Molecular Detection of Some Antibiotic Resistance Genes of Acinetobacter baumannii Isolates from Patients in Erbil/KRG-Iraq

Hamad, Hazheer Mawlood (2023) Molecular Detection of Some Antibiotic Resistance Genes of Acinetobacter baumannii Isolates from Patients in Erbil/KRG-Iraq. Masters thesis, Koya University.

[img] Text (MSc Thesis)
MSc_DBIO_2023.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (17MB)
Official URL: https://koyauniversity.org/

Abstract

Recently, multidrug-resistant Acinetobacter baumannii has raised its impact on patient care specifically after covid-19 pandemic. The potential revolution of Acinetobacter baumannii is driven by the undetectable numbers of gene resistance that is acquired. Of 570 patient specimens including blood, sputum, urine, stool, pus, swab, and body fluid, 23 (4.04%) Acinetobacter baumannii were identified by biochemical tests and VITEK 2 compact system. Identification of Acinetobacter baumannii has been studied phenotypically by conventional biochemical tests and VITEK 2 compact system, and genotypically by using polymer chain reaction (PCR) to detect 16S-23S rRNA gene intergenic spacer region (ITS) and sequencing the amplicons by Sanger sequence technique. Isolates characterizations included biochemical identification, plasmid detection, quantification of biofilm formation using microtiter plate method, antibiotic resistance profile by using VITEK 2 compact system, and PCR amplification gene resistance. Twenty-two resistance genes were targeted including β- lactamase genes: blaOXA-51, blaOXA-58, blaOXA-23, blaTEM, blaNDM, and blaSHV, aminoglycoside genes: aph(3’)-VI, aacA4, aadB, strA and strB, sulfonamide genes: sul I and sul II , multidrug efflux gene adeB , tetracycline genes: tetA and tetB, macrolide genes: msr(E), mph(E) and erm 42, Trimethoprim gene: dhfr1 and Fluoroquinolones genes: parC and gyrA. Out of 100 (21.28%) who were covid-19 patients, 13 (13%) isolates were Acinetobacter baumannii. All Acinetobacter baumannii isolates carried a plasmid and there were no strong biofilm formation. morever, 41.2% of the isolates formed medium biofilm which is statistically significant, 35.3% of the isolates formed weak biofilm and 17.6% of the isolates not formed biofilm which are statistically non-significant. Both bacterial chromosome and plasmid carried resistance genes and each isolate with at least seven resistance genes. Besides, this is the first study to display the genetic resistance epidemics in Erbil/Iraq, blaTEM detected the disseminated gene in isolates, and aadB was not encoded by isolates. The majority of the resistance genes that were not detected by the isolate chromosome were detected on the plasmid of the isolate. Furthermore, new carbapenemase gene sequences have been identified to be acquired by plasmids from other bacterial genera such as Klebsiella pneumonia and Escherichia coli which had coinfected cases with Acinetobacter baumannii in the study. The new genes are blaNDM, (Acinetobacter baumannii strain carbapenems resistance HK19; accession number: OP572243) and blaTEM (Acinetobacter baumannii strain beta-lactam resistance HK22; accession number: OP572244). In addition, a new strain Stenotrophomones maltophilia (accession number OP422244) was submitted to GenBank and acquired new beta-lactamase genes from Acinetobacter baumannii blaNDM and blaOXA-23 genes under accession numbers OP595162, OP595163 respectively. The isolate’s metabolism pathway used was carbohydrates at 93.8% and coumarate at 100%. The results demonstrated the pattern role of plasmid in Acinetobacter baumannii resistance and the alternative metabolic pathway in all strains to survive was coumarate metabolic pathway, although the isolates metabolic differences but all strains used the coumarate pathway to survive.

