FOUNDATIONS OF MATHEMATICS

Hamadameen, Abdulqader, ed. (2022) FOUNDATIONS OF MATHEMATICS. Koya University, Koya. ISBN 9789922924892

[img] Text (Book)
FOUNDATIONS OF MATHEMATICS.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB)
Official URL: https://koyauniversity.org/

Abstract

This book is based on lectures developed by the author to B.Sc and M.Sc. students at Koya University, Department of Mathematics. In addition, the book is also the product of the observations accumulated in the last two decades of teaching under, and graduate studies of the author. The book takes into consideration, the necessity of the contents of this book for students to study mathematics as well as physics in both theoretical and practical branches in the faculties of science, education, engineering, and the statistics department in the faculties of administration and economics. In addition, even faculties of medicine, technical science, industrial mathematics, petrochemical departments, ...etc for their purposes to use the preliminaries of mathematics of some special functions as a tool to implement some tasks in the _eld of their professional applications in the _eld of mathematics practical work, such as; some functions related to transformations, statistical and probabilistic mappings, and what is related to applied _eld. The academic goals of this book are; (i) To help students to be fully familiar with the foundations of mathematics. (ii) To help students to use mathematics logically in life to scienti_c thinking in order to solve problems. (iii) To employ mathematics in other sciences to facilitate their tasks. (iv) To help students to study problems from di_erent scienti_c perspectives. And to _nd appropriate scenarios to state the algorithms for optimal solutions through logical reasoning and the rule of conditional proof associated with the deductive rules for those problems. It is noteworthy that, most of the theorems, corollaries, and exercises in this book are adapted from the references (Albert, 1956; Bittinger, 1970; Bittinger, 1985; Birkho_ and Mac, 1962; Birkho_ and Mac, 2017; Cohen, 2008; Cohen and Ehrlich, 1969; Eves and Newsom, 1958; Fraenkel, 1969; Hafstrom, 2013; Hall, 2018; Halmos, 2017a; Halmos, 2017b; Herstein, 2006; Hu, 1965; Kamke, 1950; Kelley, 2017; Kelley, 1955; Monk, 1973a; Monk, 1973b; Pervin, 1964; Pervin, 2014; Pinter, 2014; Stoll, 1960; Stoll, 1979; Van der Waerden et al., 1950; Suppes, 1999; Wilder et al., 2012; Wilder, 1952; Zariski and Samuel, 1958; Zariski and Samuel, 2013; Zulauf, 1969b; Zulauf, 1969a; Nagornyi, 1971). The contents of this book are organized as follows: chapter 1, dedicated to discussing to the mathematical logic and the basic concepts of it. Chapter 2, deals with the sets and operations on them. Chapter 3, deals with relations on sets. The mappings or functions from a set to another set based on the domain and the codomain took their place in chapter 4. Chapter 5, dealing with the potency of sets, equipotent sets, arithmetic on cardinal numbers, ordinal numbers, and paradoxes. Chapter 6, deals with the natural numbers, Peano's axioms, arithmetic of the natural numbers, and in_nite sets. Chapter 7, considered binary operations and groups, subgroups, Lagrange theorem on groups, and homomorphism and isomorphism. Chapter 8, deals with integers, construction of integers, integers with two binary operations to creation integral domain, rings, and order on integers. Chapter 9, describes how to create rational numbers of integers. Moreover, proves that this collection of numbers with the addition and multiplication operations can be an incomplete Archimedean _eld. Chapter 10, collection the rational numbers with irrational numbers to create the real numbers. Finally, chapter 11, expands the real numbers to obtain the _eld of the complex numbers, and proves that this kind of the set is closed algebraically.

Item Type: Book
Additional Information: Ablowitz, M. J., Fokas, A. S. and Fokas, A. S. (2003). Complex variables: introduction and applications. Cambridge University Press. Abramsky, S., Gabbay, D. and Maibaurn, T. (1992). Handbook of logic in computer science. . . Adachi, M. (1993a). Embeddings and immersions. transl. math. monographs, vol. 124. Amer. Math. Soc., Providence, RI. MR1225100 (95a: 57039). Adachi, M. (1993b). Umekomi to hamekomi (embeddings and immersions), translated by k. Hudson, AMS. Adams, C. C. and Franzosa, R. D. (2008). Introduction to topology: pure and applied. number Sirsi) i9780131848696. Pearson Prentice Hall Upper Saddle River. Ahlfors, L. (1979). Complex analysis mcgraw-hill. Inc., New York. Alajbegovic, J. and Mockor, J. (2012). Approximation theorems in commutative algebra: classical and categorical methods. Vol. 59. Springer Science & Business Media. Albert, A. A. (1956). Fundamental concepts of higher algebra. Vol. 507. University of Chicago Press Chicago. Aleksandrov, P. S. (1967). Einf�uhrung in die Mengenlehre und die Theorie der reellen Funktionen. Vol. 23. Deutscher Verlag der Wissenschaften. Aliprantis, C. D. and Burkinshaw, O. (1998). Principles of real analysis. Gulf Professional Publishing. Andreescu, T., Andrica, D. et al. (2006). Complex Numbers from A to... Z. Vol. 165. Springer. Anton, H. A., De Sesa, B., Black, C., Gregas, M., Grobe, C. A. and Grobe, E. M. (2005). Elementary linear algebra: student solutions manual. WileyAnton, H., Bivens, I., Davis, S. and t. Polaski (2010). Calculus: early transcendentals. Wiley Hoboken, NJ. Anton, H. and Rorres, C. (1994). Elementary linear algebra, john wiley & sons. Inc., Newyork. Antonella, C. (2011). The Nuts and bolts of proofs: An Introduction to mathematical proofs. Academic Press. Apostol, T. (1981). Mathematical analysis. Addison-Wesley. Apostol, T. M. (1974). `Mathematical analysis addison'. Apostol, T. M. and Ablow, C. M. (1958). Mathematical analysis. Physics Today. 11(7): 32. Argand, J. R. (1814a). 1815. r_eexions sur la nouvelle th_eorie des imaginaires, suivies d'une application _a la d_emonstration d'un th_eor_eme d'analyse. Annales de Math_ematiques Pures et Appliqu_ees (de Gergonne). 