change of 

weights with no difference in ranks among the adopted deffuzification techniques. 
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 The optimum levelfactor  combinations while turning EN 1.4404, EN 1.4462 and EN 

1.4410 were: 114
prc afv , 114

prc afv and 113
prc afv respectively. 

 Utilizing the optimum levelfactor  combinations for confirmation test, the average percent-

age improvement in surface quality during facing EN 1.4404, EN 1.4462 and EN 1.4410 

were: 26.302 %, 10.62% and 12.679% respectively. 
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8 Sustainability-based multi-pass optimization of 

cutting DSSs  

More recently there has been an increased interest in achieving sustainable manufacturing 

through implementation of sustainability principles in machining practices. Sustainability 

principles are considering: machining costs, energy consumption, waste management, envi-

ronmental impact, operational safety and personal health. In order to address this concern, the 

present chapter adopts a systematic approach which employs different modeling and optimi-

zation tools under a three phase investigation scheme. In phase I, the effect of control factors 

such as cutting parameters, cutting fluids and axial length of cuts are investigated using the D-

Optimal method. The mathematical models for performance characteristics such as; percent-

age increase in thrust cutting force ( tF% ), effective cutting power ( eP ), maximum tool flank 

wear ( maxVB ) and chip volume ratio ( R ) are developed using response surface methodology 

(RSM). The adequacy of derived models for each cutting scenario is checked using analysis 

of variance (ANOVA). Parametric meta-heuristic optimization using Cuckoo Search (CS) 

algorithm is then performed to determine the optimum design variable set for each perfor-

mance.  

In the phase II, comprehensive experiment-based production cost and production rate models 

are analyzed. To overcome the conflict between the desire of minimizing the production cost 

and maximizing the production rate, compromise solutions are suggested using Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS). The alternatives are ranked ac-

cording to their relative closeness to the ideal solution. In the phase III, expert systems based 

on fuzzy rule modeling approach are adopted to derive measures of machining operational 

sustainability called operational sustainability index (OSI). ANN-based models are developed 

to study the effect of control factors on computed OSIs. Cuckoo Search neural network sys-

tems (CSNNS) are finally utilized to constrainedly optimize the cutting process per each cut-

ting scenario. The most appropriate cutting setup to ensure successful turning of standard EN 

1.4462 and super EN 1.4410 for each scenario is selected in accordance with conditions 

which give the maximum OSI. The flowchart of the study is shown in Figure 8.1. 
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Figure 8.1: Flow chart of the study. 

8.1 Performance characteristics 

D-optimal designs are used to design the experiments as per Table 3.9. Facing at constant 

cutting speed of EN 1.4462 and EN 1.4410 DSSs were performed using coated carbide cut-

ting tools with ISO designation CNMG 120408MQ 2025. The workpieces were cut with rota-

tional speed limit of 3500 rpm. An example of the performed cutting operation including the 

control factorsis shown in Figure 8.2.  The force signals were analyzed to determine the most 

sensitive force component to the cutting time. Cutting force in thrust direction was seen more 

sensitive than the other two components in axial and tangential directions. Therefore, a new 

parameter which accounts for percentage increase in thrust cutting force has been calculated 

using the formula: 
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Figure 8.2: Constant cutting speed facing operation. 
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(8.1) 

where maxtF .is the maximum and initialtF  is the initial thrust cutting forces in each experimental 

run. In Figure 8.3, a typical thrust force signal of wet cutting EN 1.4462 at min/m200cv , 

rev/mm25.0rf , mm5.1pa and mm12cL  is shown, indicative of the increasing trend 

when the total length of cut has been reached.  The average thrust cutting force in constant 

cutting speed area in every cutting pass per cutting run is calculated and the cutting pass with 

maximum value is designated. In order to compute all increasing percentages in the study, a 

total of 236 cutting passes per category and 472 cutting passes per material have to be similar-

ly analyzed.  

Figure 8.3: Typical increasing trend in thrust cutting force. 
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One of the most important items related to cleaner production consists in reducing energy 

consumption in order to cut down carbon emissions associated to energy generation. There-

fore, the association of environmental footprint in view of minimization of motor power per 

each experimental run was considered. The power consumed by the motor of a machine tool 

is composed of an effective and an idle component. Because of its proportionality to the 

torque emitted by the motor, the effective power is often used as a signal within the control 

system for quantifying the motor load. The effective power is obtained from this using Eq. 

(3.2).  

On the other hand, at the end of each experimental run the tool wear was measured and the 

tool life was estimated based on flank wear criterion of mVB 600max  on the major cutting 

edge. Furthermore, during cutting tests the metal chips posed great challenges to the machine 

tool and the workpiece. To deal with this problem, the chips were collected after each machin-

ing trial and later analyzed. Chip volume ratios ( R ) were then calculated using the procedure 

described in Chapter 3 of the present dissertation. The experimental results are shown Table 

A5. 

8.2 Phase I: Parametric cutting investigations 

Response surface methodology (RSM) has important applications in the design, development, 

and formulation of new products, as well as in the improvement of existing product designs. 

Successful use of RSM is critically dependent upon the experimenter’s ability to develop a 

suitable approximation for response function. Usually, a low-order polynomial in some rela-

tively small region of the independent variable space is appropriate. In many cases, either a 

first-order or a second-order model is used. Often the curvature in the true response surface in 

machining experimentations is strong enough that the first-order model (even with the interac-

tion term included) is inadequate. A second-order model will likely be required in these situa-

tions. The second-order model is widely used in response surface methodology for their flexi-

bility, easiness in estimating the constant parameters, and indications of considerable practical 

experiences which confirm that second-order models work well in solving real response sur-

face problems [MyMA09]. However, when the entire design space is used to develop the 

models, then, second-order models, modified second order models, cubic models, modified 

cubic models, response transformations and model design reductions were seen not satisfacto-

ry to capture accurately the highly non-linear relations between the cutting variables and per-
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formance characteristics. Therefore, an intermediate and reasonable solution was found for all 

the cases when second-order non-linear mathematical models in terms of natural variables are 

selected to predict the performance characteristics (Y ) for each condition category in sepa-

rate, which were of the following form: 

cpcrprccpc

rccprccprc

LacLfcafcLvcavc

fvcLcacfcvcLcacfcvccY

3424231413
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2
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2

33
2

22
2

1143210




 

(8.2) 

The values of the regression coefficients as defined above are determined using the Eqs. (2.1-

10). The reader is advised to review the basic concepts of the RSM presented in Chapter 2 of 

the present study. 

8.2.1 Effect of control factors on performance characteristics 

The values of regression coefficients in natural form and various statistics about the statistical 

validity of the developed models at a 95% confidence interval are given in Table A5. The 

statistical correlation factors such as 2R and adj.R indicates that the models fit the data well. As 

per analysis of variance (ANOVA) technique, since the calculated value of value-F  of all 

developed second-order models are greater than the standard tabulated value of )(14,9,0.05 tableF  

03.3 , then the models are considered adequate within the confidence limit. The adequate 

precision (Aprec.), for all models are greater than 4, which indicate an adequate signal to noise 

ratio, thus the models can be used to navigate the design space. 

8.2.1.1 Effect of control factors on the percentage increase in thrust cutting force (%Ft) 

In phase I, the developed RSM models were utilized to study the interaction effects of select-

ed independent variables on tF% . To analyze the interaction effects, three dimensional plots 

were generated considering two parameter at a time while the other parameters are held con-

stant at their respective center levels. These interaction plots are presented in Figure 8.4a. 

From which, the following observations can be made: 

 For a given depth and length of cut, tF%  approaches its minimum value as cutting speed 

and feed rate increase to certain specified limit. Beyond that limit it starts to increase 

again. When the materials are cut dry, lower cutting speed and feed rates are preferred to 

minimize tF% . The values of obtained tF% when EN 1.4410 are cut were higher than EN 
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1.4462 due to the generally higher mechanical strength of EN 1.4410 and  fewer weight 

percentage of assisting machinability elements such as sulfur and phosphorus, see Table 

3.1. 

 For a specified cutting speed and feed rate, depth of cut values of (1.25-1.5mm) were seen 

to give the minimum tF% , as they reduce the ploughing effect, produce friendlier-to-

machine chips and exert a more stable cutting process. Generally, lower values of depths 

of cuts are recommended when process conditions are dry and/or super DSS EN 1.4410 is 

machined. Values lower than tool nose radius of 0.8mm have to be avoided. 

 When cutting speed, feed rate and depth of cut are set at a specified value, tF% is ex-

pected to increase with the increase of total length of cut. However, the slopes of tF% ver-

sus total length of cut were seen steeper at higher levels of cutting speeds. 

8.2.1.2 Effect of control factors on the effective cutting power (Pe) 

Effective power measurement systems are characterized by the fact that they do not affect the 

mechanical properties of the machine tool. The machining torque can be measured during the 

operation without the integration of external sensors into the electric flux of the machine. The 

primary area of application is the recognition of tool fractures and collisions in the workspace. 

Sufficiently large force changes are necessary for efficient wear monitoring. When monitor-

ing cutting processes, usually external effective-power measurement tools are used, often with 

associated evaluation software and visualization unit [Kloc11].  

Figure 8.4b. illustrates the interaction effects of the independent variables on the effective 

cutting power. It is seen from this collective figure that: 

 Effective cutting power is most sensitive to cutting speed variations when other parame-

ters are kept constant. Maximum and minimum consumptions in effective cutting power 

are seen at wet cutting of EN 1.4462 and dry cutting of EN 1.4410 respectively.  

 Effective cutting power is less sensitive to the length of cut variations as far as the cutting 

tool does not suffer the catastrophic chipping in the cutting edges. 

 Minimum consumption in effective cutting power results when the feed rate is in the 

range 0.125-0.175 mm/rev of dry cutting and 0.1-0.15mm/rev of wet cutting. 

 Two-factor interaction models were seen accurate enough to explain the interaction effects 

of cutting parameters on the effective cutting power. 
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Figure 8.4: Interaction effects of design cutting variables on the performance characteristics. 
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8.2.1.3 Effect of control factors on the maximum width of tool flank wear (VBmax)  

Tool wear has a remarkable influence in tool life, cutting forces, vibration, quality of the ma-

chined surface and its dimensional accuracy, and consequently, the economics of cutting op-

erations. In this study off-line modeling of the maximum flank wear lands (VBmax ) are de-

scribed as functions of independent cutting variables. Figure 8.4c depicts the interaction con-

tour plots of VBmax as per RSM models tabulated in Table A6. It can be found that: 

 During the course of the dry cutting of DSSs, an increased built up edge formation on the 

tool, obvious inferior chip morphologies, more aggressive notch wear on the major and 

minor cutting edges and inferior surface qualities were noticed.  Therefore, when cutting 

DSSs, generous amount of cutting fluid is always recommended.  

 Wet cutting at cutting parameter ranges of m/min,160100cv 25.015.0 rf  mm/rev,

mm0.175.0 pa  for machining EN 1.4462 and m/min,160120cv  15.0rf

mm/rev,20.0 mm5.125.1 pa  for machining EN 1.4410 were seen optimum in mini-

mizing the tool flank wear. 

 Dry machining is possible when cutting parameters are set appropriately. The settings in-

clude; machining of EN 1.4462 at m/min,11075cv rev,/mm2.015.0 rf  

mm5.11pa and maximum 6/ pc aL , and machining of EN 1.4410 at  75cv

m/min,90 rev,/mm175.0125.0 rf  mm35.18.0 pa  and maximum 4/ pc aL . 

 Direct linear correlations between tF%  and max%VB with reasonable coefficients of de-

terminations ( 2R ) were noticed: 

Cutting of DSS EN 1.4462     

Wet: 7.0R 2   

149.35)(%4198.5max  tFVB  (8.3) 

Dry: 92.0R 2   

549.18)(%7696.7max  tFVB  (8.4) 
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Cutting of DSS EN 1.4410     

Wet: 71.0R 2   

793.16)(%5767.6max  rFVB  (8.5) 

Dry: 93.0R 2   

494.63)(%918.9max  rFVB  (8.6) 

8.2.1.4 Effect of control factors on the on the chip volume ratio (R) 

The chip shapes are assessed according to two criteria: transportability and danger for the 

machine operator. It is no problem to move short, broken chips, such as fragmented spiral 

chips, in containers. By contrast, this is impossible for ribbon chips, since they always de-

mand special treatment (breaking in the chip breaker or briquetting) in order to make them 

ready for transport. In a plant with automated manufacturing equipment, where many chips 

occur, these treatment procedures are very expensive. Consequently, as an alternative, always 

the aim is to produce chip forms that can be handled easily. Since long ribbon chips and en-

tangled chips, whose edges are very sharp, could possibly endanger the machine operator and 

cause safety risks [TsRe09]. At this stage, utilizing the chip volume ratio R , the spatial re-

quirement for the chips is considered. Each chip form is assigned to a chip volume ratio R , 

which defines by what factor the transport volume needed for the specific chip form exceeds 

the intrinsic material volume of the chip. According to the assignments presented in Figure 

1.14, 90R  for snarled and ribbon chips, 9050  R for coiled, flat helical and cylindrical 

helical chips, 5025  R for short coiled chips, 258  R for spiral chips and 83  R for 

short chip particles. It is clear from Figure 8.4d that; 

 Higher values of cutting speeds and feed rates are necessary to minimize the chip volume 

ratio. 

 In wet cutting of DSSs, friendlier-to-machine chip forms were produced because of the 

less encountered friction in the contact area between the chip and rake face.   

 Ribbon and snarled chip forms were common when the metals are machined at feed rate 

and depth of cuts lower than 0.15 mm/rev and 1mm respectively. At intermediate feed 

ranges, the produced chips were rather of flat-helical and cylindrical-helical forms. The 

chip forms were rather short coiled chips at higher feed ranges.  
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 Under the same machining conditions which might produce continuous chips, different 

chip forms were possible due to continuous entanglement of chips especially when 

6/ pc aL . 

 Due to the higher proof and tensile strength, and, lower sulfur and phosphor constituents 

to assist chip breaking, R values of cutting EN 1.4410 were generally higher than of cut-

ting EN 1.4462. 

 The tendency to enhance chip segmentation is expected to rise when the chip curl radius is 

reduced, the coolant pressure is increased and the coolant restricted to smaller area of the 

chip. 

8.2.2 Parametric optimization of performance characteristics 

The first optimization process in this investigation is formulated as follow: 

 Objective function 

Formulation of optimization model is one of the most important tasks in optimization process.  

The type of optimization modeling techniques used to express the objective function deter-

mines its accuracy and the possibility of reaching a global optimum solution. The developed 

response surface models, expressed by Eq. (8.2) and presented previously in Table A6 are 

used as both objective and constraint functions. 

 Decision variables 

Process parameters considered in the optimization problem were cutting speed, feed rate, 

depth of cut and length of cut. The length of cut and depth of cuts were set constant at their 

maximum values to account for the maximum production rates and ensure an integer pc aL /

ratio due to the imposed practical considerations. Therefore, the parameter bounds for the 

decision parameters were set as described below: 

mm12

mm5.1

rev/mm25.01.0

min/m20075







c

p

r

c

L

a

f

v

 (8.7) 
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 Constraints 

To ensure that the result of minimization of a performance will not cause an excessive in-

crease in the other three performances, once a performance is selected as a primary objective 

the others are selected as implicit constraints . This is mathematically expressed as below: 

3:1 jUBCLB jjj  (8.8) 

where: jLB  and jUB  are lower and upper bounds of the implicit constraints which are select-

ed based on practical considerations. At this stage, it would be appropriate if max%% tt FF  , 

maxee PP  , max(max)max VBVB   and maxRR  . 

 Optimization algorithm 

For the purpose of finding minimum of constrained nonlinear multivariable functions de-

scribed before, Cuckoo Search (CS) algorithm was seen powerful enough to perform the task. 

The initializing optimization parameters for CS algorithms were: number of nests 20n and 

probability 25.0ap . The obtained optimization results showed that CS is highly reliable and 

converge consistently to the optimum solution. In Table 8.1, the presented results indicate a 

conflicting influence of the process parameter on the performance characteristics in conjunc-

tion with the different process conditions. As a summary, the following conclusion points can 

be depicted from the table: 

 To optimize tF% and maxVB  in dry cutting, lower cutting speeds should be considered.  