Item Type: Thesis (Masters)
Additional Information: Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of Quinolone Action and Resistance. Biochemistry, 53(10), 1565–1574. https://doi.org/10.1021/bi5000564 AL-Kadmy, I. M. S., Ali, A. N. M., Salman, I. M. A., & Khazaal, S. S. (2018). Molecular characterization of A. baumannii isolated from Iraqi hospital environment. New Microbes and New Infections, 21, 51–57. https://doi.org/10.1016/j.nmni.2017.10.010 Al-Kadmy, I. M. S., Ibrahim, S. A., Al-Saryi, N., Aziz, S. N., Besinis, A., & Hetta, H. F. (2020). Prevalence of Genes Involved in Colistin Resistance in Acinetobacter baumannii: First Report from Iraq. Microbial Drug Resistance (Larchmont, N.Y.), 26(6), 616–622. https://doi.org/10.1089/mdr.2019.0243 Allen, J. L., Tomlinson, B. R., Casella, L. G., & Shaw, L. N. (2020). Regulatory networks important for survival of A. baumannii within the host. Current Opinion in Microbiology, 55, 74–80. https://doi.org/10.1016/j.mib.2020.03.001 Al-Sheboul, S. A., Al-Moghrabi, S. Z., Shboul, Y., Atawneh, F., Sharie, A. H., & Nimri, L. F. (2022). Molecular Characterization of Carbapenem-Resistant A. baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals. Antibiotics, 11(7), Article 7. https://doi.org/10.3390/antibiotics11070835 Al-Tamimi, M., Albalawi, H., Alkhawaldeh, M., Alazzam, A., Ramadan, H., Altalalwah, M., Alma’aitah, A., Al Balawi, D., Shalabi, S., Abu-Raideh, J., Khasawneh, A. I., Alhaj, F., & Hijawi, K. (2022). Multidrug-Resistant A. baumannii in Jordan. Microorganisms, 10(5), Article 5. https://doi.org/10.3390/microorganisms10050849 Aminov, R. I., Chee-Sanford, J. C., Garrigues, N., Teferedegne, B., Krapac, I. J., White, B. A., & Mackie, R. I. (2002). Development, Validation, and Application of PCR Primers for Detection of Tetracycline Efflux Genes of Gram-Negative Bacteria. Applied and Environmental Microbiology, 68, 1786–1793. https://doi.org/10.1128/AEM.68.4.1786- 1793.2002 Anstey, N. M., Currie, B. J., Hassell, M., Palmer, D., Dwyer, B., & Seifert, H. (2002). Community-Acquired Bacteremic Acinetobacter Pneumonia in Tropical Australia Is Caused by Diverse Strains of Acinetobacter baumannii, with Carriage in the Throat in At74 Risk Groups. Journal of Clinical Microbiology, 40(2), 685–686. https://doi.org/10.1128/JCM.40.2.685-686.2002 Antunes, L. C. S., Visca, P., & Towner, K. J. (2014). Acinetobacter baumannii: Evolution of a global pathogen. Pathogens and Disease, 71(3), 292–301. https://doi.org/10.1111/2049- 632X.12125 Asif, M., Alvi, I. A., & Rehman, S. U. (2018). Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249–1260. https://doi.org/10.2147/IDR.S166750 Bardbari, A. M., Arabestani, M. R., Karami, M., Keramat, F., Alikhani, M. Y., & Bagheri, K. P. (2017). Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental A. baumannii isolates. Microbial Pathogenesis, 108, 122–128. https://doi.org/10.1016/j.micpath.2017.04.039 Barry, J., Brown, A., Ensor, V., Lakhani, U., Petts, D., Warren, C., & Winstanley, T. (2003). Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals. The Journal of Antimicrobial Chemotherapy, 51(5), 1191–1202. https://doi.org/10.1093/jac/dkg234 Baumann, P. (1968). Isolation of Acinetobacter from Soil and Water. Journal of Bacteriology, 96(1), 39–42. Bayuga, S., Zeana, C., Sahni, J., Della-Latta, P., El-Sadr, W., & Larson, E. (2002). Prevalence and antimicrobial patterns of A. baumannii on hands and nares of hospital personnel and patients: The iceberg phenomenon again. Heart & Lung, 31(5), 382–390. https://doi.org/10.1067/mhl.2002.126103 Beggs, C. B., Kerr, K. G., Snelling, A. M., & Sleigh, P. A. (2006). Acinetobacter spp. And the Clinical Environment. Indoor and Built Environment, 15(1), 19–24. https://doi.org/10.1177/1420326X06062501 Bergogne-Bérézin, E., Friedman, H., & Bendinelli, M. (2008). Acinetobacter: Biology and Pathogenesis. Springer Science & Business Media. Bergogne-Bérézin, E., & Towner, K. J. (1996). Acinetobacter spp. as nosocomial pathogens: Microbiological, clinical, and epidemiological features. Clinical Microbiology Reviews, 9(2), 148–165. https://doi.org/10.1128/CMR.9.2.148 Berlau, J., Aucken, H., Malnick, H., & Pitt, T. (1999). Distribution of Acinetobacter Species on Skin of Healthy Humans. European Journal of Clinical Microbiology & Infectious Diseases, 3(18), 179–183. Bhuiyan, M. S., Ellett, F., Murray, G. L., Kostoulias, X., Cerqueira, G. M., Schulze, K. E., Mahamad Maifiah, M. H., Li, J., Creek, D. J., Lieschke, G. J., & Peleg, A. Y. (2016). A. baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9599–9604. https://doi.org/10.1073/pnas.1523116113 Bliska, J. B., Guan, K. L., Dixon, J. E., & Falkow, S. (1991). Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proceedings of the National Academy of Sciences of the United States of America, 88(4), 1187–1191. https://doi.org/10.1073/pnas.88.4.1187 Boo, T. W., Walsh, F., & Crowley, B. Y. 2009. (n.d.). Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: Predominance of Acinetobacter genomic species 3. Journal of Medical Microbiology, 58(2), 209–216. https://doi.org/10.1099/jmm.0.004911-0 Bordeleau, E., Atrin Mazinani, S., Nguyen, D., Betancourt, F., & Yan, H. (2018). Abrasive treatment of microtiter plates improves the reproducibility of bacterial biofilm assays. RSC Advances, 8(57), 32434–32439. https://doi.org/10.1039/C8RA06352D Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., & Bartlett, J. (2009). Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1–12. https://doi.org/10.1086/595011 Bouvet, P. J. M., & Grimont, P. A. D. Y. 1986. (n.d.). Taxonomy of the Genus Acinetobacter with the Recognition of A. baumannii sp. Nov., Acinetobacter haemolyticus sp. Nov., Acinetobacter johnsonii sp. Nov., and Acinetobacter junii sp. Nov. And Emended Descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. International Journal of Systematic and Evolutionary Microbiology, 36(2), 228–240. https://doi.org/10.1099/00207713-36-2-228 Boyanova, L., & Mitov, I. (2014). Antibiotic resistance rates in causative agents of infections in diabetic patients: Rising concerns. Expert Review of Anti-Infective Therapy. https://doi.org/10.1586/eri.13.19 Brovedan, M. A., Cameranesi, M. M., Limansky, A. S., Morán-Barrio, J., Marchiaro, P., & Repizo, G. D. (2020). What do we know about plasmids carried by members of the Acinetobacter genus? World Journal of Microbiology & Biotechnology, 36(8), 109. https://doi.org/10.1007/s11274-020-02890-7 Brunelle, B. W., Bearson, B. L., & Bearson, S. M. D. (2015). Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. Frontiers in Microbiology, 5. https://www.frontiersin.org/articles/10.3389/fmicb.2014.00801 Carcione, D., Siracusa, C., Sulejmani, A., Leoni, V., & Intra, J. (2021). Old and New Beta- Lactamase Inhibitors: Molecular Structure, Mechanism of Action, and Clinical Use. Antibiotics, 10(8), Article 8. https://doi.org/10.3390/antibiotics10080995 Castro-Jaimes, S., Guerrero, G., Bello-López, E., & Cevallos, M. A. (2022). Replication initiator proteins of A. baumannii plasmids: An update note. Plasmid, 119–120, 102616. https://doi.org/10.1016/j.plasmid.2021.102616 Catel-Ferreira, M., Coadou, G., Molle, V., Mugnier, P., Nordmann, P., Siroy, A., Jouenne, T., & Dé, E. (2011). Structure-function relationships of CarO, the carbapenem resistanceassociated outer membrane protein of Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 66(9), 2053–2056. https://doi.org/10.1093/jac/dkr267 Catel-Ferreira, M., Nehmé, R., Molle, V., Aranda, J., Bouffartigues, E., Chevalier, S., Bou, G., Jouenne, T., & Dé, E. (2012). Deciphering the function of the outer membrane protein OprD homologue of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(7), 3826–3832. https://doi.org/10.1128/AAC.06022-11 Cayô, R. [UNIFESP, Rodriguez, M.-C., Espinal, P., Fernandez-Cuenca, F., Ocampo-Sosa, A. A., Pascual, A., Ayala, J. A., Vila, J., & Martinez-Martinez, L. (2011). Analysis of Genes Encoding Penicillin-Binding Proteins in Clinical Isolates of Acinetobacter baumannii. https://doi.org/10.1128/AAC.00459-11 Chahoud, J., Kanafani, Z., & Kanj, S. (2014). Surgical Site Infections Following Spine Surgery: Eliminating the Controversies in the Diagnosis. Frontiers in Medicine, 1. https://www.frontiersin.org/articles/10.3389/fmed.2014.00007 Chang, H. C., Wei, Y. F., Dijkshoorn, L., Vaneechoutte, M., Tang, C. T., & Chang, T. C. (2005). Species-Level Identification of Isolates of the Acinetobacter calcoaceticus-A. baumannii Complex by Sequence Analysis of the 16S-23S rRNA Gene Spacer Region. Journal of Clinical Microbiology, 43(4), 1632–1639. https://doi.org/10.1128/JCM.43.4.1632- 1639.2005 Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140- 6736(20)30211-7 Chen, S.-F., Chang, W.-N., Lu, C.-H., Chuang, Y.-C., Tsai, H.-H., Tsai, N.-W., Chang, H.-W., Lee, P.-Y., Chien, C.-C., & Huang, C.-R. (2005). Adult Acinetobacter meningitis and its comparison with non-Acinetobacter gram-negative bacterial meningitis. Acta Neurologica Taiwanica, 14(3), 131–137. Cheng, Y., Yang, S., Jia, M., Zhao, L., Hou, C., You, X., Zhao, J., & Chen, A. (2016). Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system. Analytical and Bioanalytical Chemistry, 408(6), 1623–1631. https://doi.org/10.1007/s00216-015-9270-5 Cho, S., Nguyen, H. A. T., McDonald, J. M., Woodley, T. A., Hiott, L. M., Barrett, J. B., Jackson, C. R., & Frye, J. G. (2019). Genetic Characterization of Antimicrobial-Resistant Escherichia coli Isolated from a Mixed-Use Watershed in Northeast Georgia, USA. International Journal of Environmental Research and Public Health, 16(19), Article 19. https://doi.org/10.3390/ijerph16193761 Chukwudi, C. U. (2016). RRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrobial Agents and Chemotherapy, 60(8), 4433–4441. https://doi.org/10.1128/AAC.00594-16 Clark, R. B. (1996). Imipenem resistance among Acinetobacter baumannii: Association with reduced expression of a 33-36 kDa outer membrane protein. The Journal of Antimicrobial Chemotherapy, 38(2), 245–251. https://doi.org/10.1093/jac/38.2.245 Colquhoun, J. M., & Rather, P. N. (2020). Insights Into Mechanisms of Biofilm Formation in A. baumannii and Implications for Uropathogenesis. Frontiers in Cellular and Infection Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fcimb.2020.00253 Contou, D., Claudinon, A., Pajot, O., Micaëlo, M., Longuet Flandre, P., Dubert, M., Cally, R., Logre, E., Fraissé, M., Mentec, H., & Plantefève, G. (2020). Bacterial and viral coinfections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Annals of Intensive Care, 10, 119. https://doi.org/10.1186/s13613-020-00736-x Cox, M. J., Loman, N., Bogaert, D., & O’Grady, J. (2020). Co-infections: Potentially lethal and unexplored in COVID-19. The Lancet Microbe, 1(1), e11. https://doi.org/10.1016/S2666- 5247(20)30009-4 Coyne, S., Courvalin, P., & Périchon, B. (2011). Efflux-Mediated Antibiotic Resistance in Acinetobacter spp. Antimicrobial Agents and Chemotherapy, 55(3), 947–953. https://doi.org/10.1128/AAC.01388-10 Coyne, S., Rosenfeld, N., Lambert, T., Courvalin, P., & Périchon, B. (2010). Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 54(10), 4389–4393. https://doi.org/10.1128/AAC.00155-10 Dallo, S. F., & Weitao, T. (2010). Insights into Acinetobacter War-Wound Infections, Biofilms, and Control. Advances in Skin & Wound Care, 23(4), 169–174. https://doi.org/10.1097/01.ASW.0000363527.08501.a3 Damier-Piolle, L., Magnet, S., Brémont, S., Lambert, T., & Courvalin, P. (2008). AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 52(2), 557–562. https://doi.org/10.1128/AAC.00732-07 De la Maza, L.M., et al. (2013) Aeromonas and Pleisiomonas. In: Color Atlas of Medical Bacteriology, 2nd Edition, ASM Press, Washington DC, Chapter 15, 131-135. De Silva, P. M., & Kumar, A. (2019). Signal Transduction Proteins in Acinetobacter baumannii: Role in Antibiotic Resistance, Virulence, and Potential as Drug Targets. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.00049 del Mar Tomas, M., Cartelle, M., Pertega, S., Beceiro, A., Llinares, P., Canle, D., Molina, F., Villanueva, R., Cisneros, J. M., & Bou, G. (2005). Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: Patient prognosis and riskfactors for colonisation and infection. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 11(7), 540–546. https://doi.org/10.1111/j.1469-0691.2005.01184.x Dijkshoorn, L., Nemec, A., & Seifert, H. (2007). An increasing threat in hospitals: Multidrugresistant Acinetobacter baumannii. Nature Reviews Microbiology, 5(12), 939–951. https://doi.org/10.1038/nrmicro1789 Dijkshoorn, L., van Aken, E., Shunburne, L., van der Reijden, T. J. K., Bernards, A. T., Nemec, A., & Towner, K. J. (2005). Prevalence of A. baumannii and other Acinetobacter spp. In faecal samples from non-hospitalised individuals. Clinical Microbiology and Infection, 11(4), 329–332. https://doi.org/10.1111/j.1469-0691.2005.01093.x Doughari, H. J., Ndakidemi, P. A., Human, I. S., & Benade, S. (2011). The ecology, biology and pathogenesis of Acinetobacter spp.: An overview. Microbes and Environments, 26(2), 101–112. https://doi.org/10.1264/jsme2.me10179 Drawz, S. M., Bethel, C. R., Doppalapudi, V. R., Sheri, A., Pagadala, S. R. R., Hujer, A. M., Skalweit, M. J., Anderson, V. E., Chen, S. G., Buynak, J. D., & Bonomo, R. A. (2010). Penicillin Sulfone Inhibitors of Class D β-Lactamases. Antimicrobial Agents and Chemotherapy, 54(4), 1414–1424. https://doi.org/10.1128/AAC.00743-09 Elmassry, M. M., Bisht, K., Colmer-Hamood, J. A., Wakeman, C. A., San Francisco, M. J., & Hamood, A. N. (2021). Malonate utilization by Pseudomonas aeruginosa affects