5: 197{209. Argand, J. R. (1814b). R_eexions sur la nouvelle th_eorie d'analyse. In Annales de Math_ematiques. Vol. 5. 197{209. BIBLIOGRAPHY 355 Armstrong, M. N. (1997). `Basic topology, rev. ed'. Artemov, S. N. (1994). Logic of proofs. Annals of Pure and Applied Logic. 67(1-3): 29{59. Artin, M. (1991). Algebra. Prentice Hall, Inc. Aschbacher, M. (2004). The status of the classi_cation of the _nite simple groups. Notices of the American Mathematical Society. 51(7): 736{740. Atiyah, M. F. and Macdonald, I. G. (1969). Introduction to commutative algebra. reading, mass. Menlo Park, Calif.-London- Don Mills, Ont.: Addison-Wesley Publishing Company. Avelsgaard, C. (1990). Foundations for Advanced Mathematics. Scott, Foresman/Little, Brown Higher Education. Awodey, S. (2010). Category theory. Oxford University Press. Axler, S. (2015). Linear algebra done right. Springer. Axler, S. J. (1997). Linear algebra done right. Vol. 2. Springer. Baader, F. and Nipkow, T. (1999). Term rewriting and all that. Cambridge university press. Balakrishnan, R. and Ramabhadran, N. (1986). A textbook of modern algebra. Vikas publishing house PVT Ltd. Balcerzyk, S. and J_oze_ak, T. (1989). Commutative Noetherian and Krull Rings. Ellis Horwood. Ballester-Bolinches, A., Esteban-Romero, R. and Asaad, M. (2010). Products of _nite groups. Vol. 53. Walter de Gruyter. Bancerek, G. (1989). Sequences of ordinal numbers. Journal of Formalized Mathematics. 1. Bancerek, G. (1990). The fundamental properties of natural numbers. Formalized Mathematics. 1(1): 41{46. Bartle, R. G. and Sherbert, D. R. (2011). Introduction to real analysis. Hoboken, NJ: Wiley. Bartle, R. G. et al. (1976). The elements of real analysis. Wiley. Bartle, R. and Sherbert, D. R. (2000). Introduction to real analysis. Vol. 2. Wiley New York. Bather, J. A. (1994). Mathematical induction. . . Beachy, J. A. and Blair, B. W. (2006). Abstract algebra , waveland pr. Inc. . Bear, H. S. (1997). An introduction to mathematical analysis. Academic Press. Belegradek, O. (2002). Poly-regular ordered abelian groups. Contemporary Mathematics. 302: 101{112. Bell, J. L. (1993). Hilbert's _-operator in intuitionistic type theories. Mathematical Logic Quarterly. 39(1): 323{337. Bernstein, F. (1905). Untersuchungen aus der mengenlehre. Mathematische Annalen. 61(1): 117{155. Birkho_, G. (1935). On the structure of abstract algebras. In Mathematical proceedings of the Cambridge philosophical society. Vol. 31. Cambridge University Press. 433{454. Birkho_, G. (1940). Lattice theory. Vol. 25. American Mathematical Soc. Birkho_, G. (1967). Lattice theory, colloquium, publications, vol. 25. New York: American Mathematical Society. . Birkho_, G. and Mac, L. S. (1962). A survey of modern algebra. Technical Report. Birkho_, G. and Mac, L. S. (2017). A survey of modern algebra. CRC Press. Bittinger, M. L. (1970). Logic and proof. . . Bittinger, M. L. (1985). Logic, proof, and sets. Journal of Symbolic Logic. 50(3). Blyth, T. S. (1975). Set theory and abstract algebra. Longman mathematical texts. Borgers, A. (1960). Stoll robert r. sets, logic, and axiomatic theories. wh freeman and company, san francisco and london 1961, x+ 206 pp. . . Bourbaki, N. (1987). Topological vector spaces, elements of mathematics. . . Bourbaki, N. (1989a). Algebra: Elements of Mathematics. Springer- Verlag. Bourbaki, N. (1989b). Commutative Algebra: Chapters 1-7. Springer- Verlag New York. Bourbaki, N. (1994). Foundations of mathematics; logic; set theory. In Elements of the History of Mathematics. Springer. 1{44. Bourbaki, N. (2003). Algebra II: Chapters 4-7. Springer Science & Business Media. Bourbaki, N. (2004). Theory of sets. In Theory of Sets. Springer. 65{ 129. Bourbaki, N. (2013). General Topology: Chapters 1{4. Vol. 18. Springer Science & Business Media. Bressoud, D. M. (2007). A radical approach to real analysis. Vol. 2. MAA. Bridges, D. S., S. Douglas, S. et al. (1998). Foundations of real and abstract analysis. number 146. Springer Science & Business Media. Broad, C. D. (1916). Cantor, g.-contributions to the founding of the theory of trans_nite numbers. trans. peb jourdain. . . Browder, A. (2012). Mathematical analysis: an introduction. Springer Science & Business Media. Brown, J. W. and Churchill, R. V. (2009). Complex variables and applications eighth edition. McGraw-Hill Book Company. Brualdi, R. A. (1992). Introductory combinatorics. New York. 3. Bruno, L. C. and Baker, L. W. (1999). Math & Mathematicians: AH. Vol. 1. UXL. Burali-Forti, C. (1897). Una questione sui numeri trans_niti. Rendiconti del Circolo Matematico di Palermo (1884-1940). 11(1): 154{164. Burnside, W. (1911). Theory of groups of _nite order. University. Burris, S. and Sankappanavar, H. P. (2006). A Course in Universal Algebra-With 36 Illustrations. Bylinski, C. (1989a). Binary operations. Journal of Formalized Mathematics. 1(198): 9. Bylinski, C. (1989b). Functions from a set to a set. Journal of Formalized Mathematics. 1(198): 9. Cameron, P. J. (2008). Introduction to algebra. Oxford University Press on Demand. Campbell, H. E. (1970). The structure of arithmetic. Appleton- Century-Crofts: New York. Cantor, G. (1878). Ein beitrag zur mannigfaltigkeitslehre. Journal fur die reine und angewandte Mathematik. 84: 242{258. Cantor, G. (1883a). `�Uber unendliche lineare punktmannigfaltigkeiten, 5. grundlagen einer allgemeinen mannigfaltigkeitslehre. ein mathematisch-philosophischer versuch in der lehre des unendlichen'. BIBLIOGRAPHY 359 Cantor, G. (1883b). Ueber unendliche, lineare punktmannichfaltigkeiten. Mathematische Annalen. 21(4): 545{ 591. Cantor, G. (1899). Letter to dedekind. . . Cantrell, C. D. (2000). Modern mathematical methods for physicists and engineers. Cambridge University Press. Carolyn, K. (1981). Concepts associated with the equality symbol. Educational studies in Mathematics. 