 Unsatisfactory chip forms are expected when the other performances are optimized. For 

example, when optimizing the maximum tool flank wear, all performances show major 

decreases, while chip volume ratios show a major increase and the reverse is also true. 

 Dry cutting of DSSs can outperform wet cutting of DSS in terms of total progressive tool 

wear, when appropriate cutting parameters are selected. 

 Generally, better chip forms, lower effective cutting power consumption, percentage in-

crease in thrust cutting force and lower wear rates are expected when varying depth of 

cuts at wet cutting than dry cutting is considered. 

 When varying the cutting speed, the effective cutting power consumption, percentage in-

crease in thrust cutting force and maximum tool flank wear show the identical behavior in 

terms of increase or decrease. 
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Material 
Process 
condition 

cv  

 [m/min] 
rf  

[mm/rev] 
pa  

 [mm] 
cL  

 [mm] 
tF%  eP  

 [W] 
maxVB  

 [µm] 
R  

Minimization of percentage increase in thrust cutting force 
EN 
1.4462 

Wet 144.83 0.1582 1.500 12.00 6.058* 2027.4 104.36 73.493 
Dry 107.18 0.1833 1.500 12.00 9.498 1578.7 51.648 92.637 

EN 
1.4410 

Wet 140.73 0.1238 1.500 12.00 14.80 1904.1 108.00 99.232 
Dry 80.806 0.1678 1.500 12.00 11.98 1142.4 53.707 114.14 

Minimization of effective cutting power 
EN 
1.4462 

Wet 75.000 0.1000 1.500 12.00 19.18 824.87 146.14 102.56 
Dry 75.000 0.1372 1.500 12.00 14.17 1022.9 69.718 124.58 

EN 
1.4410 

Wet 75.000 0.1000 1.500 12.00 22.47 953.47 184.99 113.13 
Dry 75.000 0.1163 1.500 12.00 14.77 964.92 84.545 141.09 

Minimization of maximum cutting tool flank wear 
EN 
1.4462 

Wet 122.74 0.2388 1.500 12.00 12.27 1861.6 124.96 88.106 
Dry 85.129 0.1802 1.500 12.00 10.48 1240.8 47.443 111.85 

EN 
1.4410 

Wet 134.54 0.1600 1.500 12.00 15.19 1965.8 98.418 105.78 
Dry 75.000 0.1732 1.500 12.00 12.07 1136.9 49.986 118.43 

Minimization of chip volume ratio 
EN 
1.4462 

Wet 200.00 0.2500 1.500 12.00 21.11 4151.2 195.95 35.143 
Dry 200.00 0.2500 1.500 12.00 32.15 4533.9 210.01 19.651 

EN 
1.4410 

Wet 200.00 0.2432 1.500 12.00 29.58 4299.4 225.96 45.862 
Dry 200.00     0.2500 1.500 12.00 40.24 5344.2 259.32 8.9413 

*Objectives are written in bold letter. 
Table 8.1: Optimization results. 

8.3 Phase II: Economics of cutting DSSs 

The effective optimization of machining process affects dramatically the cost and production 

time of machined components as well as the quality of the final product. This section presents 

the details of multi-objective optimization of multi-pass constant speed facing operation. 

MADM optimization approach is proposed to determine the optimal cutting parameter which 

simultaneously minimizes multiple machining economic objectives. Since, the machining 

parameters that giving maximum production rate would not be identical to those giving min-

imum production cost, therefore, machine utilization time, main time and cutting tool related 

costs are considered as potential objectives, in order to optimize the economics of the cutting 

process.  

 Case study 

To demonstrate the application of the basic concepts of turning process economics practically, 

productions of 12,000 identical components were considered as a case study. The machining 
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of each unit has to be accomplished through removing a total cutting length of 12mm under 

constant cutting speed facing operation. Eqs. (1.11-37) were employed to define each machin-

ing economics terms presented in this study.  The objective is to simultaneously minimize the 

conflicting objectives such as machine utilization time bBt , main time-related costs 1K  and the 

tool related costs 3K  using a multiple attribute decision making (MADM) method called 

TOPSIS. In conjunction with experimentations and utilizing the feature of simulation on the 

CNC- controller, the main cutting times of the trials were accurately recorded. The data con-

sidered for the case study are given below: 

€000,100bBk  2m40mQ  €6WSPK  

unit000,12m  Month.€/m30 2aA  1x  

min5.1nt  Whk€/13.0cE  Wk25MP  

min30vmt  €/hrs.9.0kk  30% 2 C  

min5.0wzt  hrs.€/34mL  40hrs./week   

years2lt  5.2nr  9.1shift/day working 

mm55d  €80WHk  40week/annum   

mm875.6rl  4sz   

10pp  5.10iq   

The problem can be defined in the context of multi-objective optimization. TOPSIS is pro-

posed to convert the multi-objective optimization of three objectives into a single objective 

optimization problem. The technique is based on the concept that the chosen alternative 

should have the shortest Euclidean distance from the ideal solution. The ideal solution is a 

hypothetical solution for which all attribute values correspond to the maximum attribute val-

ues in the database comprising the satisfying solutions; the negative-ideal solution is the hy-

pothetical solution for which all attribute values correspond to the minimum attribute values 

in the above-mentioned database. TOPSIS, thus, gives a solution that is not only closest to the 

hypothetically best, but which is also farthest from the hypothetically worst.  

The data given in Table A5 are represented as decision matrix (48×4) for each material case. 

The matrix is not shown here as it is nothing but the repetition of data given in that table, 

which is represented in a matrix form. The attribute weights of bBt , 1K and 3K  were 0.45, 0.3, 

0.25, respectively. The normalized decision matrix and the weighted normalized matrix are 

determined by using Eqs (2.72) and (2.73), respectively. The positive ideal solution ( *A ) and 

the negative ideal solution ( A ) were found utilizing Eqs (2.74) and (2.75), respectively. Eqs 
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(2.76) and (2.77) are used to determine the separation measures. Finally, Eq. (2.78) is adopted 

to calculate the relative closeness to the ideal solution *
iC . The results of performing TOPSIS 

are summarized in Table A7. 

The rankings of alternatives by their corresponding TOPSIS indices (see Figure 8.5) revealed 

the favorability of adapting wet cutting for a simultaneous minimization approach. This is 

mainly attributed to the fact that when the components are dry machined the cost of increas-

ingly tool wear rate and power consumption overtakes the advantage of not employing cutting 

fluids. It is also seen that the order of ranking of both materials is almost identical. Because of 

the higher effective power consumption and tool wears rate at higher cutting speed and higher 

feed rate ranges and the worst chip morphology at lower ranges, an intermediate range has 

given the preference over both ranges.  It is also noticed that the lower cutting speed when dry 

cutting EN 1.4410 and the higher cutting speed  when wet cutting EN 1.4462 has  given high-

er preference than the similar dry cutting EN 1.4462 and wet cutting EN 1.4410 respectively. 

 

Figure 8.5: Alternatives ranks. 

8.4 Phase III: Operational sustainability index 

Originally, sustainability relates to forestry. In a very broad and fuzzy definition, forestry is 

called sustainable, if just as much timber is cut down as can replenish to maintain the basis of 

life for future generations [KuHM10]. A more widely accepted general definition of sustaina-

ble development is provided by the United Nations ’ Brundtland Commission in 1987: ‘de-

velopment that meets the needs of the present without compromising the ability of future gen-

erations to meet their own needs’ [Unng87].  Based on this view, the United Nations 2005 

World Summit Outcome document refers to the independent and mutually reinforcing pillars 
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of sustainable development as economic development, social development and environmental 

protection (see Figure 8.6) [ChMi11].  

 

Figure 8.6: The overlapping circles model of sustainable development. 

In the context of manufacturing, sustainability means the ability to produce specific product 

operations and the circulation of resources at the rate of production. Although improving sus-

tainability through manufacturing process optimization is far from simple, it is appealing be-

cause manageable number of variables and as relatively low uncertainty can be achieved by 

measurement of local manufacturing operations [Nahk13]. In this study, the applications of 

sustainability principles in manufacturing processes are presented using machining as an ex-

ample. With the implementation of sustainability principles in machining technologies, end-

users have the potential to reduce the cost, enhance operational safety and reduce power con-

sumption.  

Operational sustainability in machining can be defined in terms of the cost of machining, 

power consumption and chip volume ratio which greatly affect the waste management. Based 

on these three interacting and contradicting elements, a compromise solution has to be intro-

duced for a comprehensive evaluation of machining operational sustainability. To obtain this 

sustainability measure, fuzzy logic system (see Figure 8.7 ) is employed to combine the total 

production cost per unit FK , effective cutting power eP  and chip volume ratios R  of each 

experimental trial into a single sustainability characteristics index called Operational Sustain-

ability Index (OSI). Eqs. (1.11-38) and constants presented in the case study of phase II were 

respectively employed to calculate the total production cost per unit FK . Matlab software was 
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used to construct the inference model of the OSI. The three performance values were first 

adjusted to a notionally common scale between null and one, using simple normalization 

methods, so that the digit ‘one’ represents the most desirable and ‘null’ is the least desirable 

alternative. Small (S), Medium (M) and Large (Lg) fuzzy sets are assigned to the performanc-

es. The sustainability index has the following seven levels: Very Low (VL), Low (L), Lower 

Medium (LM), Medium (M), Upper Medium (UM), High (H), Very High (VH). Mamdani 

implication method is employed for the fuzzy inference reasoning. The relationship between 

system input and output is expressed by an “If-Then” type. Totally 27 fuzzy rules per material 

were formulated. 

The predicted values of OSI are presented in Figure 8.8 and the following conclusions are 

extracted: 

 Generally, higher OSI values were noticed when cutting EN 1.4462 is performed. 

 

Figure 8.7: Fuzzy Inference System prediction of OSI. 

 The average wet cutting OSI is 10% higher than dry cutting due to the fact that the pro-

duction cost, the effective cutting power and the chip volume ratios were lower in the wet 

cutting. 

 Lower cutting speed, intermediate feed rate and depth of cut ranges, and higher cutting 

speed, intermediate feed rate and lower depth of cut ranges tend to maximize OSI in dry 

and wet cutting respectively. 

 OSI deteriorates with increasing number cutting passes ( pc aL / ), since all non-beneficial 

performances are expected to increase as pc aL / increases. 
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 For the equal cutting length scenario of facing EN 1.4462 and EN 1.4410, the maximum 

OSIs are obtained when alternatives number 8 are selected.  

8.4.1 Optimization of OSI using CSNNS 

Due to the highly complex relation between cutting parameters and OSI, the RSM was seen 

no longer efficient to accurately predict the values of OSI. Serious divergences were noticed 

between experimental data and predicted values for several points. Therefore, a multilayer 

perceptron (MLP) ANN which can describe the relationships with more precision was inte-

grated with Cuckoo Search meta-heuristic algorithm to perform the task of modeling and op-

timization of OSIs. The neural networks have two layers: one hidden layer and one output 

layer. The hidden layer uses a sigmoid-type transference function: 




)](exp[1

1
)(

ii xwb
xf  (8.9) 

while the output layer uses a linear function: 

 iipredicted xwbOutput  (8.10) 

where iw  an b  are the weights and biases of the network respectively. To facilitate the neural 

network training process, all the inputs were normalized using the following equation: 

1
)(

)(2

minmax
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xx

xx
xi  (8.11) 

This normalization maps all the inputs and OSI between -1 and +1. The ANN architecture 

consists of 4 neurons in the input layer, 1 neuron in the output layer.  The weights and biases 

of the network are initialized to small random values to avoid immediate saturation in the re-

spective functions. The network was trained by using gradient descendent with momentum 

back propagation algorithm. In this algorithm four parameters must be tuned: learning rate RL , 

momentum constant cM , training epochs pE  and number of hidden neurons nH . For this 

tuning the Taguchi design L9(3
4) was used to find the most convenient values for achieving 

no only lower root mean square, but also good generalization capability, giving the following 

values: 0705.0RL , 5895.0cM ,  5000pE  and 7nH . Basic concepts of ANN and 

Taguchi optimization procedure have been previously described in Chapter 2 of the present 
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dissertation. Therefore, the reader is advised to review it, in order to facilitate a better under-

standing of the adopted modeling and optimization techniques.  

The performance of the ANNs was statistically measured by the root mean squared error 

(RMSE), the coefficient of determination ( 2R ) and the absolute average deviation ( avg.AAD ) 

obtained using Eqs. (2.33-35). It must be remarked that number of hidden neurons guarantee 

that there are more training samples than the total amount of free parameters, thus the training 

process is mathematically determined.The R-squared statistics of the models were generally 

greater than 0.99, which indicate that the models as fitted explain over 99% of the variability 

in OSI. The trained networks achieved RSME and avg.AAD  values below target (0.0001) and 

(1%) respectively. It must be mentioned that the relationships between variables are complex, 

which prove the application of artificial neural networks very advantageous. 

Neural network models are then integrated with the Cuckoo Search optimization algorithm, so 

that solutions which will provide useful information to the user during the selection of ma-

chining parameters are obtained. The architecture of the Cuckoo Search Neural Network Sys-

tem (CSNNS) is shown in Figure 8.9. CS outperforms many existing algorithms such as ge-

netic algorithm and Particle Swarm Optimization. This superiority can be attributed to the fact 

that CS uses a combination of vectorized mutation, crossover by permutation and Le'vy 

flights and selective elitism among the best solutions. In addition, the not-so-good solutions 

can be replaced systematically by new solutions, and new solutions are often generated by 

preferring quality solutions in the solution sets. Thus, the mechanism of the overall search 

moves is more subtle and balanced, compared with the simple mechanism used in PSO 

[Yang14b]. The number of host nests (or the population size n) and the probabilities ( ap ) 

were tuned using trial and error method. The population size of (25) and probability of (0.25) 

were found sufficient in this case.  

The selected decision variables were cutting parameters for each process condition. They 

were defined for the ranges between the minimum and maximum experimental levels present-

ed in Table 2. OSIs were selected as the objective functions to maximize: 

),,,( cprcii LafvOSI   (8.12) 
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Figure 8.8: Process parameters interaction effects on OSI. 
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Figure 8.9: Cuckoo Search Neural Network System (CSNNS). 

where i  are the neural-network-based models. The considered constraints are the percentage 

increase in thrust cutting force ( tF% ), maximum width of flank weal land ( maxVB ) and the 

arithmetic average roughness ( Ra ). The latter is determined employing Eq. (4.7). In this case, 

the constrain formulation is preferably defined as  

μm20

μm1500

15%%0%

max





Ra

VB

Ft

 (8.13) 

CSNNS optimization of OSI has to yield minimum production cost, minimum effective cut-

ting power and the best chip morphology, while considering technological constraints. Figure 

8.10 shows the performance of proposed CSNNS. Total computation time were less than 3 

minutes with an Intel ® Xeon ® CPU 3.47 GHz and 24GB RAM computer. Less than 2000 

iterations were sufficient to reach to the global optimums in each case. It is evident that the 

developed CSNNS is very efficient and highly reliable approach for the selection of optimum 

control parameters. 

The obtained optimization results are listed in Table 8.2. Generally, the following conclusion 

point can be depicted: 

 Higher optimum cutting speeds were more often to observe in wet cutting process than in 

dry cutting process which promotes higher production rates. 

 Based on the estimated optimum OSIs, the machinability of EN 1.4462 is higher than the 

machinability of EN 1.4410. 

 Wet cutting of EN 1.4462 and EN 1.4410 outperforms their respective dry cutting in oper-

ational sustainability by 9.768% and 12.383% respectively.  
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Figure 8.10: Maximization of OSI with CSNNS. 

 While wet cutting generally gives lower non-beneficial performance values, this conclu-

sion is hard to notice due to the different adopted optimum cutting speeds and feed rates.  

 The magnitudes of surface roughness and chip volume ratio have shown similar trends.  

 The coincidence between optimum cutting conditions of the first rank TOPSIS and those 

of the optimized OSI is observed.   