quorumsensing and virulence and leads to formation of mineralized biofilm-like structures. Molecular Microbiology, 116(2), 516–537. https://doi.org/10.1111/mmi.14729 ELsheredy, A., Yousif, Z., Elghazzawi, E., Elmenshawy, A., & Ghazal, A. (2021). Prevalence of Genes Encoding Aminoglycoside-Modifying Enzymes and armA among A. baumannii Clinical Isolates in Alexandria, Egypt. Infectious Disorders - Drug TargetsDisorders), 21(8), 49–57. https://doi.org/10.2174/1871526521666210225113041 Eze, E. C., Chenia, H. Y., & El Zowalaty, M. E. (2018). A. baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277–2299. https://doi.org/10.2147/IDR.S169894 Eze, E. C., El Zowalaty, M. E., & Pillay, M. (2021). Antibiotic resistance and biofilm formation of A. baumannii isolated from high-risk effluent water in tertiary hospitals in South Africa. Journal of Global Antimicrobial Resistance, 27, 82–90. https://doi.org/10.1016/j.jgar.2021.08.004 Falagas, M. E., Vardakas, K. Z., Kapaskelis, A., Triarides, N. A., & Roussos, N. S. (2015a). Tetracyclines for multidrug-resistant A. baumannii infections. International Journal of Antimicrobial Agents, 45(5), 455–460. https://doi.org/10.1016/j.ijantimicag.2014.12.031 Falagas, M. E., Vardakas, K. Z., Kapaskelis, A., Triarides, N. A., & Roussos, N. S. (2015b). Tetracyclines for multidrug-resistant A. baumannii infections. International Journal of Antimicrobial Agents, 45(5), 455–460. https://doi.org/10.1016/j.ijantimicag.2014.12.031 Ferjani, S., Kanzari, L., Maamar, E., Hamzaoui, Z., Rehaiem, A., Ferjani, A., & Boutiba-Ben Boubaker, I. (2022). Extensively drug-resistant A. baumannii co-producing VIM-2 and OXA-23 in intensive care units: Results of a one-day point prevalence in a Tunisian hospital. Infectious Diseases Now, 52(8), 426–431. https://doi.org/10.1016/j.idnow.2022.09.003 Forbes, J. M. (2007). Voluntary Food Intake and Diet Selection in Farm Animals. CABI. Francey, T., Gaschen, F., Nicolet, J., & Burnens, A. P. (2000). The Role of A. baumannii as a Nosocomial Pathogen for Dogs and Cats in an Intensive Care Unit. Journal of Veterinary Internal Medicine, 14(2), 177–183. https://doi.org/10.1111/j.1939-1676.2000.tb02233.x Fukasawa, K., Hiraoka, B. Y., Fukasawa, K. M., & Harada, M. (1982). Arylamidase activities specific for proline, tyrosine, and basic amino acid residues in some oral bacteria. Journal of Dental Research, 61(6), 818–820. https://doi.org/10.1177/00220345820610063501 Gaddy, J. A., & Actis, L. A. (2009). Regulation of A. baumannii biofilm formation. Future Microbiology, 4(3), 273–278. https://doi.org/10.2217/fmb.09.5 Galdiero, S., Falanga, A., Cantisani, M., Tarallo, R., Della Pepa, M. E., D’Oriano, V., & Galdiero, M. (2012). Microbe-host interactions: Structure and role of Gram-negative bacterial porins. Current Protein & Peptide Science, 13(8), 843–854. https://doi.org/10.2174/138920312804871120 García-Garmendia, J.-L., Ortiz-Leyba, C., Garnacho-Montero, J., Jiménez-Jiménez, F.-J., Pérez- Paredes, C., Barrero-Almodóvar, A. E., & Miner, M. G. (2001). Risk Factors for A. baumannii Nosocomial Bacteremia in Critically Ill Patients: A Cohort Study. Clinical Infectious Diseases, 33(7), 939–946. https://doi.org/10.1086/322584 Garnacho, J., Sole-Violan, J., Sa-Borges, M., Diaz, E., & Rello, J. (2003). Clinical impact of pneumonia caused by A. baumannii in intubated patients: A matched cohort study*. Critical Care Medicine, 31(10), 2478–2482. https://doi.org/10.1097/01.CCM.0000089936.09573.F3 Garneau-Tsodikova, S., & J. Labby, K. (2016). Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm, 7(1), 11–27. https://doi.org/10.1039/C5MD00344J Gaynes, R., Edwards, J. R., & National Nosocomial Infections Surveillance System. (2005). Overview of nosocomial infections caused by gram-negative bacilli. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 41(6), 848–854. https://doi.org/10.1086/432803 Gedefie, A., Demsis, W., Ashagrie, M., Kassa, Y., Tesfaye, M., Tilahun, M., Bisetegn, H., & Sahle, Z. (2021). A. baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infection and Drug Resistance, 14, 3711–3719. https://doi.org/10.2147/IDR.S332051 Ghaffoori Kanaan, M. H., Al-Shadeedi, S. M. J., Al-Massody, A. J., & Ghasemian, A. (2020). Drug resistance and virulence traits of A. baumannii from Turkey and chicken raw meat. Comparative Immunology, Microbiology and Infectious Diseases, 70, 101451. https://doi.org/10.1016/j.cimid.2020.101451 Gordon, N. C., & Wareham, D. W. (2010). Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. International Journal of Antimicrobial Agents, 35(3), 219–226. https://doi.org/10.1016/j.ijantimicag.2009.10.024 Göttig, S., Gruber, T. M., Higgins, P. G., Wachsmuth, M., Seifert, H., & Kempf, V. A. J. (2014). Detection of pan drug-resistant A. baumannii in Germany. Journal of Antimicrobial Chemotherapy, 69(9), 2578–2579. https://doi.org/10.1093/jac/dku170 H, M., L, P., N, M., & P, N. (2003). Chromosomal integration of a cephalosporinase gene from A. baumannii into Oligella urethralis as a source of acquired resistance to beta-lactams. Antimicrobial Agents and Chemotherapy, 47(5). https://doi.org/10.1128/AAC.47.5.1536- 1542.2003 Hamed, S. M., Hussein, A. F. A., Al-Agamy, M. H., Radwan, H. H., & Zafer, M. M. (2022). Genetic Configuration of Genomic Resistance Islands in A. baumannii Clinical Isolates From Egypt. Frontiers in Microbiology, 13. https://www.frontiersin.org/articles/10.3389/fmicb.2022.878912 Hamidian, M., & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics, 5(10), e000306. https://doi.org/10.1099/mgen.0.000306 Harding, C. M., Hennon, S. W., & Feldman, M. F. (2018). Uncovering the mechanisms of A. baumannii virulence. Nature Reviews Microbiology, 16(2), 91–103. Holt, K., Hamidian, M., Kenyon, J., Wynn, M., Hawkey, J., Pickard, D., & Hall, R. (2015). Genome Sequence of A. baumannii Strain A1, an Early Example of Antibiotic-Resistant Global Clone 1. Genome Announcements, 3, e00032-15. https://doi.org/10.1128/genomeA.00032-15 Houang, E. T. S., Chu, Y. W., Leung, C. M., Chu, K. Y., Berlau, J., Ng, K. C., & Cheng, A. F. B. (2001). Epidemiology and Infection Control Implications of Acinetobacter spp. In Hong Kong. Journal of Clinical Microbiology, 39(1), 228–234. https://doi.org/10.1128/JCM.39.1.228-234.2001 Huang, L., Wu, C., Gao, H., Xu, C., Dai, M., Huang, L., Hao, H., Wang, X., & Cheng, G. (2022). Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics, 11(4), Article 4. https://doi.org/10.3390/antibiotics11040520 Huang, X.-Z., Chahine, M. A., Frye, J. G., Cash, D. M., Lesho, E. P., Craft, D. W., Lindler, L. E., & Nikolich, M. P. (2012). Molecular analysis of imipenem-resistant A. baumannii isolated from US service members wounded in Iraq, 2003-2008. Epidemiology and Infection, 140(12), 2302–2307. https://doi.org/10.1017/S0950268811002871 Hughes, S., Troise, O., Donaldson, H., Mughal, N., & Moore, L. S. P. (2020). Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 26(10), 1395– 1399. https://doi.org/10.1016/j.cmi.2020.06.025 Hujer, K. M., Hujer, A. M., Hulten, E. A., Bajaksouzian, S., Adams, J. M., Donskey, C. J., Ecker, D. J., Massire, C., Eshoo, M. W., Sampath, R., Thomson, J. M., Rather, P. N., Craft, D. W., Fishbain, J. T., Ewell, A. J., Jacobs, M. R., Paterson, D. L., & Bonomo, R. A. (2006a). Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. Isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrobial Agents and Chemotherapy, 50(12), 4114–4123. https://doi.org/10.1128/AAC.00778-06 Hujer, K. M., Hujer, A. M., Hulten, E. A., Bajaksouzian, S., Adams, J. M., Donskey, C. J., Ecker, D. J., Massire, C., Eshoo, M. W., Sampath, R., Thomson, J. M., Rather, P. N., Craft, D. W., Fishbain, J. T., Ewell, A. J., Jacobs, M. R., Paterson, D. L., & Bonomo, R. A. (2006b). Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. Isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrobial Agents and Chemotherapy, 50(12), 4114–4123. https://doi.org/10.1128/AAC.00778-06 Hussain, E. A., Hameed, H. Q., Al-Shuwaikh, A. M., & Abdullah, R. M. (2022). Detection of sul1 resistance gene in A. baumannii from different Clinical cases. Journal of the College of Basic Education, ( م*+�� ت وا $./$0� ا $123� ون 56�� وا 78$9� ي ا *;2� ا 71+�� ا 51<=1� ا >?$@ ص(و $% د�' . https://www.iasj.net/iasj/article/241644 Hussain, H. I., Aqib, A. I., Seleem, M. N., Shabbir, M. A., Hao, H., Iqbal, Z., Kulyar, M. F.-A., Zaheer, T., & Li, K. (2021). Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microbial Pathogenesis, 158, 105040. https://doi.org/10.1016/j.micpath.2021.105040 Huttner, B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C., & Schouten, J. (2020). COVID-19: Don’t neglect antimicrobial stewardship principles! Clinical Microbiology and Infection, 26(7), 808–810. https://doi.org/10.1016/j.cmi.2020.04.024 Jaloot, A., & Owaid, M. (2021). Antibiotic resistance pattern and prevalence of multi-drug and extensive resistant A. baumannii isolates from clinical specimens after Military Operations western Iraq. Gazi Medical Journal, 32, 381–388. https://doi.org/10.12996/gmj.2021.87 84 Johnson, E. N., Burns, T. C., Hayda, R. A., Hospenthal, D. R., & Murray, C. K. (2007). Infectious complications of open type III tibial fractures among combat casualties. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 45(4), 409–415. https://doi.org/10.1086/520029 Joly-Guillou, M.-L. (2008). Nosocomial and community-acquired Acinetobacter infections. In Acinetobacter Biology Infections and Pathogenesis (pp. 155–166). Springer. https://doi.org/10.1007/978-0-387-77944-7_9 Jung, J., & Park, W. (2015). Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Applied Microbiology and Biotechnology, 99(6), 2533–2548. https://doi.org/10.1007/s00253-015-6439-y Kanaan, M. H. G., & Khashan, H. T. (2022). Molecular typing, virulence traits and risk factors of pandrug-resistant A. baumannii spread in intensive care unit centers of Baghdad city, Iraq. Reviews in Medical Microbiology, 33(1), 51–55. https://doi.org/10.1097/MRM.0000000000000282 Kaneko, M., Ohnishi, Y., & Horinouchi, S. (2003). Cinnamate:coenzyme A ligase from the filamentous bacterium streptomyces coelicolor A3(2). Journal of Bacteriology, 185(1), 20–27. https://doi.org/10.1128/JB.185.1.20-27.2003 Karah, N. (2011). Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. Clinical isolates. Karah, N., Wai, S. N., & Uhlin, B. E. (2021). CRISPR-based subtyping to track the evolutionary history of a global clone of Acinetobacter baumannii. Infection, Genetics and Evolution, 90, 104774. https://doi.org/10.1016/j.meegid.2021.104774 Keen, E. F., Robinson, B. J., Hospenthal, D. R., Aldous, W. K., Wolf, S. E., Chung, K. K., & Murray, C. K. (2010). Prevalence of multidrug-resistant organisms recovered at a military burn center. Burns, 36(6), 819–825. https://doi.org/10.1016/j.burns.2009.10.013 Kerrn, M. B., Klemmensen, T., Frimodt-Møller, N., & Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. Journal of Antimicrobial Chemotherapy, 50(4), 513–516. https://doi.org/10.1093/jac/dkf164 Khalil, M. A. F., Ahmed, F. A., Elkhateeb, A. F., Mahmoud, E. E., Ahmed, M. I., Ahmed, R. I., Hosni, A., Alghamdi, S., Kabrah, A., Dablool, A. S., Hetta, H. F., Moawad, S. S., & Hefzy, E. M. (2021). Virulence Characteristics of Biofilm-Forming A. baumannii in Clinical Isolates Using a Galleria mellonella Model. Microorganisms, 9(11), Article 11. https://doi.org/10.3390/microorganisms9112365 Khayat, M. T., Ibrahim, T. S., Khayyat, A. N., Alharbi, M., Shaldam, M. A., Mohammad, K. A., Khafagy, E.-S., El-Damasy, D. A., Hegazy, W. A. H., & Abbas, H. A. (2022). Sodium Citrate Alleviates Virulence in Pseudomonas aeruginosa. Microorganisms, 10(5), 1046. https://doi.org/10.3390/microorganisms10051046 König, P., Averhoff, B., & Müller, V. (2021). K+ and its role in virulence of Acinetobacter baumannii. International Journal of Medical Microbiology: IJMM, 311(5), 151516. https://doi.org/10.1016/j.ijmm.2021.151516 Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). A. baumannii Antibiotic Resistance Mechanisms. Pathogens, 10(3), Article 3. https://doi.org/10.3390/pathogens10030373 La Scola, B., & Raoult, D. (2004). A. baumannii in Human Body Louse. Emerging Infectious Diseases, 10(9), 1671–1673. https://doi.org/10.3201/eid1009.040242 Lai, C.-C., Wang, C.-Y., & Hsueh, P.-R. (2020). Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? Journal of Microbiology, Immunology and Infection, 53(4), 505–512. https://doi.org/10.1016/j.jmii.2020.05.013 Larone, D. H., Tucci, L. J., & Samide, D. O. (2000). Time study of three automated systems for the identification and susceptibility of bacteria The Micro Scan Walk Away 96, Vitek, and Vitek 2. Abstracts of the General Meeting of the American Society for Microbiology, 100, 195. Lee, K., Yong, D., Jeong, S. H., & Chong, Y. (2011). Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens. Yonsei Medical Journal, 52(6), 879– 891. https://doi.org/10.3349/ymj.2011.52.6.879 Lee, N.-Y., Chang, T. C., Wu, C.-J., Chang, C.-M., Lee, H.-C., Chen, P.-L., Lee, C.-C., Ko, N.- Y., & Ko, W.-C. (2010). Clinical manifestations, antimicrobial therapy, and prognostic factors of monomicrobial A. baumannii complex bacteremia. Journal of Infection, 61(3), 219–227. https://doi.org/10.1016/j.jinf.2010.07.002 Lescure, F.-X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P.-H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., Enouf, V., Houhou-Fidouh, N., Valette, M., Mailles, A., Lucet, J.-C., Mentre, F., Duval, X., Descamps, D., Malvy, D., … Yazdanpanah, Y. (2020). Clinical and virological data of the first cases of COVID-19 in Europe: A case series. The Lancet. Infectious Diseases, 20(6), 697–706. https://doi.org/10.1016/S1473-3099(20)30200-0 Leung, W.