12(3): 317{326. Carothers, N. L. (2000). Real analysis. Cambridge University Press. Cauman, L. G. (1998). First order logic: an introduction. Berlin-New York: Walter de Gruyter. Celia, H. and Dietmar, K. (2002). Students' understandings of logical implication. Educational Studies in Mathematics. 51(3): 193{223. Chamberlain, R. G. (2007). Great circle distance between 2 points. web page: www. movable-type. co. uk/scripts/gis-faq-5.1. html. . Childs, L. N. (2009). A concrete introduction to higher algebra. Springer. Chowdhury, A. (1970). Design of an E_cient Multiplier using DBNS. GIAP Journals. Christoph, B., Armin, F., Malte, G., Helmut, H., Ivana, K., Manfred, P., J�org, S., Dimitra, T., Bao Quoc, V. and Magdalena, W. (2003). Tutorial dialogs on mathematical proofs. In Proceedings of IJCAI-03 Workshop on Knowledge Representation and Automated Reasoning for E-Learning Systems. 12{22. Ciesielski, K. et al. (1997). Set theory for the working mathematician. Vol. 39. Cambridge University Press. Cohen, L. W. and Ehrlich, G. (1969). The structure of the real number system. Journal of Symbolic Logic. 34(4). Cohen, P. J. (1964). The independence of the continuum hypothesis, ii. Proceedings of the National Academy of Sciences of the United States of America. 51(1): 105. Cohen, P. J. (2008). Set theory and the continuum hypothesis. Courier Corporation. Cohn, P. M. (2012). Basic algebra: groups, rings and _elds. Springer Science & Business Media. Cohn, P. M. and Cohn, P. M. (1981). Universal algebra. Vol. 159. Reidel Dordrecht. Conway, J. H. and Guy, R. (2012). The book of numbers. Springer Science & Business Media. Conway, J. H. and Guy, R. K. (1996). In_nite and In_nitesimal Numbers. In The Book of Numbers. Springer. 265{300. Copi, I. M. (1958). The burali-forti paradox. Philosophy of Science. 25(4): 281{286. Courant, R., Herbert, H. and Stewart, I. (1996). What is Mathematics?: an elementary approach to ideas and methods. Oxford University Press, USA. Crow, J. F. (1993). Felix bernstein and the _rst human marker locus. Genetics. 133(1): 4. Dalen, D. V. (1998). Logic and structure. Springer. D'angelo, J. P. andWest, D. B. (1997). Mathematical thinking. Problem Solving and Proofs. Daniel, A. and Michael, T. (2002). Research on mathematical proof. In Advanced mathematical thinking. Springer. 215{230. Daniel, G. (2018). Logic and proofs. In Exploring Mathematics. Springer. 157{179. Dasgupta, A. (2014). Set theory with an introduction to real point sets. Springer. Dauben, J. W. (1977). Georg cantor and pope leo xiii: Mathematics, theology, and the in_nite. Journal of the History of Ideas. 85{108. Dauben, J. W. (1990). Georg Cantor: His mathematics and philosophy of the in_nite. Princeton University Press. Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices and order. Cambridge university press. Dean, R. A. (1967). Elements of abstract algebra. John Wiley and Sons. Dedekind, R. (1901). Essays on the theory of numbers: I. Continuity and irrational numbers, II. The nature and meaning of numbers. Open court publishing Company. Dedekind, R. (1963). `Essays on the theory of numbers, english translation of dedekind 1888, by berman ww'. Deiser, O. (2010). On the development of the notion of a cardinal number. History and Philosophy of Logic. 31(2): 123{143. Deskins, W. E. (1995). Abstract algebra. Courier Corporation. Devlin, K. (2003). Sets, functions, and logic: an introduction to abstract mathematics. CRC Press. Devlin, K. J. (2012). Fundamentals of contemporary set theory. Springer Science & Business Media. Di, B. G. and Tamassia, R. (1988). Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science. 61(2-3): 175{ 198. Dijksterhuis, E. J. (1961). The mechanization of the world picture. Vol. 184. JSTOR. Drake, F. R. (1980). Fundamental of contemprory set theory. Bulletin of the London Mathematical Society. 12(6): 480{480. Dummit, D. S. and Foote, R. M. (2004a). Abstract algebra. Vol. 3. Wiley Hoboken. Dummit, D. S. and Foote, R. M. (2004b). Abstract algebra. john wile & sons. Inc., Hoboken, NJ. Dummit, D. S. and Foote, R. M. (2004c). Abstract algebra, john wiley&sons. Inc., Hoboken, NJ. Durbin, J. R. (1992a). Modern algebra, an introduction, john willey & sons. Inc., NewYork. Durbin, J. R. (1992b). `Modern algebra an introduction third edition. new york: John willey & sons'. Dwinger, P. (1971). Introduction to Boolean algebras. Physica-Verlag. Ebbinghaus, H. D., Flum, J. and Thomas, W. (2013). Mathematical logic. Springer Science & Business Media. Eccles, P. J. (1997). An Introduction to Mathematical Reasoning: numbers, sets and functions. Cambridge University Press. Eggen, M., Smith, D. and St, A. R. (2006). A transition to advanced mathematics thomson brooks. Cole, California. . Elliott, M. (2009). Introduction to mathematical logic. Chapman and Hall/CRC. Enderton, H. B. (1977). Elements of set theory. Academic press. Epp, S. S. (2010). Discrete mathematics with applications. Cengage learning. Eric, G. (2009). Discrete mathematics with proof. John Wiley & Sons. Evans, N. (1995). A-quanti_ers and scope in mayali. In Quanti_cation in natural languages. Springer. 207{270. Eves, H. and Newsom, C. V. (1958). An introduction to the foundations and funda mental concepts of mathematics. new york: Rinehart & company. Inc©, i960. 523. BIBLIOGRAPHY 363 Eves, H. W. (1963). A Survey of Geometry. Allyn and Bacon. Eves, H. W. (1992). Fundamentals of modern elementary geometry. Royal Society of Chemistry. Feferman, S. (1964). Some applications of the notions of forcing and generic sets. Fundamenta mathematicae. 56: 325{345. Ferreir_os, J. (2005). Richard dedekind (1888) and giuseppe peano (1889), booklets on the foundations of arithmetic. In Landmark Writings in Western Mathematics 1640-1940. Elsevier. 613{626. Feynman, R. P. (1977). `The feynman lectures on physics, vol. 1, chapters 22 and 50'. Fla_ska, V., Je_zek, J., Kepka, T. and Kortelainen, J. (2007). Transitive closures of binary relations. i.. Acta Universitatis Carolinae. Mathematica et Physica. 