Material 
Process 
condition

cv  

[m/min] 
rf  

[mm/rev]
pa  

[mm]
cL  

 [mm]
tF%  eP  

 [W] 
maxVB  

 [µm] 
R  OSI 

EN 
1.4462 

Wet 156.283 0.1359 1.500 12.00 6.6477 2218.1 104.19 69.073 0.7105
Dry 91.793 0.1848 1.500 12.00 9.9772 1354.6 48.049 105.60 0.6411

EN 
1.4410 

Wet 146.30 0.1286 1.500 12.00 14.878 2066.7 106.401 97.052 0.6969
Dry 82.3259 0.2019 1.500 12.00 13.204 1.4175 62.135 100.7 0.6106

Table 8.2. Results of CSNNS. 

8.5 Interim conclusions 

Machining of duplex stainless steel grades such as EN 1.4462 and EN 1.4410 has been sys-

tematically investigated under a multi-pass constant cutting speed facing operation. In the first 

phase of the investigation, D-optimal experimental design is used extensively to investigate 

the effect of process variables on performance characteristics such as percentage increase in 

thrust cutting force, effective cutting power, maximum tool flank wear and chip volume ratio. 
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Based on RSM, effective empirical relationships to predict performance characteristics at 

95% confidence level were developed. ANOVA used to check the adequacy of the models. 

The models were then analyzed using 3D surface graphs and used to study the interaction 

effects of process parameters. At the end of the first phase, constrained Cuckoo Search algo-

rithm is selected to perform optimization of the performance characteristics thereby defining 

the optimum process conditions. The following general conclusions can be drawn from the 

first phase of the investigation: 

 The values of obtained tF% when EN 1.4410 steels are cut were higher than EN 1.4462 

steels.  They have shown direct linear correlations with maximum tool flank wear and 

proportional dependency on pc aL / ratio, and approached their minimum values as cutting 

speed and feed rate increased to certain specified limit. However, when the materials are 

cut dry, lower cutting speed and feed rates than wet cutting are preferred to minimize tF% .  

 Generally, the two-factor interaction models were seen accurate enough to explain the 

dependency relation between effective cutting power and independent variables. Their 

minimum consumption were seen when the feed rate is in the range 0.125-0.175 mm/rev 

of dry cutting and 0.1-0.15mm/rev of wet cutting and the rest of the remained independent 

variables are kept at their lowest levels.  

 Wet cutting at cutting parameter ranges of m/min,160100cv  15.0rf  mm/rev,25.0

mm0.175.0 pa for machining EN 1.4462 and m/min,160120 cv  15.0rf  

mm/rev,20.0 mm5.125.1 pa  for machining EN 1.4410 were seen optimum in mini-

mizing the tool flank wear. Dry machining is possible when cutting parameters are set ap-

propriately. The settings include; machining of EN 1.4462 at m/min,11075cv

mm/rev,20.015.0 rf mm5.11pa and maximum ,6/ pc aL  and machining of EN 

1.4410 at m/min,9075cv mm/rev,175.0125.0 rf  mm35.18.0 pa  and maxi-

mum 4/ pc aL . 

 Ribbon and snarled chip forms were common when the DSSs are machined at feed rate 

and depth of cuts lower than 0.15 mm/rev and 1mm respectively. In wet cutting, friendli-

er-to-machine chip forms were produced and the R values of cutting EN 1.4410 were gen-

erally seen higher than of cutting EN 1.4462.  Under the same machining conditions 
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which might produce continuous chips, different chip forms were also possible, especially 

when 6/ pc aL . 

In the second phase of the study, the measurements were used to develop a comprehensive 

machining economics model. A case study of producing 12000 units of per each experimental 

run is considered and the corresponding machining costs and production rates were deter-

mined. Summarizing the conclusion points depicted at this stage: 

 The optimization conflict between machining economics attributes, such as simultaneous 

minimization of machine utilization time bBt , main time-related costs 1K  and the tool re-

lated costs 3K could be effectively solved employing TOPSIS. 

 The alternatives were ranked based on their computed relative closeness to the ideal solu-

tion C*. The ranking of the alternatives has revealed that the intermediate range of cutting 

speed, feed rates at wet cutting produce the optimum choice to minimize the considered 

attributes simultaneously.  

 The order of ranking of both materials is almost identical. However, under the same cut-

ting condition, lower cutting speed when dry cutting EN 1.4410 and higher cutting speed  

when wet cutting EN 1.4462 has shown higher preference than similar dry cutting EN 

1.4462 and wet cutting EN 1.4410 respectively.  

In the third phase of the study, the computed performances in the first and second phases were 

utilized to derive a new index of measuring machining sustainability called operational sus-

tainability index (OSI). Based on the Mamdani implication method for the fuzzy inference 

reasoning, normalized production cost per unit to consider the economics of the machining 

process, normalized effective cutting power to assess the energy demand of the machining 

process and normalized chip volume ratio to consider the chip morphology were successfully 

employed to define the OSI. The optimal machining parameters were tabulated and many 

conclusion points were extracted: 

 To accurately model and constrainedly optimize the highly nonlinear OSIs, neural net-

work models could be integrated with Cuckoo Search algorithm and form Cuckoo Search 

Neural Network System which is abbreviated as CSNNS. Results have indicated the effi-

ciency of the proposed approach for solving the optimization problem effectively.  
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 Generally, higher OSI values were noticed when wet cutting of DSSs are performed. For 

instance, in this study, wet cutting of EN 1.4462 and EN 1.4410 outperforms their respec-

tive dry cutting in operational sustainability by 9.768% and 12.383% respectively.  

 Based on the predicted OSIs values, the machinability of EN 1.4462 is higher than the 

machinability of EN 1.4410. 

 Lower cutting speed, intermediate feed rate depth of cut ranges, and higher cutting speed, 

intermediate feed rate and lower depth of cut ranges tend to maximize OSI in dry and wet 

cutting respectively. 

 Results also showed coincidence between optimum cutting conditions in second and third 

phases.  
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9 Numerical modeling and optimization of turning 

DSSs 

A vividly testimony to the potential interest on duplex stainless steels as a key research topic 

by various researches in the world is obvious when a search with the keywords ‘duplex stain-

less steel’ in popular database such us Science Citation Index-Expand or Scorpus returns tens 

of recent publication. However, one can hardly find a study that addresses the FEM simula-

tion of machining duplex grades. Furthermore, despite significant recent advances, FEM itself 

remains a ‘‘plug and play’’ technique for predicting some process output, depending on the 

assumed boundary conditions, including the friction. 

To address the FEM simulation of machining DSSs correctly, the plug and play technique 

must be limited first. For this purpose, the present chapter introduces a new method of inverse 

identification through converting the overall differences between FEM simulation results and 

experimentation ones into a single measure using Taguchi-VIKOR method. FEM modeling 

under mixed Taguchi design L18 (2
1×37) is performed to tune input parameters. Thermal con-

tact conductance )( tch , cutting speed )( cv , feed rate )( rf , cutting tool-workpiece interface 

hybrid Coulomb )( c  and shear )( s  friction coefficients, Taylor-Quinney coefficient )( t , 

percentage reduction of original flow stress )(% rp  and Cockcroft-Latham critical damage 

criterion )( .critD  are considered as controllable input parameters. On the other hand, cutting 

experimentations are conducted and different performances are measured, recorded and ana-

lyzed.  The percentage difference between numerically and experimentally obtained perfor-

mances such as thrust cutting force )(% tE , feed cutting force )(% fE , main cutting force 

)(% cE , chip thickness )(% hE  and tool nose temperature )(% TE  are considered as perfor-

mance characteristics and are unified into a single index using VIKOR method. The derived 

indices are then optimized globally to determine the optimum set of input parameter using an 

effective hybrid neural network-based nature inspired meta-heuristic algorithm known as 

Firefly Algorithm Neural Network System (FANNS). The optimum sets are next validated 

through experimentations. In the next stage of the research work, Taguchi optimization pro-

cedure (see Figure 2.14) is employed to numerically optimize the chip breaker types )(CB , 

insert geometries .)(Geo , cooling medium )(CM  such as still air, water based and cryogenic 
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coolants,  cutting conditions such as cv  and rf , and tool orientation angles such as normal 

rake )( n  and inclination angle )( i . Resultant cutting forces )( cR , effective plastic stresses, 

chip-tool interface cutting temperatures and tool wear rate are designated as performance 

characteristics. An expert system based on fuzzy rule modeling approach is adopted to derive 

a new index called Numerical Machining Performance Measure (NMPM). Finally, analysis of 

means (ANOM) is applied on the computed NMPMs to define the optimum levels of control 

factors.  A schematic diagram summarizing the methodological framework developed in this 

study is shown in Figure 9.1. 

 

Figure 9.1: Framework of the research. 

9.1 3D FEM prediction of the chip serration 

EN 1.4462 and EN 1.4410 rods of circular cross-section (diameter 55mm, length 200mm) 

were machined on a CNC lathe using uncoated rhombic cemented carbide of ISO designation; 

CNMA 120412-IC20 under Table 3.7’s experimental design. The cutting tests are conducted 

at constant cutting depth of 1.5mm owing to the parameter’s less pronouncing effect, and at 

dry process condition owing to the complications in cutting temperature measurements.  

The effect of feed rate and cutting speed on the components of cutting force are shown in Fig-

ure 9.2. For instance, increasing the cutting speed from 80cv to 240m/min at constant 

mm/rev225.0rf during turning EN 1.4462 had reduced tfc FFF and,  by 6.594%, 40.613% 

and 19.8% respectively. On the other hand, increasing feed rate from 15.0rf to 0.3mm/rev 
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at constant m/min160cv during turning EN 1.4410 had increased tfc FFF and,  by 47.39%, 

22.076%, and 52.82% respectively. 

 

Figure 9.2: Dependency of the components of cutting force on the cutting conditions. 

On the other hand, the dependency of maximum chip temperature on the cutting condition and 

the machined material can be seen in Figure 9.3. Examining the mean maximum chip temper-

ature values, the average maximum chip temperature when machining EN 1.4410 was higher 

than EN 1.4462 by 3-5%. Experimental results have shown that high cutting speed and feed 

rates will not always lead to high chip temperatures. This seems in contradiction with the 

known proportional relations between cutting conditions and cutting temperature. The most 

likely explanation to this is that when the cutting speed and feed rate is increased, higher rate 

of removed volume is expected. In this case, the higher heat flux entering the chip resulting 

from the higher interface temperature is divided over a larger volume, hence lower intensity. 

 

Figure 9.3: Dependency of maximum chip face temperature on the cutting conditions. 
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Due to the continuous entanglement of the DSS chips around the cutting tool and workpiece 

surface, the chip surface was not always available for direct observation by the IR camera. 

Furthermore, due to the concave surface of the scanned workpiece, highly reflective nature of 

DSS surface and difficulties in accurately measuring surface emissivity, the erroneous tem-

perature reading of tool-chip interface was inevitable (see Figure 9.4). During the early efforts 

to compare the maximum chip temperatures, similar problems of measuring maximum chip 

temperature due to the obstructed chip’s free face have also been encountered. Therefore, the 

application of the obtained maximum chip temperature results is restricted only to the experi-

mentation phase. Instead, the calibrated IR images of the black tool tip with emissivity value 

of 0.93 were obtained very shortly (0.25sec) after the feed was halted and the temperature of 

the cutter at the end of steady cutting is recorded.  The experimentally measured temperature 

data is then utilized to validate the results obtained in the simulation phase.  

 

Figure 9.4: Problems associated with IR Camera temperature measurement during machining 

DSSs. 

Figure 9.5 maps the experimentally measured maximum tool surface temperatures at location 

of 0.5mm<45°from the origin of the nose curvature. It can be seen that the maximum temper-

ature on the tool face increases with cutting speed. With the increase in feed rate, the cross-

section of chip and tool-chip contact length increases and consequently friction rises. This is 

also involves the increase of temperature. 
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Figure 9.5: Dependency of tool tip temperature on the cutting conditions. 

Moreover, the variation of plastic deformation during a chip formation cycle can be depicted 

using the chip measurement techniques described in Chapter 3 (see Figure 9.6 (a)). Higher 

plastic deformation during the loading stage and lower plastic deformation during the 

unloading stage of the chip formation cycle have influenced the grain shapes, so that in the 

zone of high plastic deformation the grains are severely deformed and in the zone of low 

plastic deformation the grains are moderately deformed. The tips of the cracks can be clearly 

observed at the boundary between the zones. The chip structure shown in Figure 9.6 (b) is an 

example of saw-tooth continuous transitional chips obtained when DSSs are machined. The 

presence of fragments is also revealed by showing the image of free side of the chip.  

 

Figure 9.6: Examples of formed chips when machining DSS (a) EN 1.4462 test 2 (b) Left, EN 

1.4462 test 1, right, EN 1.4410 test 3 (c) EN 1.4410 Test 6. 

Additionally, the average values of five consecutive chip thickness ratios (
i

hmax /
i

hmin ) are 
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and feed rate are increased, there are increases in the degree of serration )(H  as observed in 

the Figure 9.7. It is also observed that cutting speed, which adversely affected the hmax, has 

contributed positively in the chip thinning process through reducing the consecutive distance 

between the peeks.  

 

Figure 9.7: Dependency of the chip characteristics on the cutting conditions. 

9.2 3D FEM prediction of the chip serration 

Serrated chips (also called segmented or nonhomogeneous chips, see Figure 9.6(c)) are semi-

continuous with large zones of low shear strain and small zones of high shear strain, hence the 

latter zone is called shear localization. Metals with low thermal conductivity and strength that 

decreases sharply with temperature (thermal softening) exhibit this behavior [KaSc06]. Adia-

batic shear bands have been observed in the serrated chip during high strain rate metal cutting 

process of titanium [CaCG08, DuRF14, KaSc06, SiÖz10], carbon steel [RhOh06], nickel-

based alloys [LoJJ09] and stainless steels [CBBM13]. Adiabatic shear bands are narrow zones 

with thickness of the order of few micro-meters where shear deformation is highly localized. 

Each material has a different susceptibility to adiabatic shear because it depends on properties 

like heat capacity, heat conductivity, strength level, microstructure, geometry, defects and 
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strain rates. It is also known that adiabatic shear banding precedes material failures at high 

strain rates. Adiabatic shear banding is usually accompanied by a loss in stress capacity owing 

to intense thermal softening in the shear bands and, in many cases, shear bands serve as sites 

for crack initiation and growth during subsequent dynamic fracture [OdAB05]. Localized 

adiabatic shearing can be considered a unique consequence of severe plastic deformation at 

high strain rates. As both thermal and strain softening lead to rapid deformation localization, a 

shear band forms via a nearly adiabatic process. Also of note is that grain refinement can oc-

cur within shear bands and severe plastic strain (which can reach 5–20) can also appear within 

these shear bands [XLZG05].  

In order capture the formation of chip serrations numerically, a material model which ac-

counts for thermal and strain softening should be employed.  In last several years, numerous 

attempts have been made to predict serrated chip formation by finite element method. How-

ever, it was found to be difficult to predict the shear band and the serrated chip formation by 

the FEM technique, especially in three dimension configuration. In addition to the improper 

meshing size and strategy, the application of conventional flow stress models is one of the 

main reasons.   

As previously mentioned, a universal material model suitable for all cutting simulations re-

mains one of the main unaccomplished tasks. Due to the typical machining high strain, strain 

rate temperature and temperature gradient, it is not always easy to determine the flow stress 

curves experimentally. For example, in order to compare the performance of conventional JC 

and JMatPro in prediction of the chip serration and morphology, the following conditions 

were considered in 3D-FEM and extruded 2D-FEM modeling approaches: 

 Tool:  5n ,  7c ,  0i , radius of the cutting edge mm03.0 and tool material is 

tungsten carbide (WC). 

 Workmaterial: EN 1.4462  

 Workmaterial models: (a) JMatPro and (b) JC model. The JC constitutive model is given 

by equation: 
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 (9.1) 

where: 
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  is current von Mises flow stress 

A  is initial yield strength 

B  is strain hardening coefficient 

  is equivalent plastic strain 

n  is strain hardening exponent 

C  is strain rate coefficient 

  is equivalent plastic strain rate 

0  is reference plastic strain rate 1sec1   

m   is thermal softening exponent 

T  is current temperature 

mT  is melting temperature C1440  

rT  is reference temperature at which material constants are determined [NaNE07]. 

The elastic-plastic, viscosity and thermal softening terms are represented by the first, second 

and third brackets of the above equation, respectively. The procedure of computing the con-

stants of Johnson-Cook model from JMatPro stress flow curves involved the following steps:  

 The value of A  is calculated from the yield stress of the metal given in Table 3.2, i.e. 

MPa.514A  

 At rTT   and 0    the curve )ln( A  vs. )ln( is plotted. The values of B  and n  are 

extracted from the intercept and slope of this plot respectively. 

 Substituting the values of A , B  and n  in Eq. (9.1) and assuming rTT  which eliminates 

the thermal softening term, the strain rate coefficient )(C  is obtained from the slope of the 

graph   )ln(vs.)/(  nBA . 

 At 0   the viscosity term is eliminated. The exponent ( m ) is obtained from the slope of 

the graph     )(/)(lnvs.)/(1ln rmr
n T-TT-TBA   . Finally, the overall correlation co-

efficient was found satisfactory at 85567.0R 2  .  

 The JC parameters of the EN 1.4462 DSS are given in Table 9.1 and the flow stress 

curves predicted by JMatPro and the approximated JC model are shown in Figure 9.8. 

Parameter 
A  
[MPa] 

B 
[MPa] 

n C m 0  

[sec-1] 
Value 514 612.96 0.1801 0.01194 0.9765 1 
Table 9.1: Parameters of the Johnson-Cook model for EN 1.4462. 
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Figure 9.8: EN 1.4462 JC and JMatPro flow stress curves at ε =1. 

 Cutting regime: m/min100cv  and mm/rev.25.0rf  

 Damage criteria: MPa50. critD  and .20% rp  

 Shear coefficient: 4.0s  and K).N/(mm.sec.45tch  

 Mesh size20µm, aspect ratio7 and .9.0t  

The left and right sides of the Figure 9.9 presents the states of the deformation zones for 

JMatPro and JC models, respectively. For instance, Figure 9.9 (b) illustrates the plastic strain 

distribution in the deformation zone, while Figure 9.9 (c) depicts the temperature distribution 

in the deformation zones. As clearly seen from the figures, the formation of transitional or 

saw-tooth chip types are hardly predicted in the chips correspond to the JC model. Further-

more, the morphologies of the chips when cutting stainless steel materials are often related 

with chip up-curling and side-curling are also hardly noticed in JC material model cases. On 

the other hand, FEM results employed JMatPro flow stress curves seem to perform better in 

terms of the prediction of chip curling and formation adiabatic shear bands phenomenon. 

Therefore, the option of implementing flow stress data generated by JMatPro software is 

adopted. A text file was first generated for each workpiece material with chemical composi-

tion and mechanical properties shown in Table 3.1 and copied into the keyword file of the 

actual simulation. The software is also used to model the thermo-physical behavior of the 

work material (see Figure 3.1).  
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Figure 9.9: JMatPro and JC- based cutting simulation results. 

9.3 Inverse identification of 3D FEM input parameters 

The classical representation of cutting process by 2D models of chip formation suitable for 

orthogonal cutting has a limited assistance to tool and process designers. Moreover, the ob-

tained final surface doesn’t correspond to the final one that is obtained in 3D. Consequently, 

some prediction performances like residual stresses cannot have any realistic meaning. For 

these reasons, the oblique turning models are designed in 3D-FEM environment. 

The simulations are carried out with commercial software DEFORM-3D v10.1. The software 

is based on the implicit updated Lagrangian formulation. The workpiece, each 10mm size, 

was considered as a plastic object and meshed with approximately 140,000 tetrahedral ele-

ments. The tool, considered a rigid object meshed with more than 100,000 tetrahedral ele-

ments (see Figure 2.6). It is oriented according to the cutting angles set in experimental test 

and moves along a straight path. The cutting tool material was uncoated tungsten carbide 

(WC) and assigned directly from the available material database of the software. Thermal and 

mechanical properties of WC tools are tabulated in Table 9.2. 

Elastic Modulus  650 GPa 
Poisson’s ratio 0.25 
Thermal conductivity  59 W/m.K 
Specific heat capacity  15 J/kg.K 
Thermal Expansion  5*10-6 1/K 
Table 9.2: Thermal and mechanical properties of WC. 
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To improve the gradients of temperature, stress, strain and strain rate distributions, the mesh 

is refined in the vicinity of areas of cutting tool and the workpiece where the primary and sec-

ondary shear zone will be located. However, fixing the minimum element size at a very fine 

one could make the computation very expensive in terms of running time and size of the final 

database. Therefore, the minimum mesh element size of the workpiece and aspect ratio were 

fixed at ¼ of the minimum uncut chip thickness and 7 respectively. The top sides of the 

workpiece as well as all sides of the cutting tool were allowed to exchange heat with the envi-

ronment; the convection coefficient is considered constant at 0.02 N/(mm.sec.K), which is the 

default value for dry cutting in DEFORM 3D. On the other hand, meshing of the cutting tool 

model expected to be a decisive factor for the simulation of the heat flux, temperature and 

stresses in the material decohesion/deformation zone [NGCH14].  Therefore, the meshing 

density on the tool is increased in the potential chip-tool contact surface, while the rest of the 

tool is meshed with relatively coarser mesh. The mesh and boundary conditions for the finite 

element model are shown in Figure 9.10. 

 

Figure 9.10: Objects of the FEM model. 

In this study, the eight considered control factors are: .and%,,,,,, .critrtscrctc Dpfvh  The 

second and third control factors are referred to the cutting conditions and are included in the 

design to give the design more flexibility in dealing with other sets of cutting conditions that 

are planned in the second stage of the study. Taguchi mixed design L18 (2
1×37) is adopted so 

that the underestimation and overestimation problems are avoided by keeping the most pa-

rameter levels at three. Additional advantage of this factorial design is the reduction of exper-
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imentation trials from 18 to 9, because cutting speed and feed rate are the only input variables 

that can be designated as controlled factors during experimentation phase of the study. The 

control factors and their levels are previously listed in Table 3.7.  

Figure 9.11 depicts the impact of sets of control factors on the cutting temperature and chip 

morphology after cutting 8mm of the workpiece length. It is worth mentioning here that it is 

difficult to draw clear conclusion points on the parametric effect of each control factor based 

on the images shown, since at each cutting step the values of performances change considera-

bly. Therefore, statistical tools have to be employed to analyze the results and help emphasiz-

ing the effect of control factors separately. 

The next step after performing 3D-FEM is to postprocess numerous performance characteris-

tics such as; ,,,, maxhFFF tfc strain )( , strain rate )( , effective stress )( .eff , tool/ workpiece 

interface temperature )( TWT and tool temperature )( TT . 3D-FEM simulation of randomly spec-

ified trials was also repeated and no difference between replications was noticed. Owing to 

the non-beneficial nature of the performances, the lowest value was always desirable. There-

fore, Eq. (2.27) is directly employed to calculate the S/N ratios. ANOM is then applied to the 

computed S/N ratios using Eqs. (2.29) and (2.30). Thereafter, the optimum level is calculated 

utilizing Eq. (2.31). 

Figure 9.12 shows the results of performing ANOM after normalization. The mean S/N ratios 

are normalized between the worst ‘0’ and the best ‘1’. For instance, the optimum levelfactor  

combinations  which minimize the main cutting force for machining EN 1.4462 and EN 

1.4410 are 1
.

1311231 % critrtscrctc Dpfvh  and 1
.

1312131 % critrtscrctc Dpfvh  respectively. Another ex-

ample, in the case of turning EN 1.4410, simulation results showed that increasing the cutting 

speed value from m/min80cv to m/min240 had reduced the main effects of max,,, hFFF tfc

and   by 43.6%, 32.08%, 46.08%, 13.244% and 39.44% respectively. At the same time, the 

main effect of  , .eff and TWT  have increased by 37.98%, 7.25% and 19.045% respectively.  
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Figure 9.11: 3D-FEM temperature distributions. 
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Figure 9.12: Main effect plots of the effect of control factors on the cutting performances during turning EN 1.4410 and EN 1.4462  DSS. 

500 1000
0

0.5

1

h
tc

 [N/(mm.sec.K)]
100 150 200

0

0.5

1

v
c
 [m/min]

0.2 0.3
0

0.5

1

f
r
 [mm/rev]

0.6 0.8 1
0

0.5

1

µ
c

0.6 0.8 1 1.2
0

0.5

1

µ
sN

o
rm

a
liz

e
d

 S
/N

 r
a

tio

0.8 0.9 1
0

0.5

1

K
t

20 40
0

0.5

1

%p
r

50 100 150
0

0.5

1

D
crit

 [MPa]

500 1000

0.2
0.4
0.6

h
tc

 [N/(mm.sec.K)]
100 150 200

0.2
0.4
0.6
0.8

v
c
 [m/min]

 

 Ff

Fc

Fr

Effective
Strain

Strain
Rate

Effective
Stress

Interface
Temp.

Temp.Tool

hmax

0.20 0.30
0.2

0.4

0.6

f
r
 [mm/rev]

0.6 0.8 1
0.2

0.4

0.6

µ
c

0.6 0.8 1 1.2
0.2

0.4

0.6

µ
s

0.8 0.9 1
0.2

0.4

0.6

K
t

20 40
0.2

0.4

0.6

%p
r

50 100 150
0.2

0.4

0.6

D
crit

 [MPa]

EN 1.4410EN 1.4462



 Numerical modeling and optimization of turning DSSs 207 

9.3.1 Proposed methodology 

9.3.1.1 Analyses of the error percentages 

The percentage of differences between the experimentally measured cutting forces, tool tem-

peratures and thicknesses, and the FEM-predicted ones are computed using the percentage of 

difference expression ( E% ): 

100% 



FEM

FEMEXP

Y

YY
E  (9.2) 

where EXPY  represents the experimental performance values and FEMY  the simulated perfor-

mance values. To estimate the effect of the control factors and important interactions on the 

E% , percentage of contribution of each control factor on variance of the corresponding error 

percentage should be computed. The control factor that returns highest contribution percent-

age is designated as the prime factor. For the sake of more convenience, percentages are 

drawn in pie charts and shown in Figure 9.13. For instance, in the case of turning EN 1.4462,  

the control factors which are expected to play important roles in minimizing the percentage 

differences of feed force fE% , cutting force cE% , thrust force tE% , tool temperature TE%  

and chip thickness hE%  were s , t ,  s  and ctc vh  , s  and tch , and s  respectively. 

Results of E% computations versus the experimental order are illustrated in Figure 9.14. It 

can be seen that the predicted feed and thrust force components are generally underestimated 

except for some few cases at MPa150. critD . Severe fluctuations of fE% and tE% were gen-

erally in the range of -40% to 195%. On the other hand, cE%  has shown better agreements 

with the range of approximately -40% to 45%. Furthermore, comparing the TT and maxh , the 

E%  between experimental and FEM values also fluctuate between over and under estimation, 

with very few cases in which absolute E%  were less than 5%. These results show the strong 

impact of control factors on the outputs of the FEM. The next sections describe the study ap-

proach intended to simultaneously minimize all the differences between measured and pre-

dicted performances. 
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Figure 9.13: The percentage contribution of FEM control factors of the percentage error 

 

Figure 9.14: Percentage error between the experimentally measured and numerically predicted values for different cutting performances. 
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9.3.1.2 Application of VIKOR method 

In order to simultaneously minimize the multiple error percentages and determine the best 

alternative (trial no.), VIKOR method is proposed. The procedure of calculating VIKOR indi-

ces for each workmaterial case is started with the representation of decision matrix through 

assigning fE% , cE% , tE% , TE% and hE% as attributes (columns) of the matrix. The criteria 

weights have are set using the standard deviation method as per equation (2.63). The best and 

the worst values of all the criteria in weighted normalized decision matrices are identified 

using Eqs. (2.79) and (2.80). The values of utility )(S  and regret )(R  measures are calculated 

using Eqs. (2.81) and (2.82), respectively. The VIKOR index values )( VQ  are then calculated 

using Eq. (2.83).  For both work material cases, the values of the first and second ranked al-

ternatives are in acceptable advantage range, i.e.   AQ-AQ bVbV )()(
12

is always greater than 

 0.058821))(18(1 -/ . For example, the )(
2bV AQ and  AQ bV )(

1
of EN 1.4462 are 0.106 and 

0.012 respectively, which satisfies condition 1, i.e. 0.106-0.012=0.094 is greater than 

0.05882. Both regret and utility measure values by consensus prove the stability in decision 

making. Therefore, the values of VQ are directly used in the next analyses. Based on the out-

comes of the VIKOR method, the best alternatives during cutting EN 1.4410 and EN 1.4462 

were alternatives no. 15 and no. 6 respectively. Performing the ANOM, it can be proved that 

the optimum levelfactor  sets for machining EN 1.4462 and EN 1.4410 are: 

3
.

2322112 % critrtscrctc Dpfvh  and 3
.

2332322 % critrtscrctc Dpfvh  respectively.  

The combination of these control factors should minimize the difference between experi-

mental and numerical results. Figure 9.15 maps the effect of cutting speed interactions with 

the rest of control factors on the VQ  values. The dark blue areas represent the favored regions 

where the difference between experimental and numerical performances should be minimum.  

9.3.1.3 Firefly Algorithm Neural Network System (FANNS) 

To establish a useful relationship between independent variables ( rtscrctc pfvh %,,,,,, 

.and critD ) and dependent variable ( VQ ), supervised feed-forward MLP-neural networks with 

back-propagation (BP) as learning algorithm were adopted. The MLP-neural networks used in 

this study have two layers: one hidden layer and one output layer. The hidden layer uses a 

sigmoid-type transference function and the output layer uses a linear function.  
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Figure 9.15: Surface and contour plots of the VIKOR indices ( VQ ). 
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The final output ( NNQ ) of feed forward neural network structure (input vector (8*1)-number 

of hidden neurons (N)-output) can be mathematically expressed as: 

  11

1

.8881
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 (9.3) 

where   and b  are the weights and biases of the network respectively.  

In the present study, the MLP use sigmoid transfer functions in the hidden layers. These func-

tions are often called "squashing" functions, because they compress an infinite input range 

into a finite output range. Sigmoid functions are characterized by the fact that their slopes 

must approach zero as the input gets large. This causes a problem when you use steepest de-

scent to train a multilayer network with sigmoid functions, because the gradient can have a 

very small magnitude and, therefore, cause small changes in the weights and biases, even 

though the weights and biases are far from their optimal values. The purpose of the resilient 

back propagation training algorithm (RPROP) is to eliminate these harmful effects of the 

magnitudes of the partial derivatives. Only the sign of the derivative can determine the direc-

tion of the weight update; the magnitude of the derivative has no effect on the weight update. 

The size of the weight change is determined by a separate update value. The number of learn-

ing steps is significantly reduced in comparison to the original gradient-descent procedure as 

well as to other adaptive procedures, whereas the expense of computation of the RPROP ad-

aptation process is held considerably small. Another important feature, especially relevant in 

practical application, is the robustness of the new algorithm against the choice of its initial 

parameter [RiBr93]. 

The scaling or normalization ensures that the ANN will be trained effectively without any 

particular variable skewing the results significantly. The weights and biases of the network 

are initialized to small random values to avoid immediate saturation in the activation func-

tions. The neural networks trained by using the gradient descendent with adaptive velocity 

and momentum back-propagation algorithm to model VQ , where it is not easy to obtain ana-

lytical and good empirical relations. The optimum architecture was found out by varying net-

work characteristics in MATLAB using trial and error technique. It was found that when the 

training function, RPROP; the number of hidden neurons, 13; maximum number of epochs to 
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train, 100; the learning rate, 0.01; the increment to weight change, 1.2; decrement to weight 

change, 0.5; initial weight change, 0.07; and maximum weight change, 50, the root mean 

square of errors were the minimum. Figure 9.16 shows the comparison of experimental results 

and ANN modeling ones in verifying the network generalization capabilities. The results are 

almost identical.  

 

Figure 9.16: An actual versus predicted plot enabling correlating inspection of model predic-

tions relative to actual data. 