48(1): 55{69. Fleming, W. (2012). Functions of several variables. Springer Science & Business Media. Flood, R., Rice, A., Wilson, R. et al. (2011). Mathematics in Victorian Britain. Oxford University Press. Forster, T. (2003). Logic, induction and sets. Vol. 56. Cambridge University Press. Fountain, J. B. (1997). Fundamentals of semigroup theory (london mathematical society monographs, new series 12) by john m. howie: 351 pp.,£ 45.00, lms members' price£ 33.75, isbn 0 19 851194 9 (clarendon press, 1995).. Bulletin of the London Mathematical Society. 29(3): 369{381. Fraenkel, A. A. (1969). Set theory and logic. Journal of Symbolic Logic. 34(1). Fraleigh, J. B. (2003). A _rst course in abstract algebra. Pearson Education India. Freese, R. (2004). Automated lattice drawing. In International Conference on Formal Concept Analysis. Springer. 112{127. Frobisher, L. (1999). Learning to teach number: a handbook for students and teachers in the primary school. Nelson Thornes. Gallian, J. A. (2006). Student's Solutions Manual to Accompany: Contemporary Abstract Algebra. Houghton Mi_in Company. G_arding, L. and Skau, C. (1994). Niels henrik abel and solvable equations. Archive for History of Exact Sciences. 81{103. Gaughan, E. (2009a). 1.1 sequences and convergence. Introduction to Analysis. AMS. Gaughan, E. (2009b). Introduction to analysis. Vol. 1. American Mathematical Soc. Gauss, C. F. (1966). Disquisitiones arithmeticae. Vol. 157. Yale University Press. Gauss, C. F. (2006). Untersuchungen �uber h�ohere Arithmetik. Vol. 191. American Mathematical Soc. Gilbert, L. (2014). Elements of modern algebra. Nelson Education. Gillispie, C. C., Holmes, F. L. and Koertge, N. (2008). Complete dictionary of scienti_c biography. Charles Scribner's Sons. Gilmore, P. C. and Ho_man, A. J. (2003). A characterization of comparability graphs and of interval graphs. In Selected Papers Of Alan J Ho_man: With Commentary. World Scienti_c. 65{74. Givant, S. and Halmos, P. (2008). Introduction to Boolean algebras. Springer Science & Business Media. G�odel, K. (1938). The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America. 24(12): 556. BIBLIOGRAPHY 365 G�odel, K. (1947). What is cantor's continuum problem?. The American Mathematical Monthly. 54(9): 515{525. Goldschmidt, R. E. (1964). Applications of division by convergence. Massachusetts Institute of Technology: Ph. D. Thesis. Goodman, F. M. (1998). Algebra: abstract and concrete. Prentice Hall. Graham, R., Knuth, D. and Patashnik, O. (1994). `Concrete mathematics, second ediction'. Grassmann, H. (1861). Lehrbuch der Arithmetik f�ur h�ohere Lehranstalten. Th. Chr. Fr. Enslin. Grattan-Guinness, I. (2009). Routes of learning: Highways, pathways, and byways in the history of mathematics. Johns Hopkins University Press. Gr�atzer, G. (1979). `Universal algebra, springer'. Gr�atzer, G. (2011). Lattice theory: foundation. Springer Science & Business Media. Grillet, P. A. (2007). Abstract algebra. Vol. 242. Springer Science & Business Media. Grossman, S. I. (1994). Elementary linear algebra. Brooks/Cole Publishing Company. Guinness, I. G. (1971). Towards a biography of georg cantor. Annals of science. 27(4): 345{391. Guinness, I. G. (2000). `The search for mathematical roots 1870{1940'. Gunderson, D. S. (2019). Handbook of mathematical induction: theory and applications. Chapman and Hall/CRC. Gutknecht, M. H. (2005). Lineare algebra. Lecture Notes ETH Zurich. . Gwynne, M. (2009). Csm25-the cantor-schr�oder-bernstein theorem. . . Hafstrom, J. E. (2013). Basic concepts in modern mathematics. Courier Corporation. Hahn, L. (1994). Complex numbers and geometry. Vol. 1. Cambridge University Press. Hall, G. G. (1967). Applied group theory (Mathematical Physics). Elsevier. Hall, M. (1962). The theory of groups [russian translation]. Izdat. Inostr. Lit., Moscow. . Hall, M. (2018). The theory of groups. Courier Dover Publications. Halmos, P. R. (1958). Finite dimensional vector spaces. Princeton: Second edition, D. Van Noetrand Com. Inc. Halmos, P. R. (2016). Finite Dimensional Vector Spaces.(AM-7), Volume 7. Princeton University Press. Halmos, P. R. (2017a). Finite-dimensional vector spaces. Courier Dover Publications. Halmos, P. R. (2017b). Naive set theory. Courier Dover Publications. Halmos, P. R. and F. D. V. Spaces, F.-D. V. (1987). Undergraduate texts in mathematics. Finite-Dimensional Vector Spaces. . Hamilton, A. G. (1982). Numbers, sets and axioms: the apparatus of mathematics. Cambridge University Press. Hamilton, A. G. (1988). Logic for mathematicians. Cambridge University Press. Hankel, H. (1867). Vorlesungen �uber die complexen Zahlen und ihre Functionen: in zwei Theilen. Voss. Hardy, D. W., Richman, F. and Walker, C. L. (2011). Applied algebra: codes, ciphers and discrete algorithms. CRC Press. BIBLIOGRAPHY 367 Hardy, G. H., Wright, E. M. et al. (1979). An introduction to the theory of numbers. Oxford university press. Harper, J. M., Rubin, J. E. et al. (1976). Variations of zorn's lemma, principles of co_nality, and hausdor_'s maximal principle. i. set forms.. Notre Dame Journal of Formal Logic. 17(4): 565{588. Harzheim, E. (2006). Ordered sets. Vol. 7. Springer Science & Business Media. Hass, J. R., Heil, C. E. and Weir, M. D. (2019). Thomas' Calculus: Early Transcendentals. Pearson. Hasselstr�om, K. (2003). Fast division of large integers: A comparison of algorithms. Hausdor_, F. (1914a). `Grundz}uge der mengenlehre'. Hausdor_, F. (1914b). Grundzuge der mengenlehre (leipzig: Veit). Technical Report. ISBN 978-0-8284-0061-9. Hazewinkel, M., Gubareni, N. and Kirichenko, V. V. (2004). Algebras, rings and modules. Vol. 1. Springer Science & Business Media. Henry, P. (1993). A logical framework for modelling legal argument. In Proceedings of the 4th international conference on Arti_cial intelligence and law. ACM. 1{9. Herstein, I. N. (1964). Topics in algebra. Algebra. Waltham: Blaisdell Publishing Company. . Herstein, I. N. (1975). `Topics in algebra, lexington, mass'. Herstein, I. N. (1996). `Abstract algebra (3rd ed.)'