In order to obtain solutions that will provide useful information to the user during the phase of 

inverse identification of input parameters, neural network models should be integrated with 

the FA. The neural network models integrated with the FA optimizer was named Firefly Al-

gorithm Neural Network System (FANNS) and its architecture is shown in Figure 9.17. The 

target of the optimization process in this study is to determine the optimal values of the input 

parameters that lead to the minimum value of ANN-predicted QNN at any given cutting condi-

tion. The optimization problem can be defined as:  

)1( NNQMaxObjective   (9.4) 

The decision variables are the defined control factors and are limited to the range of simula-

tion experiments as: 
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Figure 9.17: Firefly Algorithm Neural Network System (FANNS). 
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 (9.5) 

The proposed FANNS approach has been applied to effectively model and optimize the VI-

KOR indices. The FA initializing optimization parameters were as follow; population size

20, number of iterations 2000, randomization 5.0rand , attractiveness 2.0a and attrac-

tiveness variation 1a . The optimal sets of control factors that lead to the optimum NNQ   

values are tabulated in Table 9.3 and the results of the FANNS are shown in Figure 9.18. The 

obtained optimization results showed that FANNS is highly reliable, converge consistently 

and quickly (the computation time was less than 3 minutes) to the optimum solution.  
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Figure 9.18: Mininmization of VIKOR indices using FANNS. 

Optimum control factor Unit EN 1.4462 EN 1.4410 
Thermal contact conductance )( tch  N/(sec.mm.K) 652.306 647.945 
Cutting speed )( cv  m/min 181.175 130.601 
Feed rate )( rf  mm/rev 0.21321 0.27441 
Coulomb friction coefficient )( c  - 0.63151 0.91255 
Shear friction coefficient )( s  - 0.74952 1.01455 
Taylor-Quinney coefficient )( t  - 0.95352 0.96525 
Reduction in flow stress )(% rp  - 19.3549 28.8121 
Critical damage value )( .critD  MPa 69.2885 89.1997 
Minimum VIKOR index )1( NNQ  - 0.92211 0.95785 
Table 9.3: Optimum sets of control factors. 

To validate the global FANNS results, the experimental cutting conditions should be identical 

to the numerical ones. Therefore, three longitudinal turning experiments per each work mate-

rial were carried out at the exact optimum cutting conditions as listed in Table 9.  The averag-

es of the measured performances are computed and used to calculate the percentage difference 

between the numerical and experimental ones using Eq. (9.2). The percentage difference be-

tween numerically obtained cutting forces, chip temperature and maximum chip thicknesses, 

and the experimental ones for each work material are tabulated in Table 9.4. It can be seen 

that the calculated performances are in close agreement to the experimental results. The glob-

al optimum difference percentages are also compared with difference percentages of the rank 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Iteration no.

O
bj

ec
tiv

e 
fu

nc
tio

n 
(1

-Q
N

N
)

 

 
EN 1.4462 EN 1.4410



 Numerical modeling and optimization of turning DSSs 215 

 

no. 1. The lower percentages of difference confirm the advantage of FANNS application in 

identifying the input parameters while simulating the machining of duplex stainless steels. 

  
Mat. 

 

Ff 

[N] 
Fc 

[N] 
Ft 

[N] 
TT 

[°C] 
hmax 

[mm] 
Exp. Num. Exp. Num. Exp. Num. Exp. Num. Exp. Num. 

EN 
1.4462 

385.16 369.94 935.65 972.06 298.64 290.13 134.63 140.51 0.334 0.351 
%E =-4.116 %E =3.745 %E =-2.139 %E =4.187 %E =5.125 

EN 
1.4410 

761.15 723.68 1485.63 1569.5 517.254 491.82 142.71 148.70 0.553 0.584 
%E =-5.177 %E =5.346 %E =-5.169 %E =4.031 %E =5.254 

Table 9.4: Validation of the numerical results. 

9.3.2 Extension of FANNS: a case study 

One of the aims of conducting inverse identification was to define a robust approach, so that 

the optimum set of control factors at any given cutting speed and feed rate is accurately de-

termined. In this subsection, the adaptability of the described approach to the changing cutting 

speeds and feed rates is examined. Three arbitrary experimental cutting tests per each work-

material were conducted. The optimum sets of control factors at cutting speeds and feed rates 

combinations of 75m/min×0.325mm/rev, 150m/min×0.175mm/rev and 225m/min×0.2mm/rev 

were determined using the proposed FANNS; meanwhile numerical models, each at the exact 

optimum set of optimized control factors, were prepared and executed. Figure 9.19 shows the 

measured and predicted cutting performances for EN 1.4410 and EN 1.4462. The average of 

absolute percentage differences between the experimental and numerical results for each ma-

terial case is 3.8652 % and 4.9956% respectively. Considering the wide range of applied cut-

ting speeds and feed rates the proposed methodology of inversely identifying the simulation 

input factors shows excellent results with respect to the examined performances. 

9.4 Inverse identification of Usui’s wear model constants 

In order to characterize tool wear for a cutting operation, there exist two main approaches; 

empirical tool life models and tool wear rate models. In order to derive a reliable empirical 

tool life model, a large number of experimental tests are essential which is usually time-

consuming, cost-intensive, restricted to the investigated tool-workpiece combinations and 

cannot predict the influence of work material or tool materials on the values of constants in 

the models. On the other hand, tool wear rate models involve process variables that are not 
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directly measurable or very difficult to measure during a cutting operation, such as normal 

stress and temperature on the tool face, chip temperature, and chip sliding velocity along the 

tool rake face. However, in the last several years, the FEM has been successfully applied to 

estimate such variables [ACRU08]. Consequently, a better understanding of the fundamentals 

of cutting mechanics, engineering analyses of tool wear and systematic approach for the pro-

cess optimization is possible.   

 

Figure 9.19: Experimental validation results for 3D-FEM of turning DSSs. 

Considering the Show’s equation of adhesive wear, tool wear rate model derived by Usui and 

co-workers involves variables such as temperature T , normal stress n , sliding velocity sv  at 

the contact surface, and two constants A  and B . It is expressed as: 









T

B
vA

dt

dW
sn exp  (9.6) 

Their results have shown that both the flank and crater wear rates have the same functional 

form. The variables in Usui’s wear rate model can be predicted by FEM simulation of cutting 

process or combining analytical method and FEM [YaLi02]. In this study, the procedure of 

calculating the Usui’s wear model constants can be simply summarized as follow: 

 Conduct tool life experimentations under dry condition using a typically recommended 

insert grade to machine stainless steels to determine the wear rate )/( dtdW . 
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 To estimate the variables in Eq. (9.6), prepare identical to the experimentations, fully cou-

pled thermo-mechanical and FANNS-optimized 3D-FE models, and run the simulations.  

 Collect the numerically estimated ,T n and sv . 

 Fit the nonlinear Usui’s model to determine the constants A  and B . 

Seven arbitrary multi-pass dry turning tests of EN 1.4410 and EN 1.4462 DSS bars were per-

formed on a variable spindle speed CNC lathe using rhombic CNMA 120412-IC20 uncoated 

cemented carbide inserts. Thereafter, logarithmic plots of tool wear versus cutting time were 

drawn and the slopes )/( dtdW were determined. Meanwhile, the 3D-FE cutting simulations 

were carried out based on the proposed procedure. The tool is considered rigid with no wear-

ing possibility. Values of ,T n and sv were directly extracted from simulation results. Matlab 

function NonLinearModel.fit was then utilized to fit the model and test its adequacy through 

various statistical diagnostic tools. The adjusted correlation factor ( adj.R ) was in very good 

agreement with predicted correlation factor ( pred.R ) which supports the prediction power of 

the model and were generally above 0.94. The RMSE  for EN 1.4462 and EN 1.4410 Usui 

wear models were 0.000314 and 0.000469 respectively. The final form of the constants Usui’s  

wear models can be constructed as;  
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 (9.7) 

9.5 Numerical optimization of turning DSSs 

In the second stage of the present study, a hypothetical benchmark-analysis based on the 

Taguchi optimization procedure is suggested. The objective is to select the best combination 

of criterions such as; chip breakers type )(CB , tool geometry .)(Geo , cooling medium applica-

tion )(CM , cutting conditions such as cv  and rf , and tool orientation angles such as normal 

rake )( n  and inclination angle )( i  for an effective machining of EN 1.4462 and EN 1.4410 

DSSs. For this purpose, Taguchi’s mixed design L18 (2
1×37) is once again seen the most ap-

propriate  because of its attractive characteristics which combines the highest possible number 

of levels along with largest number of criterion and smallest number of experiments. Another 
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attractive characteristic of the design is that the interaction between column 1 and 2 is orthog-

onal to all columns and hence can be estimated without sacrificing any column. The interac-

tion can be estimated from the 2-way table of columns 1 and 2. The studied criterion and their 

corresponding levels are listed in Table 3.8.  Columns 1 and 2 of the design can be combined 

to form a 6-level column.  Each level in column three represents an insert designation which 

is often commercially available. 

9.5.1 Selective control factors 

In the following subsections an introduction to the first three of above control factors is given. 

The reminder of the control factors have been previously described in Chapter 1 of the present 

dissertation.  

9.5.1.1 Chip-breaker type 

Especially designed for machining stainless steels, chip breakers such as M3M type is adapted 

with geometric features that improve the tool’s life due to a reinforced cutting edge at the area 

where notch wear tends to occur when machining stainless steel, causing poor surface finish 

and risk of edge breakage (see Figure 9.20). On the other hand PP type chip breakers, which 

are also recommended for machining stainless steels, are characterized by having 3 step smart 

dot structures which provides smooth chip evacuation with a wide range of feed rates, and 

smooth taper cutting edge to reduce cutting forces. 

 

Figure 9.20: Adopted chip-breakers types. 
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9.5.1.2 Insert geometry 

In metal cutting, the primary goal is to achieve the most efficient separation of chips from the 

workpiece. One of the main factors that contribute in optimizing chip morphology is the insert 

shape. For this reason, the selection of the right cutting tool geometry is critical.  The three 

basic insert shapes which had to be investigated in the present hypothetical study were dia-

mond 55°, rhombic 80° and trigon 80°. Other geometric features, such as clearance angle, 

tolerance, size, thickness, nose radius and cutting edge preparation were identical. 

9.5.1.3 Cooling medium 

Following the determination of the optimum thermal contact conductance of the tool-chip 

interface )( tch  using the FANNS approach, the influence of environmental heat convection in 

dry, wet and cryogenic conditions on the cutting processes is investigated and optimized. A 

window for heat exchange was defined as shown in Figure 9.21. It was restricted to the sec-

ondary and tertiary deformation zones on the inserts using a cylindrical shape of 1.2mm radi-

us and 3mm length and was not intended to change any other boundary conditions in the finite 

element model. Local convection coefficients in wet and cryogenic cutting were assigned in 

the areas covered by the window while the rest of the cutting tool is still subjected to air con-

vection. The convection coefficients of dry, wet and cryogenic cutting mediums are taken 

from literature as; 0.02,10 and 5000 N/(sec.mm.K) respectively [PUDJ14]. 

 

Figure 9.21: An illustrative thermal boundary condition using PP chip-breaker. 
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9.5.2 Results and discussions 

Once the turning simulations has been finished, numerous cutting performances such as re-

sultant cutting forces, temperatures,…,etc. have been extracted. The S/N ratio of each perfor-

mance is computed and the main effect plots of the normalized S/N ratios are plotted as 

shown in Figure 9.22. The level which returns maximum normalized S/N ratio is assigned as 

the optimum level. Further statistical analyses are performed to specify statistically significant 

control factors. Figure 9.23 exhibits the percentage of contribution of each control factor on 

the variance of the corresponding cutting performance. The following sub-sections, the effects 

of control factors on each single cutting performance are briefly described. 

9.5.2.1 Influence of control factors on the resultant cutting forces (Rc) 

Based on a quick review of the 3D-FEM results, the following conclusion points can be 

drawn: 

 The optimum insert designations which minimize cR  during turning EN 1.4462 and EN 

1.4410 can be described in ISO norms as: WNMG 060408-PP and CNMG 120408-PP re-

spectively. 

 In spite of the advantageous aspects of increasing cutting speed, applying coolant and cry-

ogenic conditions in increasing the productivity and reducing the overall cR  values, re-

sults has shown a limited influence of these control factors on the mean cR  values. This 

statement is supported by the slopes of the cR  curves in Figure 9.22 

 Among the considered control factors, feed rate had shown the strongest impact on the 

resultant cutting forces (see Figure 9.23).  

 The optimum values of cutting tool orientation angles expressed by ranges of investigated 

rake and inclination angles are -6° and 0° respectively. 

9.5.2.2 Influence of control factors on the effective strain 

Without relating the hardening parameters in the loading function to the experimental uniaxial 

stress-strain curve, the work-hardening theory of plasticity cannot be applied in practical 

terms. In order to correlate the test results obtained by different load programs, the introduc-

tion of any strain and stress variables, that are functions of plastic strain and plastic stress, and 
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can be plotted against each other is considered useful. These variables are often called effec-

tive strain and effective stress.  

DSSs are a group of stainless steel alloys that are characterized by high work-hardening rate. 

They are machined at very high strain rates which increase the work hardening rate and caus-

ing higher resistance to plastic deformation. Generally, the following observation points can 

be made: 

 The average effective plastic strain when machining EN 1.4462 was 13.2% lower than the 

corresponding EN 1.4410. 

 Employing chip breaker type PP has generally caused lower effective strain values. 

 Detrimental control factors vary considerably per work material family.  

 Higher values of effective strains are observed when the cooling medium on the tool is 

cryogenic. 

 Main effects of effective strain decreases with increasing cutting speed.  

 Mean effective strains are found to be minimum at the feed rate range of 0.1-0.175 

mm/rev and inclination angle range of 6°-12°. 

 Minimum effective strain value when cutting EN 1.4462 and EN 1.4410 at  0n  and 

 12n  respectively. 

9.5.2.3 Influence of control factors on the effective stress 

Effective plastic stress is considered a relevant characteristic of the cutting process which 

characterizes the level of resistance to cutting. The correlation between the state of this per-

formance imposed by the cutting tool in the layer being removed and the fracture strain of the 

work material could be used to estimate the physical efficiency of the cutting process. In 

summary to the results, the following conclusions can be drawn:  

 The effective stress encountered in cutting EN 1.4410 was 12% higher than EN 1.4462. 

 The optimum control levelfactor  combinations of cutting EN 1.4462 and EN 1.4410 were 

2311211 . inrc fvCMGeoCB   and 2312221 . inrc fvCMGeoCB   respectively. 

 Increasing the rake angle in negative direction and inclination angle in positive direction 

generally increases the effective stress. 

 The minimum effective plastic stress of 1261.48MPa and 1492.01MPa when cutting EN 

1.4462 and EN 1.4410 were respectively recorded at experiment no. 9.  
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Figure 9.22: Main effect plots of the effect of control factors on the cutting performances during turning EN 1.4462 and EN 1.4410 DSSs. 
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Figure 9.23: The percentage contribution of FEM control factors in the cutting performances variances. 
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 When cutting EN 1.4462, process conditions such as CMfv rc ,, and CMvc  interaction 

has contributed to the effective stress values by 48%. On the other hand, when cutting EN 

1.4410, they had contributed by as much as 66%. 

9.5.2.4 Influence of control factors on the cutting temperature 

Mean contact temperature at the tool–chip interface (also is referred to as the cutting tempera-

ture) is the basic tribological characteristics of the tool–chip interface. It plays a major role in 

the formation of crater on the tool face and leads to failure of tool by softening and thermal 

stresses. This temperature is the most suitable parameter to correlate the tribological condi-

tions with tool wear. Control factors that affect the tool-chip interface temperature are; work-

piece and tool material, tool geometry, cutting conditions and cutting medium. Fortunately, 

most of these factors are included in the original design of simulation experimentations. Fig-

ure 9.24 depicts the state of cutting temperature distribution in the primary and secondary 

deformation zones of the workpiece. The results of the numerical studies on temperatures in 

cutting DSSs can be summarized as follows: 

 Mean cutting temperatures at dry cutting when machining EN 1.4462 and EN 1.4410 were 

36.3% and 53.5% higher than at corresponding cryogenic process conditions. 