. Herstein, I. N. (2006). Topics in algebra. John Wiley & Sons. Hinkis, A. (2013). Proofs of the Cantor-Bernstein Theorem. Springer. Hinman, P. G. (2005). Fundamentals of mathematical logic. AK Peters/CRC Press.Holz, M., Ste_ens, K. and Weitz, E. (2010). Introduction to cardinal arithmetic. Birkh�auser. Howie, J. M. (1995). Fundamentals of semigroup theory, vol. 12 of. London Mathematical Society Monographs. Hrbacek, K. and Jech, T. (1999). Introduction to Set Theory, Revised and Expanded. Crc Press. Hu, S. T. (1965). Elements of modern algebra. Holden-Day. Humphreys, J. F., Humphreys, J. F. and Liu, Q. (1996). A course in group theory. Vol. 6. Oxford University Press on Demand. Hungerford, T. W. (1974). Algebra. 1974. Grad. Texts in Math. . Hunter, R. H., Arnold, D. M. and Walker, E. (1977). Abelian Group Theory: Proceedings of the 2nd New Mexico State University Conference, Held at Las Cruces, New Mexico, December 9-12, 1976. Springer-Verlag. Ian, S. (1995). Concepts of modern mathematics. Courier Corporation. Ian, S. and David, T. (2015). The foundations of mathematics. OUP Oxford. It_o, K. (1993). Encyclopedic dictionary of mathematics. Vol. 1. MIT press. Jacobson, N. (1951). Lectures in abstract algebra. Vol. I. Basic concepts. Princeton, NJ: D. Van Nostrand Co. Inc. Jacobson, N. (1984). Structure of rings. American Mathematical Society. Jacobson, N. (2009a). `Basic algebra i. basic algebra'. Jacobson, N. (2009b). `Basic algebra i. basic algebra'. Jacobson, N. (2012). Basic algebra I. Courier Corporation. BIBLIOGRAPHY 369 Jech, T. J. (1977). About the axiom of choice. In Studies in Logic and the Foundations of Mathematics. Vol. 90. Elsevier. 345{370. Jech, T. J. (2008). The axiom of choice. Courier Corporation. Je_reys, H., Je_reys, B. and Swirles, B. (1999). Methods of mathematical physics. Cambridge university press. J_onsson, B. (1984). Maximal algebras of binary relations. Contemporary Mathematics. 33: 299{307. Joshi, K. D. (1989). Foundations of discrete mathematics. New Age International. Junghenn, H. D. (2018). Principles of Analysis: Measure, Integration, Functional Analysis, and Applications. CRC Press. Kamke, E. (1950). Theory of sets. Courier Corporation. Kapur, D., Narendran, P. and Zhang, H. (1986). Proof by induction using test sets. In International Conference on Automated Deduction. Springer. 99{117. Kasana, H. S. (2005). Complex variables: theory and applications. PHI Learning Pvt. Ltd. Kelley, J. L. (1955). General topology, volume 27 of Graduate texts in Mathematics. New work: Springer-Verlag. Kelley, J. L. (2017). General topology. Courier Dover Publications. Kirby, L. and Paris, J. (1982). Accessible independence results for peano arithmetic. Bulletin of the London Mathematical Society. 14(4): 285{293. Kist, J. and Leestma, S. (1970). Additive semigroups of positive real numbers. Mathematische Annalen. 188(3): 214{218. Kjos-Hanssen, B., Merkle, W. and Stephan, F. (2011). Kolmogorov complexity and the recursion theorem. Transactions of the American Mathematical Society. 363(10): 5465{5480. Kleene, S. C. (1938). On notation for ordinal numbers. The Journal of Symbolic Logic. 3(4): 150{155. Kleene, S. C. (2002). Mathematical logic. Courier Corporation. Kleiber, M. and Pervin, W. J. (1969). A generalized banachmazur theorem. Bulletin of The Australian Mathematical Society. 1(2): 169{173. Klein, F. (1974). Le programme d'erlangen. . . Knapp, A. W. (2007). Basic algebra. Springer Science & Business Media. K�onig, J. (1905). Zum kontinuum-problem. Mathematische Annalen. 60(2): 177{180. K�orner, T. W. (2004). A companion to analysis: a second _rst and _rst second course in analysis. Vol. 62. American Mathematical Soc. Kroon, F. W. (1986). William s. hatcher. the logical foundations of mathematics. foundations and philosophy of science and technology series. pergamon press, oxford etc. 1982, x+ 320 pp.-william s. hatcher. foundations of mathematics. wb saunders company, philadelphia, london, and toronto, 1968, xiii+ 327 pp.. The Journal of Symbolic Logic. 51(2): 467{470. Kuratowski, K. and Mostowski, A. (1976). `Set theory, volume 86 of studies in logic and the foundations of mathematics'. Kurosh, A. G. (2014). Lectures in general algebra. Elsevier. Lajoie, C. and Mura, R. (2000). What's in a name? a learning di_culty in connection with cyclic groups. For the learning of Mathematics. 20(3): 29{33. Lam, T. Y. (1983a). Orderings, valuations and quadratic forms. Vol. 52. American Mathematical Soc. BIBLIOGRAPHY 371 Lam, T. Y. (1983b). Orderings, valuations and quadratic forms, cbms regional conf. ser. math., 52. published for the conf. board of the math. Sciences, Washington. Landau, H. J. (1987). Moments in mathematics. Vol. 37. American Mathematical Soc. Lane, S. M. and Moerdijk, I. (1992). Sheaves in geometry and logic: A _rst introduction to topos theory. New York etc.: Springer-Verlag. 627: 1992. Lang, S. (1993a). Algebra, 3rd. Edition Addison{Wesley. . Lang, S. (1993b). Algebra (Third ed.). Reading, Mass.: Addison-Wesley Pub. Co. Lang, S. (1993c). Real and functional analysis. Grad. Texts in Math. 142: 396. Lang, S. (2002a). Algebra (Third ed.). Springer-Verlag. Lang, S. (2002b). Graduate texts in mathematics: Algebra. Springer. Lang, S. (2002c). Graduate Texts in Mathematics: Algebra. Springer. Lang, S. (2004). Algebra, volume 211 of. Graduate Texts in Mathematics. 29{30. Lanski, C. (2005). Concepts in abstract algebra. Vol. 14. American Mathematical Soc. Lass, H. (2009). Elements of pure and applied mathematics. Courier Corporation. law, B. C. (1990a). The complex numbers. Formalized Mathematics. 1(3): 507{513. Law, B. C. (1990b). Functions and their basic properties. Formalized Mathematics. 1(1): 55{65. Lay, D. C. (2005). `Linear algebra and its applications, 3rd updated edition'. Ledermann, W. (1973). Introduction to group theory. . . Ledermann, W. (2013). Complex Numbers. Springer Science & Business Media. Lenagan, T. H. (1994). Ty lam a _rst course in noncommutative rings (graduate texts in mathematics 131, springer-verlag, heidelberg1991), xvi+ 397 pp., 3 540 97523 3,£ 35.50.. Proceedings of the Edinburgh Mathematical Society. 37(3): 545{545. Levy, A. (2002). Basic set theory. Vol. 13. Courier Corporation. Liapin, E. S. (1968). Semigroups. Vol. 3. American Mathematical Soc. Lidl, R. and Niederreiter, H. (1997). Finite _elds. number 20. Cambridge university press. Lipschutz, S. and Lipson, M. L. (1992). 2000 solved problems in discrete mathematics. McGraw-Hill. Lucas, J. F. (1990). Introduction to abstract mathematics. Rowman & Little_eld. Luenberger, D. G. (1997). Optimization by vector space methods. John Wiley & Sons. MacLane, S. and Birkho_, G. (1999). Algebra. 1967. Macmillan, New York. Maclane, S. and Moerdijk, I. (2012). Sheaves in geometry and logic: A _rst introduction to topos theory. Springer Science & Business Media. Maddox, R. (2002). Mathematical thinking and writing: a transition to higher mathematics. Academic Press. Mapa, S. K. (2003). Higher Algebra: Abstract And Linear (revised Ninth Edition). Sarat Book Distributors. BIBLIOGRAPHY 373 Markowsky, G. (1976). Chain-complete posets and directed sets with applications. Algebra universalis. 6(1): 53{68. Marsden, J. E., Ho_man, M. J. et al. (1993). Elementary classical analysis. Macmillan. Martino, I. and Martino, L. (2014). On the variety of linear recurrences and numerical semigroups. In Semigroup Forum. Vol. 88. Springer. 569{574. Marvin, S. (2012). Dictionary of scienti_c principles. John Wiley & Sons. McCann, M. and Pippenger, N. (2005). Srt division algorithms as dynamical systems. SIAM Journal on Computing. 34(6): 1279{ 1301. McCoy, N. H. (1968). Introduction to modern algebra. Boston: Allyn and Bacon. Mendelson, E. (1964). Introduction to mathematical logic, d. van nonstrand co. Inc., Princeton, New Jersey. Mendelson, E. (1973). Number systems and the foundations of analysis. Technical Report. Mendelson, E. (2009a). Introduction to mathematical logic. Chapman and Hall/CRC. Mendelson, E. (2009b). Introduction to mathematical logic . CRC press. Menzel, C. (1984). Cantor and the burali-forti paradox. The Monist. 67(1): 92{107. Meyer, R. M. (1979). Complex variables. In Essential Mathematics for Applied Fields. Springer. 319{393. Miller, G. (2012). Theory and applications of _nite groups. Applewood Books. Miller, W. (1973). Symmetry groups and their applications. Academic Press. Milnor, E., Milnor, J., John, M. and Mather, J. N. (1971). Introduction to algebraic K-theory. number 72. Princeton University Press. Monk, J. D. (1973a). Introduction to set theory. New work: McGraw Hill Book Company. Monk, J. D. (1973b). Introduction to set theory. Journal of Symbolic Logic. 38(1): 51{151. Moore, G. H. (2012). Zermelo's axiom of choice: Its origins, development, and inuence. Courier Corporation. Moore, G. H. and Garciadiego, A. (1981). Burali-forti's paradox: A reappraisal of its origins. Historia Mathematica. 8(3): 319{350. Morash, R. P. (1987). `Bridge to abstract mathematics; the handom house'. Moskowitz, M. A. (2002). A course in complex analysis in one variable. World Scienti_c. Moskowitz, M. A. and Paliogiannis, F. (2011). Functions of several real variables. World Scienti_c. Munkres, J. R. (2000). Topology. Prentice Hall. Mustafa, H. J., Naoum, R. S. and Mansour, N. G. (1980). Foundations of mathematics . Basrah- Iraq, Vol. I & II (In arabic): University of Basrah. Nagornyi, N. M. (1971). A. zulauf. the logical and set-theoretical foundations of mathematics. part i. edinburgh, oliver and boyd, 1969, vii+ 259 pp.(book review). Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 11(3): 793{793. Ne_set_ril, J. (1972). On symmetric and antisymmetric relations. Monatshefte f�ur Mathematik. 76(4): 323{327. BIBLIOGRAPHY 375 Nicholson, W. K. (2012). Introduction to abstract algebra. John Wiley & Sons. Nicolas, B. (1968). `Elements of mathematics: Theory of sets'. Nicos, C. (1975). `Graph theory: An algorithmic approach'. Nordahl, T. E. and Scheiblich, H. E. (1978). Regular semigroups. In Semigroup Forum. Vol. 16. Springer-Verlag. 369{377. Obermann, S. F. and Flynn, M. J. (1995). An analysis of division algorithms and implementations. Technical Report. Technical Report CSL-TR-95-675, Stanford University. O'Connor, J. J. and Robertson, E. F. (2001). The mactutor history of mathematics archive. World Wide Web page< http://www-history. mcs. st-and. ac. uk/>(accessed April 22, 2004). . Olariu, S. (2002). Complex numbers in n dimensions. Elsevier. Padlewska, B. (1990). Families of sets. Formalized Mathematics. 1(1): 147{152. Palagallo, J. (1991). A transition to advanced mathematics. by douglas smith, maurice eggen, and richard st. andre/foundations for advanced mathematics. by carol avelsgaard/introduction to advanced mathematics. by william barnier and norman feldman. The American Mathematical Monthly. 98(2): 179{181. Paley, H. and Weichsel, P. M. (1966). A _rst course in abstract algebra. Holt, Rinehart and Winston. Palmer, R. S. (1994). Chain models and _nite element analysis. Technical Report. Cornell University. Patrick, S. (1960). `Axiomatic set theory'. Patrick, S. (1999). Introduction to logic . Courier Corporation. Peano, G. (1889). The principles of arithmetic. van Heijenoort. 1967: 85{97. Peano, G. (1967). The principles of arithmetic, presented by a new method. Heijenoort. 83{97. Peirce, C. S. (1881). On the logic of number. American Journal of Mathematics. 4(1): 85{95. Pervin, W. J. (1964). Foundation of general topology. New York: Academic Press. Pervin, W. J. (2014). Foundations of general topology. Academic Press. Pinter, C. C. (1976). Set theory. . . Pinter, C. C. (2014). A book of set theory. Courier Corporation. Plotkin, B. I. and Plotkin, B. J. (1972). Groups of automorphisms of algebraic systems. Vol. 8. Wolters Noordho_ Publishing. Poincar_e, H. (1898a). Des fondements de la g_eom_etrie. Chiron. Poincar_e, H. (1898b). On the Foundations of Geometry. Open Court Publishing Company. Ponnusamy, S. and Silverman, H. (2006). Complex variables with applications. Springer. Poonen, B. (2019). Why all rings should have a 1. Mathematics Magazine. 