 The contribution of water-based coolant in lowering the average cutting temperature has 

not exceeded 7.8% in both material cases. 

 Minimum mean cutting temperature when cutting EN 1.4462 and EN 1.4410 has been 

recorded at experimental run 16 and 15 respectively. 

 Cooling medium, cutting condition and their interaction accounts for most of contribu-

tions in cutting temperature variations. 

 The optimum control factorlevel combinations of cutting EN 1.4462 and EN 1.4410 were 

1231332 . inrc fvCMGeoCB   and 2321321 . inrc fvCMGeoCB   respectively. 

 The average cutting temperature when machining EN 1.4462 was 9.85% lower than the 

corresponding EN 1.4410. 
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Figure 9.24: Contours of temperature distribution in 3D-FEM of cutting DSSs. 
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9.5.2.5 Influence of control factors on the strain rate 

The flow stress curves shown in Figure 2.11 exhibit sensitivity to temperature and strain rate. 

This sensitivity is directly related with time and temperature dependency of the mechanisms 

that govern the deformation and the evolution of the deformation in the material. The main 

mechanism by which plastic strain takes place is thermally activated motion of dislocations 

past obstacles that exist within the lattice over a wide range of strain rates and cutting temper-

atures. The material response is significantly affected by the nature and density of the obsta-

cles (which may change as the deformation takes place). When dealing with metals, experi-

mental results show that the stress required for plastic strain often reduces with the increase of 

temperature and with the decrease of plastic strain rate [GiWu97]. It can then be said that 

temperature and plastic strain rate greatly influence the material response. In general, the 

stress decreases with the increasing of temperature and decreasing the plastic strain rate. Ac-

tually, temperature and strain rate effects are coupled, since one influences the other. Temper-

ature affects the rate of deformation, which is controlled mainly by a thermally activated 

mechanism. On the other hand, plastic strain at high rate generates significant heating and 

cause an increase in temperature which leads to mechanical instability and the localization of 

deformation into narrow sheets of material (the adiabatic shear bands), which act as precursor 

for eventual material failure [DaMa09]. As generalization to the given results in Figure 9.22 

and Figure 9.23, the following concluding points can be depicted: 

 Average strain rate values under cutting EN 1.4462 and EN 1.4410 are of 2.067×105 sec-1 

and 3.23×105 1/sec respectively. 

 Increasing cutting speeds from 100m/min to 300m/min at lower feed rates of 0.1mm/rev 

had drastically increased the strain rate values. 

 Mean strain rate values in cryogenic cutting conditions during cutting EN 1.4462 and EN 

1.4410 were respectively 9.158% and 11.863% lower than the corresponding still air con-

ditions. 

 3321332 . inrc fvCMGeoCB   and 3321322 . inrc fvCMGeoCB   were the optimum control 

levelfactor combinations which have minimized the strain rate when cutting EN 1.4462 and 

EN 1.4410, respectively. 
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9.5.2.6 Influence of control factors on the tool wear 

Eq. (9.7) has been used in conjunction with finite element simulation to model wear of WC 

cutting tools. The simulation results related to the tool wear were obtained in terms of tool 

wear rate, total wear depth and tool temperature. Average values of tool wear rates are statis-

tically analyzed and plotted as shown in Figure 9.22 and Figure 9.23.  Figure 9.25 maps the 

contours of wear depth in the nose area of the employed cutting tools after 7mm longitudinal 

cutting. As it can be observed that the locations and intensity of tool wear depths are functions 

of work materials and control factors. Considering the effect of these factors, the summary of 

the findings are presented below. 

 The optimum control levelfactor  combinations which have minimized the tool wear rate 

during cutting EN 1.4462 and EN 1.4410 were 2311312 . inrc fvCMGeoCB   and 

2121312 . inrc fvCMGeoCB   respectively. 

 For both workmaterials, major percentage of contributions of 69% and 72% in variance of 

tool wear rate were attributed to the process and cutting conditions and their subsequent 

interactions.   

 The average tool wear rate when machining EN 1.4462 was 5.365% lower than the corre-

sponding EN 1.4410. 

 Contour profiles of tool wear depth shown in Figure 9.25 coincide with temperature dis-

tribution at rake and flank faces of the cutting tools in Figure 9.26. Maximum wear depths 

are occurred in positions at rake and flank surfaces where the tool temperature is the high-

est. 

9.5.3 Numerical machining performance measure 

The previous analyses of machining performances have showed different control levelfactor  

preferences. This will cause confusions to the process designer or the machinist who interest-

ed in finding the best compromise combination of control factors which simultaneously opti-

mize the machining of DSSs. Therefore, a new machining performance measure has to be 

defined. In this section of the work, fuzzy logic system is employed to combine the normal-

ized performances, such as the resultant cutting force, effective stress, cutting temperature and 

tool wear rate into a single characteristics index called numerical machining performance 

measure (NMPM). 
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Figure 9.25: Contours of tool wear depth in 3D-FEM of cutting DSSs. 

 

Figure 9.26: Contours of the cutting tools temperature distributions in 3D-FEM of cutting DSSs. 
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Matlab software was used to construct the inference model of the NMPM. The S/N ratios of 

performance values were first adjusted to a notionally common scale between null and one, so 

that the digit ‘one’ represents the most desirable and ‘null’ is the least desirable alternative. 

The four input variables are assigned with the following fuzzy sets: Small (S), Medium (M) 

and Large (Lg). The output variable has the following nine levels: Extremely Low (EL), Very 

Low (VL), Low (L), Lower Medium (LM), Medium (M), Upper Medium (UM), High (H), 

Very High (VH) and Extremely High (EH). Mamdani implication method is employed for the 

fuzzy inference reasoning. The relationship between system input and output is expressed by 

an “If-Then” type. Totally 34 fuzzy rules per material were formulated. Finally, the structural 

characteristics of the fuzzy inference system (FIS) in the present study can be plotted as 

shown in Figure 9.27. 

 

Figure 9.27: FIS-NMPM: 4 inputs, 1 output, 81 rules. 

The main effect plots of the NMPM are presented in Figure 9.28. The figure indicates that the 

mean NMPM values of EN 1.4462 are generally higher than of EN 1.4410 and the final opti-

mum levelfactor  combinations for both materials are 2311331 . inrc fvCMGeoCB   and 

2211322 . inrc fvCMGeoCB   respectively.  Based on the NMPM values, it can be concluded that 

EN 1.4462 has better machinability in terms of the employed performances. Finally, perform-

ing ANOVA on the computed NMPMs, has confirmed the major effects of process and cut-

ting conditions and their interactions on the overall performance of cutting DSSs (see Fig. 

39). 
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Figure 9.28: Main effect plots of the effect of control factors on the cutting performances dur-

ing turning EN 1.4410 and EN 1.4462 DSSs. 

 

Figure 9.29: Percentage of contributions of FEM control factors in the NMPM variance. 

9.6 Interim conclusions 

The shortcomings of the machining analytical and empirical models in combination with the 

industry demands could be fulfilled using 3D-FEM. However, the challenging aspects which 

hinder its successful adoption in manufacturing process design practice have to be solved 

first. One of the greatest challenges is the identification of the correct set of machining simu-
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late the input parameters when simulating the machining of standard duplex EN 1.4462 and 

super duplex EN 1.4410 stainless steels. JMatPro software was first used to model elastic-

viscoplastic and physical work material behavior. In order to effectively obtain an optimum 

set of inversely identified friction coefficients, thermal contact conductance, Cockcroft-

Latham critical damage value, percentage reduction in flow stress and Taylor-Quinney coeffi-

cient, Taguchi-VIKOR coupled with Firefly Algorithm Neural Network System (FANNS) has 

been applied. The optimization procedure effectively minimized the overall differences be-

tween the experimentally measured performances such as cutting forces, tool nose tempera-

ture and chip thickness, and the numerically obtained ones at any specified cutting condition. 

The optimum set of input parameter were verified and used for the next step of 3D-FEM ap-

plication. In the next stage of the study, design of experiments, numerical simulations and 

fuzzy rule modeling approaches were employed to optimize types of chip breaker, insert 

shapes, process conditions, cutting parameters and tool orientation angles based on many im-

portant performances. Based on the obtained experimental and numerical results, and the con-

ducted extensive analyses, the main conclusion points that can be drawn in this chapter are: 

 JMatPro-generated elasto-visco plastic and thermo-mechanical properties can be effec-

tively used to numerically simulate the machining of DSSs. 

 Using time-dependent damage criteria such Cockcroft-Latham damage criteria, JMatPro 

has outperformed the JC material model in prediction of chip serrations under similar 

thermo-mechanical material properties. 

 Pre-processing FEM control factors such as; rtscrctc pfvh %,,,,,,  and .critD have strong 

impacts on the percentage difference between experimental and numerical cutting perfor-

mances.  

 The lowest mean values of the overall error percentages for cutting EN 1.4462 and EN 

1.4410 were, respectively, at the following pre-processing control levelfactor  combina-

tions; 3
.

2322112 % critrtscrctc Dpfvh  and 3
.

2332322 % critrtscrctc Dpfvh   

 Validations of numerical results through experimentations have revealed that the proposed 

VIKOR-FANNS approach can efficiently minimize the overall percentage differences at 

any desired cutting conditions. 
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 Hypothetical benchmark-analysis based on the Taguchi optimization procedure can be 

numerically employed to select the best combination of criterions such as;CB , .Geo , ,CM

cv , rf , n   and i  per cutting performance.  

 Performing ANOM of the derived NMPM values has indicated that the final optimum 

levelfactor combinations during cutting EN 1.4462 and EN 1.4410 are 331 . CMGeoCB

2311
inrc fv   and 2211322 . inrc fvCMGeoCB   respectively. 
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10 Conclusions 

Recognizing the complexity of machinability investigations, the limitations of metal cutting 

theory and analytical modeling, the difficulties of modeling and optimization of machining 

process parameters and the necessity of extra knowledge to be gained from machining of duc-

tile and strain hardening materials, the present dissertation has systematically investigated 

machining of DSSs through systematic application of advanced modeling and optimization 

techniques in turning processes. The ultimate goal of this dissertation was to provide the pro-

cess planner and/ or the decision maker the selection capability of obtaining the optimum pro-

cess parameters under the consideration of multiple and often conflicting performances. The 

application of input-output parameter relationship modeling and optimization tools and finite 

element simulations has been broadly demonstrated. MADM methods, often coupled with 

fuzzy set theory, are also proposed to perform multi-objective optimization and obtain differ-

ent cutting performance measures. Hybridization of computational modeling and optimization 

techniques was another tool that has been effectively applied to the machining optimization 

problem. In conjunction with the research questions that motivated the present dissertation, 

the following concluding remarks can be drawn: 

Research question 1: 

Can the application of statistical regression and computational optimization techniques effec-

tively obtain sets of non-dominated solutions in multi-objective optimization of machining 

DSSs? 

In answer to the first research question, an experimental investigation on cutting of EN 1.4462 

and EN 1.4410 DSSs is conducted. Statistical regression modeling techniques are adopted to 

model the performance characteristics and ANOVA tests were performed to check the models 

adequacies. Multi-objective optimization of machining DSSs based on the nature-inspired 

MOBA is performed to simultaneously minimize resultant cutting force and the maximum 

width of flank wear. Results of optimization have shown that MOBA is very efficient and 

highly reliable. It has provided Pareto frontiers of non-dominated solution sets for optimum 

cutting conditions, enabling decision makers and/or process planner with a resourceful and 

efficient means of achieving the optimum cutting conditions. Therefore, statistical regression 
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and meta-heuristics can be effectively applied to the multi-objective optimization of cutting 

processes. 

Research question 2: 

Is the application of fuzzy set theory advantageous in eliminating the discrepancy of ranking 

system among the MADM methods and obtain better results than other optimization ap-

proaches? 

In response to the second research question, a comparative machining study of austenitic EN 

1.4404, and EN 1.4462 and EN 1.4410 is primarily performed. Considering, chip volume ra-

tio, resultant cutting forces, specific cutting pressures and net spindle powers potential per-

formance characteristics, TOPSIS, VIKOR, GRA and UA were simultaneously applied to 

optimize the cutting of the stainless steels. Owing to the existing discrepancy among the 

above MADM methods, fuzzy rule modeling approach was proposed to derive a single char-

acterization index called UCI. In comparison to the outcomes of other optimization approach-

es, a remarkable improvement in reduction of cutting power consumption, specific cutting 

pressure and resultant cutting forces has been reported when direct ranking system of predict-

ed UCI indices are set as optimum. Hence, fuzzy set theory has not only proved to be advan-

tageous in eliminating the discrepancy of ranking system among the MADM methods but also 

obtained better results than other optimization approaches. 

Research question 3: 

Can Taguchi-MADM-meta-heuristics concept be conveniently used for mono and multi-

objective optimization of cutting stainless steels? 

To answer the third research question, multi-performance optimization of turning of EN 

1.4404, EN 1.4462 and EN 1.4410 has been first experimentally addressed. Utilizing 

Taguchi-VIKOR-Meta-heuristic as multi-performance optimization concept, performance 

characteristics such as; surface roughness, specific cutting energy, cutting power and resultant 

cutting forces are simultaneously and constrainedly optimized. Optimization performance of 

FA, APSO and CS algorithms are compared, and the exact settings of optimum cutting pa-

rameters are determined. The obtained optimization results showed that the algorithms are 

highly reliable and converge consistently to the optimum solution. However, when it comes to 

comparisons based on the iteration numbers required for convergence and computation re-

sults, APSO outperformed the FA and CS was seen far more efficient than both. Thus, the 
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proposed Taguchi-VIKOR-Meta-heuristic concept has enabled the decision maker and/or pro-

cess planner with tools suitable for mono objective optimization using Taguchi optimization 

procedure, multi-objective optimization using VIKOR method and constrained optimization 

using the most efficient meta-heuristic algorithm.  

Research question 4: 

Can multiple machining surface quality characteristics be efficiently optimized when MADM 

methods are coupled with fuzzy set theory? 

In order to answer the fourth research question, multiple surface quality characteristics of 

stainless steel grades such as; EN 1.4404, EN 1.4462 and EN 1.4410 have been systematically 

investigated under a constant cutting speed facing operation. MADM methods such as GTMA 

and AHP-TOPSIS are simultaneously adopted to combine well-known surface quality charac-

teristics such as Ra , Rz and Rt  into a single index called MSQCI.  The differences in rank-

ings between derived indices are solved through converting each crisp values into trapezoidal 

fuzzy number and unifying them using fuzzy simple additive weight method. The optimum

levelfactor combinations have been defined and onContributi% of the control factors are de-

termined. Confirmation test results have shown that the average percentage improvement in 

surface quality during facing EN 1.4404, EN 1.4462 and EN 1.4410 were: 26.302%, 10.62% 

and 12.679%, respectively. Thus, multiple machining surface quality performances could be 

efficiently optimized when MADM methods are coupled with fuzzy set theory. 

Research question 5: 

Would it be possible for multi-pass cutting operations to be sustainably optimized when the 

hybridization of input-output modeling and optimization tools and MADM methods is system-

atically performed? 

In answer to the fifth research question, a systematic approach which employed different 

modeling and optimization tools under a three phase investigation scheme has been conducted 

to sustainably optimize the multi-pass constant cutting speed facing of DSSs. In the first 

phase of the investigation, D-optimal experimental design is used extensively to investigate 

the effect of process variables on performance characteristics such as percentage increase in 

thrust cutting force, effective cutting power, maximum tool flank wear and chip volume ratio. 

The models were then analyzed using 3D surface graphs and used to study the interaction 

effects of process parameters. At the end of the first phase, constrained Cuckoo Search algo-
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rithm is selected to perform optimization of the performance characteristics thereby defining 

the optimum process conditions. In the second phase, the optimization conflict between ma-

chining economics attributes, such as simultaneous minimization of machine utilization time, 

main time-related costs and the tool related costs effectively solved employing TOPSIS. In 

the third phase of the study, the computed performances in the first and second phases were 

utilized to derive a new index of measuring machining sustainability called operational sus-

tainability index (OSI). To accurately model and constrainedly optimize the highly nonlinear 

OSIs, CSNNS has been developed. The numerous conclusive results obtained in this exten-

sive investigation has proved the potential of hybridization of input-output modeling and op-

timization tools and MADM methods when they systematically applied to the multi-pass cut-

ting operations. 