92(1): 58{62. Puntambekar, A. A. (2007). Theory Of Automata And Formal Languages. Technical Publications. Quine, W. v. (1969). Set theory and its logic. Vol. 9. Harvard University Press. Quine, W. V. O. (2013). Word and object. MIT press. Ramsey, F. P. (1926). The foundations of mathematics. Proceedings of the London Mathematical Society. 2(1): 338{384. BIBLIOGRAPHY 377 Remmel, J. B. (1981). On the e_ectiveness of the schr�oder-bernstein theorem. Proceedings of the American Mathematical Society. 83(2): 379{386. Renteln, P. and Dundes, A. (2005). Foolproof: A sampling of mathematical folk humor. Notices of the AMS. 52(1): 24{34. Richmond, B. and Richmond, T. (2004). A discrete transition to advanced mathematics. American Mathematical Society. Robinson, D. J. (2012). A Course in the Theory of Groups. Vol. 80. Springer Science & Business Media. Robinson, J. (1996). The collected works of Julia Robinson. Vol. 6. American Mathematical Soc. Rogers, J. H. (1987). Theory of recursive functions and e_ective computability. . . Roitman, J. (1990). Introduction to modern set theory. Vol. 8. John Wiley & Sons. Rosen, K. H. and Krithivasan, K. (2012). Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw- Hill Education. Rosser, B. (1942). The burali-forti paradox. The Journal of Symbolic Logic. 7(1): 1{17. Rosser, J. B. (2008). Logic for mathematicians. Courier Dover Publications. Roth, R. L. (2001). A history of lagrange's theorem on groups. Mathematics Magazine. 74(2): 99{108. Rotman, J. J. (1973). The theory of groups: An introduction. . . Rotman, J. J. (2000). A _rst course in abstract algebra. Pearson College Division. Rotman, J. J. (2010). Advanced modern algebra. Vol. 114. American Mathematical Soc. Rotman, J. J. (2012). An introduction to the theory of groups. Vol. 148. Springer Science & Business Media. Rotman, J. J. (2013). First Course in Abstract Algebra: with Applications. Prentice Hall PTR. Rubin, H. and Rubin, J. E. (1985). Equivalents of the Axiom of Choice, II. Vol. 116. Elsevier. Rubin, J. E. (1967). Set theory for the mathematician. Holden-Day. Rucker, R. (2013). In_nity and the mind: The science and philosophy of the in_nite. Vol. 26. Princeton University Press. Rudin, W. (1953). Principles of mathematical analysis.(1964.) mcgrawhill. New York. Rudin, W. (1991). Functional analysis 2nd ed. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York. 10. Rudin, W. et al. (1976). Principles of mathematical analysis. Vol. 3. McGraw-hill New York. Russell, B. (1980). Correspondence with frege. Philosophical and mathematical correspondence. 130{170. Sa_, E. B. and Snider, A. D. (1993). Fundamentals of complex analysis for mathematics, science, and engineering. Prentice Hall. S_andor, D. (2008). Mathematics basics. In the modern algebra of information retrieval. Springer. 27{44. Saunders, M. and Garrett, B. (1967). Algebra. AMS Chelsea. Saunders, M. L. and Birkho_, B. (1999). Algebra: Third Edition. American Mathematical Society. Providence, Rhode, Island. BIBLIOGRAPHY 379 Saunders, M. L. and Birkho_, G. (1967). Algebra (First ed.). New York: Macmillan. Schechter, E. (1996). Handbook of Analysis and its Foundations. Academic Press. Scheinerman, E. R. (2000). `Mathematics: A discrete introduction, brooks'. Scheinerman, E. R. (2012). Mathematics: a discrete introduction. Nelson Education. Schmidt, G. (2010). `Relational mathematics (encyclopedia of mathematics and its applications)'. Schmidt, G. (2011). Relational mathematics. number 132. Cambridge University Press. Schmidt, S. (1993). 93. g. schmidt, t. str�ohlein: Relations and graphs. Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Berlin: Springer. . Schr�oder, B. S. (2003). Ordered sets. Springer. Schwerdtfeger, H. (2020). Geometry of complex numbers. University of Toronto Press. Scott, D. (1967). `Axiomatizing set theory \symposium in pure mathematics" los angeles'. Scott, W. R. (1987). `Group theory'. Scott, W. R. (2012). Group theory. Courier Corporation. Shan-Hwei, N., RJ, V. P. and Leendert, V. T. (1993). Constructing re_nement operators by decomposing logical implication. In Congress of the Italian Association for Arti_cial Intelligence. Springer. 178{189. Sharma, A. (2006). Theory of automata and formal languages. Firewall Media. Sharpe, D. (1987). Rings and factorization. CUP Archive. Shelah, S. (2000). The generalized continuum hypothesis revisited. Israel Journal of Mathematics. 116(1): 285{321. Shen, S., Vereshchagin, N. K. and Shen, A. (2002). Basic set theory. number 17. American Mathematical Soc. Shilnikov, L. P. (1967). On a poincar_e{birkho_ problem. Matematicheskii Sbornik. 116(3): 378{397. Sierpi_nski, W. (1958). Cardinal and ordinal numbers. Vol. 1958. Warszawa. Sikka, H. (2017). Complex numbers: Its operations and properties. . . Simmons, G. F. and Hammitt, J. K. (1963). Introduction to topology and modern analysis. McGraw-Hill New York. Simovici, D. A. and Djeraba, C. (2008). Partially ordered sets. In Mathematical Tools for Data Mining. Springer. 129{172. Smith, D. E. and Karpinski, L. C. (1911). Book review: The hinduarabic numerals, by david eugene smith and louis charles karpinski. Popular Astronomy. 19: 662. Smith, J. D. H. (2015). Introduction to abstract algebra. Vol. 31. CRC Press. Smith, P. (1975). Bourbaki nicolas. theory of sets. elements of mathematics. english translation of xxxvii 636, xl 289. hermann, publishers in arts and science, paris, and addison-wesley publishing company, reading, mass., menlo park, calif., london, don mills, ontario, 1968, viii+ 414 pp. . . Smullyan, R. (1996). Set theory and the continuum problem. . . Spanier, J. (1987). `Oldham, kb: An atlas of functions'. Spiegel, M. R., Lipschutz, S., Schiller, J. J. and d. Spellman (2009). Schaum's outline of Complex Variables. McGraw Hill Professional. BIBLIOGRAPHY 381 Spivak, M. (1975). A comprehensive introduction to di_erential geometry. Vol. 5. Publish or Perish, Incorporated. Steen, L. A., Seebach, J. A. and Steen, L. A. (1978). Counterexamples in topology. Vol. 18. Springer. Stewart, I. N. (2015). Galois theory. CRC Press. Stewart, J. (2009). Calculus: Concepts and contexts. Cengage Learning. Stoll, R. R. (1960). Sets, logic, and axiomatic theories. Journal of Symbolic Logic. 