Research question 6: 

Is it possible to apply JMatPro, DOE, MADM, computational modeling and meta-heuristic 

approach in inverse identification of the input parameters during finite element simulation of 

cutting processes? If it is possible, can a hypothetical numerical optimization study be per-

formed as a case study?  

In response to the last research question, a novel approach of inverse identification of input 

parameters in 3D-FEM of turning DSSs has been proposed. Adopting JMatPro software for 

generating of temperature dependent physical and elastic-viscoplastic properties of DSSs, the 

optimum 3D-FEM control levelfactor combination of rtscrctc pfvh ,%,,,,,  and .critD has been 

effectively defined under Taguchi-VIKOR-FANNS approach. Validations of the numerical 

results experimentally have proved the versatility of the approach accurately. The approach is 

then employed to define the optimum set of control factors for the rest of the planned investi-

gations. In the next stage, a hypothetical 3D-FEM machining optimization study is then con-

ducted and the optimum set of criterions such as; ,CB .,Geo ,CM ,cv ,rf n and i  per each 

cutting performance is defined using Taguchi optimization procedure. Finally, an expert sys-

tem based on fuzzy rule modeling approach is adopted to simultaneously optimize resultant 

cutting forces, effective plastic stresses, chip-tool interface cutting temperatures and tool wear 

rate through deriving NMPMs and performing ANOM. Hence, the adopted hypothetical study 

can also act as a framework for investigating; ever widening spectrum of cutting tool and 

workpiece materials, new tool designs, including indexable inserts with complex chip forming 
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geometry, coatings cause new phenomena, new machining methods such as circular milling, 

and high speed machining.  
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12 Appendix A: Supplementary tabulations 

Pareto 
points 

EN 1.4462 EN 1.4410 
Dry Wet Dry Wet 

vc 
[m/min]

fr 
[mm/rev] 

vc 
[m/min]

fr 
[mm/rev]

vc 
[m/min]

fr 
[mm/rev] 

vc 
[m/min] 

fr 
[mm/rev]

1 100.019 0.200 174.046 0.150 179.984 0.152 100.004 0.174 
2 173.193 0.151 143.854 0.150 100.002 0.201 107.497 0.156 
3 167.437 0.151 121.146 0.156 138.808 0.157 177.114 0.152 
4 169.429 0.157 174.046 0.150 100.002 0.201 132.746 0.158 
5 134.816 0.156 102.310 0.161 102.522 0.180 166.641 0.153 
6 103.408 0.195 164.364 0.150 155.850 0.154 114.347 0.158 
7 100.019 0.200 126.393 0.153 119.773 0.174 122.355 0.153 
8 106.685 0.182 154.713 0.150 126.411 0.160 158.811 0.152 
9 173.193 0.151 100.245 0.176 100.619 0.190 121.981 0.162 
10 120.206 0.152 100.498 0.173 100.837 0.181 150.066 0.152 
11 144.103 0.1547 136.370 0.151 179.984 0.152 100.004 0.174 
12 119.304 0.158 100.010 0.179 100.002 0.172 102.748 0.165 
13 111.892 0.162 163.478 0.150 136.836 0.153 100.504 0.174 
14 152.364 0.1526 100.237 0.177 151.121 0.159 174.408 0.152 
15 150.742 0.155 127.148 0.153 137.698 0.163 138.973 0.153 
16 109.020 0.181 129.206 0.150 171.648 0.154 131.180 0.153 
17 101.039 0.185 116.964 0.160 137.552 0.160 145.943 0.152 
18 135.316 0.156 107.993 0.163 120.767 0.1649 100.803 0.160 
19 105.785 0.162 112.535 0.162 108.919 0.170 164.439 0.155 
20 100.519 0.200 101.524 0.169 179.922 0.152 100.511 0.169 
Table A1: Sets of non-dominated optimal solutions 

 



Appendix A: Supplementary tabulations        A2 

NO. rf  
[mm/r] 

pa  

[mm]

EN 1.4404 EN 1.4462 EN 1.4410 

R  cR  

[N] 
ck  

[N/mm2]
spP  

[W] 
UCI  Rank R  cR  

[N] 
ck  

[N/mm2] 
spP  

[W] 
UCI  Rank R  cR  

[N] 
ck  

[N/mm2]
spP  

[W] 
UCI  Rank 

1 0.1 0.5 43 451 7574 166 0.578 17 100 590 9962 108 0.604 10 100 620 10249 187 0.449 22 
2 0.1 1.0 43 576 4794 142 0.779 5 62 560 4614 131 0.887 1 118 680 5551 200 0.619 13 
3 0.1 1.5 32 718 3906 172 0.959 1 118 799 4258 157 0.627 8 118 859 4564 192 0.642 9 
4 0.1 2.0 62 935 3787 195 0.695 8 118 1131 4327 188 0.553 11 118 1132 4514 226 0.581 14 
5 0.1 2.5 118 1207 3766 229 0.312 28 118 1336 4075 316 0.393 22 118 1384 4206 266 0.518 17 
6 0.1 3.0 118 1594 3810 268 0.266 30 118 1615 3740 412 0.329 24 118 1870 4328 310 0.393 25 
7 0.1 3.5 118 1710 3564 291 0.260 31 118 2413 4513 349 0.271 30 118 2549 4798 349 0.294 29 
8 0.175 0.5 32 739 7252 152 0.617 14 62 740 7178 182 0.735 3 62 800 7852 216 0.663 7 
9 0.175 1.0 21 877 4332 234 0.801 3 62 1364 7012 284 0.542 12 62 973 4737 154 0.846 2 
10 0.175 1.5 21 1129 3650 264 0.848 2 78 1244 3949 274 0.627 8 78 1254 4010 251 0.727 4 
11 0.175 2.0 21 1361 3297 311 0.794 4 78 1540 3572 365 0.508 15 78 1754 4024 314 0.648 8 
12 0.175 2.5 43 1592 3070 372 0.620 13 118 1646 3164 328 0.420 20 118 2099 3906 399 0.343 27 
13 0.175 3.0 78 1814 2920 366 0.362 24 78 1893 3011 365 0.505 16 118 1992 3192 397 0.417 24 
14 0.175 3.5 78 2054 2828 345 0.357 26 118 2165 2937 470 0.316 26 78 2248 3080 391 0.625 11 
15 0.25 0.5 32 825 5803 186 0.683 9 32 843 5823 359 0.719 4 32 897 6208 183 0.886 1 
16 0.25 1.0 32 1225 4274 226 0.722 7 43 1205 4128 313 0.708 5 43 1408 4835 335 0.784 3 
17 0.25 1.5 21 1534 3533 309 0.752 6 62 1685 3802 386 0.518 13 62 2027 4429 478 0.545 15 
18 0.25 2.0 21 1812 3135 474 0.640 11 78 1930 3301 393 0.446 19 100 1965 3419 405 0.475 19 
19 0.25 2.5 43 2091 2888 460 0.478 21 118 2282 3123 435 0.310 28 118 2320 3185 463 0.342 28 
20 0.25 3.0 78 2407 2734 492 0.275 29 118 2516 2809 546 0.282 29 118 2536 2811 472 0.353 26 
21 0.25 3.5 78 2603 2549 310 0.359 25 118 2880 2840 569 0.261 31 118 2989 2942 628 0.284 30 
22 0.325 0.5 12 1038 5721 418 0.625 12 32 1096 5917 333 0.702 6 32 1135 6109 396 0.718 5 
23 0.325 1.0 12 1724 4438 421 0.651 10 43 1908 4902 425 0.517 14 43 1776 4716 507 0.623 12 
Table A2: Performance characteristics and predicted UCI values. 
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NO. rf  
[mm/r] 

pa  

[mm]

EN 1.4404 EN 1.4462 EN 1.4410 

R  cR  

[N] 
ck  

[N/mm2]
spP  

[W] 
UCI  Rank R  cR  

[N] 
ck  

[N/mm2] 
spP  

[W] 
UCI  Rank R  cR  

[N] 
ck  

[N/mm2]
spP  

[W] 
UCI  Rank 

24 0.325 1.5 21 2472 4070 523 0.386 23 62 2459 4102 525 0.399 21 43 2587 4286 593 0.480 18 
25 0.325 2.0 21 2276 3069 481 0.587 16 43 2595 3352 453 0.454 17 78 2652 3497 483 0.469 20 
26 0.325 2.5 32 2899 3004 549 0.346 27 118 3020 3121 649 0.454 17 118 3191 3291 584 0.266 31 
27 0.325 3.0 43 3116 2723 679 0.260 31 118 3387 2894 602 0.241 32 118 3603 3059 594 0.266 31 
28 0.325 3.5 78 3263 2521 690 0.091 35 118 3484 2688 669 0.235 33 118 3680 2813 759 0.250 33 
29 0.4 0.5 12 1335 5749 418 0.574 18 32 983 4127 379 0.741 2 32 1248 5492 466 0.711 6 
30 0.4 1.0 12 1868 4142 497 0.603 15 12 2068 4275 488 0.669 7 32 2331 4768 493 0.638 10 
31 0.4 1.5 12 2329 3450 578 0.538 20 21 3313 4352 645 0.358 23 21 3102 4480 647 0.541 16 
32 0.4 2.0 12 2651 2948 583 0.561 19 43 3262 3416 673 0.318 25 43 3311 3562 602 0.438 23 
33 0.4 2.5 21 2759 2444 689 0.405 22 43 3836 3108 608 0.316 26 43 3551 3078 605 0.458 21 
34 0.4 3.0 32 3637 2574 698 0.207 33 118 4294 2990 720 0.091 34 118 4414 3116 854 0.099 34 
35 0.4 3.5 43 4255 2614 806 0.099 34 118 4670 2814 770 0.041 35 118 4860 2933 910 0.039 35 
Table A2: Contd. 
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Alter. 

Cutting Parameters EN 1.4404 EN 1.4462 EN 1.4410 
vc 

[m/min] 
fr 
[mm/r] 

ap 

[mm] 
Ra 

[µm] 
Rz 

[µm] 
Rt 

[µm] 
Ra 

[µm] 
Rz 

[µm] 
Rt 

[µm] 
Ra 

[µm] 
Rz 

[µm] 
Rt 

[µm] 
A1 50 0.1 0.5 0.496 2.364 2.709 0.584 2.783 3.025 0.482 2.474 2.438 
A2 50 0.25 1.5 2.986 12.01 12.68 2.799 10.46 10.86 2.655 11.88 12.47 
A3 50 0.4 2.5 4.602 18.22 18.85 4.705 19.67 20.90 4.939 20.01 20.67 
A4 50 0.55 3.5 6.867 26.15 27.72 6.277 29.24 30.34 8.447 34.98 37.73 
A5 100 0.1 1.5 0.453 2.355 2.637 0.694 2.506 2.697 0.784 3.458 3.784 
A6 100 0.25 0.5 1.678 7.711 7.861 1.918 9.480 9.661 2.117 9.325 9.501 
A7 100 0.4 3.5 3.853 16.98 19.36 4.441 18.70 19.63 5.131 20.62 21.50 
A8 100 0.55 2.5 6.318 25.01 26.64 6.071 24.89 26.75 6.861 26.15 26.94 
A9 150 0.1 2.5 0.641 3.857 4.175 0.594 2.688 2.884 0.558 2.461 2.667 
A10 150 0.25 3.5 2.316 9.187 9.489 2.208 9.054 9.348 2.281 9.841 10.01 
A11 150 0.4 0.5 3.411 16.11 16.36 4.371 15.75 15.92 4.215 15.82 16.25 
A12 150 0.55 1.5 5.149 23.73 24.33 5.902 22.69 23.36 4.435 16.26 16.49 
A13 200 0.1 3.5 0.518 2.398 2.613 0.558 2.680 2.971 0.515 2.711 2.771 
A14 200 0.25 2.5 2.482 8.636 8.850 2.471 8.897 9.385 2.452 9.273 9.692 
A15 200 0.4 1.5 4.239 16.15 16.30 4.075 15.50 15.86 3.981 16.13 16.81 
A16 200 0.55 0.5 4.185 19.61 20.15 5.111 20.64 20.94 6.277 28.79 29.12 
Table A3: Taguchi L16 experimental results. 

 
Alter. 

 

R
~

 Mode  Spread Rank  
EN 1. 
4404 

EN 1. 
4462 

EN 1. 
4410 

EN 1.
4404 

EN 1.
4462 

EN 1. 
4410 

EN 1.
4404 

EN 1.
4462 

EN 1. 
4410 

EN 1. 
4404 

EN 1.
4462 

EN 1. 
4410 

A1 0.386 0.386 0.393 0.987 0.988 1.005 1.276 1.278 1.300 2 4 1 
A2 0.146 0.174 0.180 0.374 0.445 0.461 0.484 0.575 0.596 8 8 8 
A3 0.080 0.078 0.108 0.205 0.200 0.277 0.265 0.259 0.358 12 12 12 
A4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16 16 16 
A5 0.393 0.388 0.328 1.005 0.992 0.840 1.300 1.283 1.086 1 3 4 
A6 0.213 0.199 0.209 0.543 0.510 0.535 0.703 0.659 0.692 5 5 5 
A7 0.091 0.089 0.103 0.234 0.227 0.263 0.303 0.293 0.340 11 11 13 
A8 0.013 0.029 0.061 0.033 0.075 0.156 0.043 0.097 0.202 15 15 14 
A9 0.317 0.391 0.381 0.810 0.999 0.974 1.048 1.292 1.260 4 2 2 
A10 0.184 0.198 0.202 0.470 0.506 0.517 0.607 0.654 0.669 7 6 7 
A11 0.111 0.113 0.139 0.283 0.290 0.356 0.366 0.375 0.461 9 10 9 
A12 0.039 0.050 0.135 0.099 0.128 0.346 0.128 0.165 0.448 14 14 11 
A13 0.385 0.393 0.378 0.984 1.005 0.966 1.273 1.300 1.250 3 1 3 
A14 0.187 0.194 0.204 0.477 0.495 0.521 0.617 0.640 0.674 6 7 6 
A15 0.101 0.118 0.138 0.258 0.301 0.355 0.334 0.389 0.459 10 9 10 
A16 0.076 0.071 0.053 0.194 0.182 0.135 0.251 0.235 0.174 13 13 15 
Table A4: Area between centroid of centroids (R ̃), mode and spread values. 
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 Design variables  EN 1.4462 EN 1.4410 

Exp
No. 

vc [m/ 
min] 

fr 
[mm
/rev] 

ap 
[mm] 

Lc 
[mm] 

CM %Ft 
Pe 
[W] 

VBmax 
[µm] 

R %Ft 
Pe 
[W] 