25(3): 278{279. Stoll, R. R. (1979). Set theory and logic. Courier Corporation. Strang, G. (2006). Linear algebra and its applications. 4th. Brooks Cole. . Suppes, P. (1960). Axiomatic set theory. New York: Courier Corporation. Suppes, P. (1972). Axiomatic set theory. Courier Corporation. Suppes, P. (1999). Introduction to logic. Courier Corporation. Szmielew, W. (1959). Elementary properties of abelian groups. . . Takeuti, G. and Zaring, W. M. (2013). Axiomatic set theory. Vol. 8. Springer Science & Business Media. Tanton, J. (2005). Encyclopedia of mathematics. Facts On File, inc. Tarski, A. (1941). 1994. Introduction to Logic and to the Methodology of Deductive Sciences. . Tarski, A. and Givant, S. R. (1987). A formalization of set theory without variables. Vol. 41. American Mathematical Society. Taton, R. (1972). Servois. Dictionary of Scienti_c Biography. 325{326. Temirovna, O. L. (2021). Equation, identities, equivalent equation, equation with one unknown of the _rst order, fractional rational equations and their solution. In Archive of Conferences. 103{106. Thomas, G. B., Weir, M. D., Hass, J. and Giordano, F. R. (2010). Thomas' calculus. Pearson Boston. Thomas, J. G. B., Weir, M. D., Hass, J., Heil, C. and Edition, T. (2014). Early transcendentals. . . Tignol, J. P. (2015). Galois' theory of algebraic equations. World Scienti_c Publishing Company. Treves, F. (1967). Topological vector spaces, distributions and kernels, acad. Press, New York. . Troelstra, A. S. and Dalen, D. V. (1988). Constructivism in mathematics I, II . Amsterdam: North Holland publ. Co. Trope, Y. and Liberman, N. (2010). Construal-level theory of psychological distance.. Psychological review. 117(2): 440. Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension theory. Vol. 59. Johns Hopkins University Press Baltimore. Trybulec, A. (1989). Tarski grothendieck set theory. Journal of Formalized Mathematics. 1. Uri, L. (1983). Structuring mathematical proofs. The American Mathematical Monthly. 90(3): 174{185. Van der Waerden, B. L., Artin, E. and Noether, E. (1950). Moderne algebra. Vol. 31950. Springer. Van, H. J. (1967). From Frege to G�odel: a source book in mathematical logic, 1879-1931. Vol. 9. Harvard University Press. Vander Waerden, B. L. (1949). Modern Algebra [Translated from the second revised German edition], Vol. II. New York: Frederick Ungar Publishing Co. BIBLIOGRAPHY 383 Varberg, D. E. and Purcell, E. J. (1992). Calculus with Analytic Geometry. Prentice Hall. Velleman, D. J. (2006). How to prove it: A structured approach. Cambridge University Press. Vinberg, E_ . B. (2003). A course in algebra. number 56. American Mathematical Soc. Vinogradov, I. M. (2016). Elements of number theory. Courier Dover Publications. Wallace, D. A. (2012). Groups, rings and _elds. Springer Science & Business Media. Walton, D. N. (1990). What is reasoning? what is an argument?. The Journal of Philosophy. 87(8): 399{419. Warner, S. (1965). Modern algebra. Dover Publications, Inc. Warner, S. (1990). Modern algebra. Courier Corporation. Weisstein, E. W. (1999a). Crc concise encyclopedia of mathematics (crc). . . Weisstein, E. W. (1999b). Vector space. Math World{A Wolfram Web Resource. . Weisstein, E. W. (2000). Countably in_nite. . . Weisstein, E. W. (2002a). CRC concise encyclopedia of mathematics. CRC press. Weisstein, E. W. (2002b). Division algebra. https://mathworld. wolfram. com/. . Weisstein, E. W. (2002c). Egyptian fraction. https://mathworld. wolfram. com/. . Weisstein, E. W. (2002d). Finite set. . . 384 BIBLIOGRAPHY Weisstein, E. W. (2002e). Multiplicative identity. . . Weisstein, E. W. (2002f). Ring. . . Weisstein, E. W. (2003a). Complex number. https://mathworld. wolfram. com/. . Weisstein, E. W. (2003b). Zero. https://mathworld. wolfram. com/. . Weisstein, E. W. (2019). Cardinal number. V: MathWorld{A Wolfram Web Resource. Retrieved. 15(2). Weisstein, E. W. et al. (2004). `Mathworld{a wolfram web resource'. Wilder, R. L. (1952). Introduction to the foundations of mathematics. New York : John Wiley & Sons, Inc. ; London : Chapman & Hall, Limited. Wilder, R. L. et al. (2012). Introduction to the Foundations of Mathematics. Courier Corporation. Willard, S. (2004). General topology. Courier Corporation. Wilson, R. (2018). Euler's Pioneering Equation: The most beautiful theorem in mathematics. Oxford University Press. Wolf, R. S. (1998). Proof, Logic, and Conjecture: The Mathematician's Toolbox. St. Martin's Press. Wussing, H. (2007). The genesis of the abstract group concept: a contribution to the history of the origin of abstract group theory. Courier Corporation. Yaglom, I. M. (2014). Complex numbers in geometry. Academic Press. Zariski, O. and Samuel, P. (1958). Commutative algebra, v1. New York. . Zariski, O. and Samuel, P. (2013). Commutative algebra: Volume II. Vol. 29. Springer Science & Business Media. BIBLIOGRAPHY 385 Zermelo, E. (1904). Beweis, da_ jede menge wohlgeordnet werden kann. Mathematische Annalen. 59(4): 514{516. Zermelo, E. (1908). Untersuchungen �uber die grundlagen der mengenlehre. i. Mathematische Annalen. 65(2): 261{281. Zermelo, E. (1930a). Uber grenzzahlen und mengenbereiche: Neue untersuchungen �auber die grundlagen der mengenlehre. Fundamenta mathematicae. Zermelo, E. (1930b). Uber grenzzahlen und mengenbereiche: neue untersuchungen �uber die grundlagender mengenlehre. Fundamenta Mathematicae. 14: 339{344. Zulauf, A. (1969a). The logical and set-theoretical foundations of mathematics. Edinburgh, Oliver and Boyd. Zulauf, A. (1969b). The Logical and Set-Theoretical Foundations of Mathematics: Part One of a Modern Introduction to Pure Mathematics. Oliver and Boyd.
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science and Health > Department of Mathematics
Depositing User: Mr. Rebwar Mohammed Jarjis
Date Deposited: 26 Oct 2023 06:57
Last Modified: 26 Oct 2023 06:57
URI: http://eprints.koyauniversity.org/id/eprint/420

Actions (login required)

View Item View Item