VBmax

[µm] 
R 

1 200 0.25 1.5 12 Wet 21.7 4236.4 193.7 32.02 30.18 4451.4 186.8 37.48
2 75 0.25 1.5 7.5 Dry 18.3 1815.05 117.8 159.05 20.39 2222.0 134.6 157.9
3 75 0.25 1.5 3 Wet 9.66 1000.04 70.96 116.7 10.41 1063.8 85.75 141 
4 200 0.25 0.5 12 Wet 26.4 3489.3 211.6 105.6 32.82 3566.5 225.9 115.2
5 200 0.25 0.5 3 Wet 12.5 3234.7 109.01 96.06 16.31 3467.2 111.4 100.1
6 200 0.10 0.5 12 Wet 10.3 3545.7 93.15 105.9 13.73 3887.2 93.81 114 
7 75 0.17 1 7.5 Wet 15.9 923.63 101.3 99.36 15.10 1011.2 137.9 105.8
8 137.5 0.17 1.5 7.5 Wet 5.60 1904.1 75.31 91.59 10.48 2018.5 57.27 111.8
9 75 0.25 1 3 Dry 15.2 958.95 98.64 24.01 11.97 980.69 92.11 71.80
10 200 0.10 1.5 3 Wet 11.2 3143.7 93.78 59.86 14.30 3356.9 98.18 66.07
11 75 0.10 1.5 12 Wet 19.0 968.77 154.6 97.27 23.86 1100.7 164.2 106.9
12 200 0.25 0.5 12 Wet 26.4 3487.5 211.6 106.9 32.82 3586.3 225.9 117.5
13 200 0.10 1.5 12 Wet 16.7 3294.3 131.5 63.95 19.96 3489.5 145.6 76.15
14 200 0.10 0.5 3 Wet 11.7 3155.3 137.0 101.3 21.27 3489.6 103.6 123.8
15 75 0.25 1.5 12 Wet 20.7 1306.6 134.2 128.9 20.59 1512.8 176.4 155.1
16 75 0.10 0.5 3 Dry 20.4 912.85 130.3 88.14 24.50 831.53 160.1 91.10
17 75 0.25 0.5 3 Wet 14.3 912.03 91.20 98.67 13.59 998.23 124 113.8
18 200 0.25 1.5 3 Dry 25.0 4556.1 178.5 33.88 31.56 5748.8 203.6 39.96
19 200 0.25 1 12 Dry 36.7 4621.1 230.09 17.75 41.41 5493.9 284.1 29.79
20 200 0.25 1.5 3 Wet 10.7 4072.7 93.30 21.02 13.95 4189.5 95.44 25.09
21 75 0.10 1.5 3 Wet 14.3 793.15 114.3 92.39 17.75 842.73 122.3 105.4
22 137.5 0.17 1 3 Wet 2.26 1781.6 59.64 50.50 8.10 1884.7 29.15 75.02
23 137.5 0.17 1 12 Wet 10.5 1616.5 89.17 55.12 12.97 1745.2 95.35 82.56
24 75 0.25 0.5 3 Wet 14.3 913.13 88.60 97.67 13.05 985.85 124.5 112.1
25 75 0.10 0.5 12 Wet 25.6 838.76 146.1 74.07 22.04 996.36 218.8 81.36
26 137.5 0.10 1 7.5 Wet 12.7 1592.8 82.71 69.12 11.73 1606.8 114.1 83.55
27 200 0.10 1.5 7.5 Dry 26.4 3634.8 167.5 121.9 30.39 3848.5 216.6 119.5
28 106.2 0.21 0.75 7.5 Dry 15.1 1558.2 97.76 69.05 19.01 1547.8 126.1 86.65
29 137.5 0.10 1.5 3 Dry 10.5 1946.8 79.49 115.7 14.38 2052.2 97.11 123.7
30 200 0.25 1.5 3 Dry 27.0 4556.1 180.6 34.01 30.55 5739.2 197.4 38.26
31 75 0.17 1.5 3 Dry 10.8 1206.5 71.18 139.8 13.05 1332.6 88.75 147.9
32 200 0.17 1 7.5 Wet 14.4 3672.3 112.9 48.02 16.72 4016.4 128.3 60.46
33 200 0.17 1.5 12 Dry 28.6 3330.2 180.7 29.87 35.53 3622.9 234 57.99
34 75.0 0.10 0.5 7.5 Dry 21.1 996.49 234.6 111.2 26.13 1027.2 170.2 155.7
35 137.5 0.25 1.5 12 Dry 16.1 2718.01 124.2 65.04 20.38 2812.9 134.6 30.17
36 200 0.10 0.5 12 Dry 55.2 3293.1 448.01 119.7 61.41 3579.6 579.1 138.5
37 75 0.10 1 12 Dry 32.3 1146.7 203.02 104.2 11.02 1071.2 81.97 122.9
38 168.7 0.14 0.75 7.5 Dry 19.2 2197.6 127.08 98.87 23.35 2201.8 153 117.1
39 75 0.17 0.5 12 Dry 24.6 959.55 156.4 126.06 29.41 913.94 190.4 145 
40 200 0.10 0.5 12 Dry 55.9 3313.1 446.4 121.6 61.41 2934.2 586.8 139.9
41 200 0.25 0.5 7.5 Dry 37.1 3557.2 232.3 116.8 42.08 3557.3 268 135.3
42 137.5 0.25 0.5 3 Dry 13.7 2240.7 109.3 56.32 22.93 1971.5 150.4 84.12

Table A5: D-Optimal results. 
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 Design variables  EN 1.4462 EN 1.4410 

Exp
No. 

vc [m/ 
min] 

fr 
[mm
/rev] 

ap 
[mm] 

Lc 
[mm] 

CM %Ft 
Pe 
[W] 

VBmax 
[µm] 

R %Ft 
Pe 
[W] 

VBmax

[µm] 
R 

43 200 0.10 1 3 Dry 24.2 3207.7 152.5 64.14 26.89 3514.1 185 91.98
44 75 0.25 0.5 12 Wet 25.4 998.86 122.3 107.10 18.37 1208.4 215.8 118 
45 75 0.10 0.5 3 Wet 17.4 759.17 132.5 70.77 20.11 845.42 151.7 80.75
46 75 0.25 0.5 12 Dry 29.5 1052.5 216.3 119.9 34.71 955.32 205.8 128.6
47 75 0.10 1.5 12 Dry 17.5 1051.1 113.0 112.5 23.05 1075.7 153.2 140.9
48 200 0.17 0.5 3 Dry 18.2 3232.6 119.0 69.33 22.81 3447.9 153.7 65.26

Table A5: Contd. 
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Coef. 

EN 1.4462  EN 1.4410 
%Fr Pe VBmax R %Fr Pe  VBmax R 

Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry 
c0 70.6 69.4 1700.9 2165.7 467.2 604.2 29.8 88.9 75.8 22.3 1765.7 2013.1 576.9 176.2 -16.31 76.65 
c1 -0.59 -0.48 -20.63 -5.30 -3.03 -1.91 0.67 0.32 -0.51 0.21 -25.55 18.75 -4.70 1.64 1.56 0.71 
c2 -386. -435 -1384 -23259 -1550 -4341.5 412.3 -401.5 -253. 160.1 5243 14453 -3123 1265.2 732.1 550.24 
c3 9.22 -0.74 -811.2 -0.52 -69.37 -257.56 -144.9 -173.5 -10.1 21.75 -1274 1963.4 65.42 171.8 -143.2 74.7 
c4 1.58 1.70 61.81 46.41 -10.37 19.05 13.30 31.54 -1.94 2.01 59.15 181.15 13.86 15.86 6.91 6.90 
c11 0.00 0.00 0.13 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.16 0.06 0.01 0.01 0.00 0.00 
c22 931 1235 -3539 50842 2176 11795 95.65 737.5 358.9 425.8 -21964 8438.1 7473.3 3365 -666.4 1463.4 
c33 -6.29 1.34 88.09 8.97 27.36 103.39 118.20 166.96 4.15 9.63 236.10 869.17 -47.89 76.09 119.06 33.09 
c44 -0.10 0.08 -3.74 -0.54 -0.08 0.44 -0.90 -1.60 0.03 0.11 -2.81 9.98 -0.88 0.87 -0.58 0.38 
c12 0.38 -0.01 11.96 36.67 3.88 -0.95 -2.46 -1.27 0.62 0.28 3.69 25.30 3.24 2.21 -3.27 0.96 
c13 0.03 -0.03 1.78 0.23 -0.06 -0.16 -0.65 -0.65 -0.01 0.04 1.52 3.76 0.28 0.33 -0.74 0.14 
c14 0.00 0.01 0.08 -0.06 0.01 0.07 0.00 -0.02 0.00 0.00 -0.04 0.42 -0.01 0.04 0.00 0.02 
c23 -22.1 31.8 3421.3 3590.9 -73.52 580.6 -117.5 -93.95 -12.2 35.85 4036.3 3235.8 -176.9 283.2 -77 123.2 
c24 5.81 -5.36 -16.90 97.45 48.25 -58.30 5.89 26.88 8.00 4.00 -9.61 360.96 46.71 31.60 9.78 13.74 
c34 -0.02 -1.64 3.13 -36.41 3.56 -14.68 -0.02 -7.57 0.58 0.60 11.06 54.40 -0.07 4.76 0.52 2.07 

ANOVA 
R2 0.96 0.97 0.99 0.98 0.92 0.98 0.97 0.93 0.92 0.95 0.99 0.97 0.96 0.97 0.97 0.94 
Radj. 0.90 0.93 0.98 0.95 0.80 0.95 0.91 0.83 0.80 0.87 0.97 0.93 0.89 0.92 0.93 0.85 
RMSE 2.09 3.2 179 274 18.6 21.4 8.33 16.8 3.01 4.86 212 423 17.4 37 8.27 16.1 
Aprec. 14.9 17.7 24.5 17.1 9.82 22.91 15.57 9.66 9.82 12.67 21.59 14.67 14.53 17.33 19.1 9.465 
F-value 15 22.3 79.9 34.8 7.57 32.9 17.8 8.89 7.62 12.4 61.3 21.9 14.5 19.2 21.6 10.6 
R. DOF 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 
Err. DOF 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 
RMSE: Root Mean Squared Error, R. DOF: Regression Degrees of Freedom, Err. DOF: Error Degrees of Freedom  
Table A6: Models coefficients estimates and ANOVA.
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 Independent variables  EN 1.4462 EN 1.4410 

Com-
ponent 

vc 
[m/ 
min] 

fr 
[mm
/rev] 

ap 
[mm] 

Lc 
[mm] 

CM 
tbB [hrs/
year] 

K1 [€/ 
unit] 

K3 

[€/ 
unit]

Ci
* 

tbB [hrs 
/year] 

K1 [€/ 
unit] 

K3 

[€/ 
unit]

Ci
* 

1 200 0.25 1.5 12 Wet 734.47 2.54 1.58 0.845 748.02 2.543 1.86 0.886 
2 75 0.25 1.5 12 Dry 959.73 4.88 1.04 0.885 985.958 4.880 1.59 0.882 
3 75 0.25 1.5 12 Wet 959.22 4.91 1.03 0.886 971.80 4.910 1.30 0.904 
4 200 0.25 0.5 12 Wet 1261.2 7.62 1.33 0.791 1288.9 7.629 1.91 0.792 
5 200 0.25 0.5 12 Wet 1261.2 7.62 1.33 0.791 1288.9 7.629 1.91 0.792 
6 200 0.10 0.5 12 Wet 1969.4 14.65 0.58 0.609 1985.9 14.65 0.93 0.607 
7 75 0.17 1 12 Wet 1496.2 10.13 0.68 0.749 1512.1 10.13 1.02 0.748 
8 137 0.17 1.5 12 Wet 877.47 4.205 0.88 0.918 884.97 4.205 1.04 0.941 
9 75 0.25 1 12 Dry 1230.4 7.320 1.27 0.804 1252.4 7.320 1.73 0.810 
10 200 0.10 1.5 12 Wet 943.05 4.884 0.75 0.914 952.16 4.884 0.94 0.924 
11 75 0.10 1.5 12 Wet 1562.3 10.80 0.60 0.729 1571.2 10.80 0.78 0.728 
12 200 0.25 0.5 12 Wet 1261.2 7.629 1.33 0.791 1288.9 7.629 1.91 0.792 
13 200 0.10 1.5 12 Wet 943.05 4.884 0.75 0.914 952.16 4.884 0.94 0.924 
14 200 0.10 0.5 12 Wet 1969.4 14.65 0.58 0.609 1985.9 14.65 0.93 0.607 
15 75 0.25 1.5 12 Wet 959.22 4.910 1.03 0.886 971.80 4.910 1.30 0.904 
16 75 0.10 0.5 12 Dry 3910.6 32.20 1.88 0.389 3922.9 32.20 2.14 0.385 
17 75 0.25 0.5 12 Wet 1990.1 14.73 0.85 0.604 2016.4 14.73 1.40 0.602 
18 200 0.25 1.5 12 Dry 748.01 2.527 1.86 0.813 795.55 2.527 2.86 0.799 
19 200 0.25 1 12 Dry 901.82 3.791 2.26 0.764 942.67 3.791 3.12 0.771 
20 200 0.25 1.5 12 Wet 734.47 2.543 1.58 0.845 748.02 2.543 1.86 0.886 
21 75 0.10 1.5 12 Wet 1562.3 10.80 0.60 0.729 1571.2 10.80 0.78 0.728 
22 137 0.17 1 12 Wet 1095.5 6.308 0.78 0.869 1109.3 6.308 1.07 0.873 
23 137 0.17 1 12 Wet 1095.5 6.308 0.78 0.869 1109.3 6.308 1.07 0.873 
24 75 0.25 0.5 12 Wet 1990.1 14.73 0.85 0.604 2016.4 14.73 1.40 0.602 
25 75 0.10 0.5 12 Wet 3842.9 32.40 0.45 0.370 3860.7 32.40 0.83 0.373 
26 137 0.10 1 12 Wet 1443.5 9.692 0.57 0.766 1455.1 9.692 0.81 0.765 
27 200 0.10 1.5 12 Dry 992.90 4.854 1.80 0.800 1031.2 4.854 2.60 0.799 
28 106 0.21 0.75 12 Dry 1379.1 8.578 1.58 0.748 1402.5 8.578 2.07 0.758 
29 137 0.10 1.5 12 Dry 1140.8 6.422 1.39 0.814 1167.9 6.422 1.96 0.818 
30 200 0.25 1.5 12 Dry 748.01 2.527 1.86 0.813 795.55 2.527 2.86 0.799 
31 75 0.17 1.5 12 Dry 1155.7 6.717 1.05 0.838 1178.4 6.717 1.52 0.839 
32 200 0.17 1 12 Wet 956.20 4.916 0.95 0.894 972.60 4.916 1.30 0.904 
33 200 0.17 1.5 12 Dry 819.29 3.257 1.72 0.825 860.45 3.257 2.59 0.817 
34 75.0 0.10 0.5 12 Dry 3910.6 32.20 1.88 0.389 3922.9 32.20 2.14 0.385 
35 137 0.25 1.5 12 Dry 791.46 3.155 1.37 0.869 826.79 3.155 2.11 0.860 
36 200 0.10 0.5 12 Dry 2082.0 14.56 2.95 0.566 2128.4 14.56 3.93 0.569 
37 75 0.10 1 12 Dry 2173.9 16.10 1.43 0.558 2188.2 16.10 1.73 0.561 
38 168 0.14 0.75 12 Dry 1383.1 8.394 2.07 0.715 1412.7 8.394 2.69 0.728 
39 75 0.17 0.5 12 Dry 2614.1 20.15 1.62 0.472 2631.9 20.15 2.00 0.472 
40 200 0.10 0.5 12 Dry 2082.2 14.56 2.95 0.566 2128.4 14.56 3.93 0.569 
41 200 0.25 0.5 12 Dry 1334.4 7.582 2.87 0.675 1383.3 7.582 3.90 0.681 
42 137 0.25 0.5 12 Dry 1497.9 9.464 2.09 0.693 1530.6 9.464 2.78 0.701 
Table A7: Results of multi-objective optimization using TOPSIS 
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 Independent variables  EN 1.4462 EN 1.4410 

Com-
ponent 

vc 
[m/ 
min] 

fr 
[mm
/rev] 

ap 
[mm] 

Lc 
[mm] 

CM 
tbB [hrs/
year] 

K1 

[€/ 
unit]

K3 

[€/ 
unit]

Ci
* 

tbB 

[hrs 
/year] 

K1 [€/ 
unit] 

K3 [€/
unit] 

Ci
* 

43 200 0.10 1 12 Dry 1272.3 7.28 2.24 0.723 1305. 7.281 2.93 0.737 
44 75 0.25 0.5 12 Wet 1990.1 14.7 0.85 0.604 2016 14.73 1.40 0.602 
45 75 0.10 0.5 12 Wet 3842.9 32.4 0.45 0.370 3860 32.40 0.83 0.373 
46 75 0.25 0.5 12 Dry 2026.1 14.6 1.60 0.592 2047 14.64 2.06 0.595 
47 75 0.10 1.5 12 Dry 1588.6 10.7 1.15 0.714 1608 10.73 1.57 0.716 
48 200 0.17 0.5 12 Dry 1558.5 9.77 2.67 0.653 1603 9.772 3.62 0.658 
Table A7: Contd. 