-S., Chu, C.-M., Tsang, K.-Y., Lo, F.-H., Lo, K.-F., & Ho, P.-L. (2006). Fulminant Community-Acquired A. baumannii Pneumonia as a Distinct Clinical Syndrome. Chest, 129(1), 102–109. https://doi.org/10.1378/chest.129.1.102 Li, J., Wang, J., Yang, Y., Cai, P., Cao, J., Cai, X., & Zhang, Y. (2020). Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: A retrospective analysis. Antimicrobial Resistance and Infection Control, 9(1), 153. https://doi.org/10.1186/s13756-020-00819-1 Lin, L., Ling, B.-D., & Li, X.-Z. (2009). Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobialresistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. International Journal of Antimicrobial Agents, 33(1), 27–32. https://doi.org/10.1016/j.ijantimicag.2008.06.027 Liu, Y.-M., Lee, Y.-T., Kuo, S.-C., Chen, T.-L., Liu, C.-P., & Liu, C.-E. (2017). Comparison between bacteremia caused by Acinetobacter pittii and Acinetobacter nosocomialis. Journal of Microbiology, Immunology and Infection, 50(1), 62–67. https://doi.org/10.1016/j.jmii.2015.01.003 Longo, F., Vuotto, C., & Donelli, G. (2014). Biofilm formation in Acinetobacter baumannii. The New Microbiologica, 37(2), 119–127. Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469- 0691.2011.03570.x Maragakis, L. L., & Perl, T. M. (2008). Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clinical Infectious Diseases, 46(8), 1254–1263. https://doi.org/10.1086/529198 McConnell, M. J., Actis, L., & Pachón, J. (2013). Acinetobacter baumannii: Human infections, factors contributing to pathogenesis and animal models. FEMS Microbiology Reviews, 37(2), 130–155. https://doi.org/10.1111/j.1574-6976.2012.00344.x McConnell, M. J., Domínguez-Herrera, J., Smani, Y., López-Rojas, R., Docobo-Pérez, F., & Pachón, J. (2011). Vaccination with Outer Membrane Complexes Elicits Rapid Protective Immunity to Multidrug-Resistant Acinetobacter baumannii. Infection and Immunity, 79(1), 518–526. https://doi.org/10.1128/IAI.00741-10 McConnell, M. J., & Martín-Galiano, A. J. (2021). Designing Multi-Antigen Vaccines Against A. baumannii Using Systemic Approaches. Frontiers in Immunology, 12. https://www.frontiersin.org/article/10.3389/fimmu.2021.666742 Meshkat, Z., Salimizand, H., Amini, Y., Mansury, D., Zomorodi, A. R., Avestan, Z., Jamee, A., Falahi, J., Farsiani, H., & Mojahed, A. (2021). Detection of efflux pump genes in multiresistant A. baumannii ST2 in Iran. Acta Microbiologica et Immunologica Hungarica, 68(2), 113–120. https://doi.org/10.1556/030.2021.01314 Metan, G., Alp, E., Aygen, B., & Sumerkan, B. (2007). A. baumannii meningitis in postneurosurgical patients: Clinical outcome and impact of carbapenem resistance. Journal of Antimicrobial Chemotherapy, 60(1), 197–199. https://doi.org/10.1093/jac/dkm181 Michalopoulos, A., & Falagas, M. E. (2010). Treatment of Acinetobacter infections. Expert Opinion on Pharmacotherapy, 11(5), 779–788. https://doi.org/10.1517/14656561003596350 Minandri, F., D’Arezzo, S., Antunes, L. C. S., Pourcel, C., Principe, L., Petrosillo, N., & Visca, P. (2012). Evidence of diversity among epidemiologically related carbapenemaseproducing A. baumannii strains belonging to international clonal lineage II. Journal of Clinical Microbiology, 50(3), 590–597. https://doi.org/10.1128/JCM.05555-11 Modarresi, F., Azizi, O., Shakibaie, M. R., Motamedifar, M., Mosadegh, E., & Mansouri, S. (2015). Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii. Virulence, 6(2), 152–161. https://doi.org/10.1080/21505594.2014.1003001 Modarresi, F., Azizi, O., Shakibaie, M. R., Motamedifar, M., Valibeigi, B., & Mansouri, S. (2015). Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter baumannii. APMIS, 11(123), 959–968. https://doi.org/10.1111/apm.12455 Moffatt, J. H., Harper, M., & Boyce, J. D. (2019). Mechanisms of Polymyxin Resistance. Advances in Experimental Medicine and Biology, 1145, 55–71. https://doi.org/10.1007/978-3-030-16373-0_5 Moghnieh, R. A., Kanafani, Z. A., Tabaja, H. Z., Sharara, S. L., Awad, L. S., & Kanj, S. S. (2018). Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. The Lancet Infectious Diseases, 18(12), e379–e394. https://doi.org/10.1016/S1473-3099(18)30414-6 Mohammadi, M., Bahrami, N., & Faghri, J. (2020). The evaluation of antibiotic resistance pattern and frequency of blaVIM and blaNDM genes in isolated A. baumannii from hospitalized patients in Isfahan and Shahrekord. Razi Journal of Medical Sciences, 27(4), 143–156. Mohammed, M. A., Salim, M. T. A., Anwer, B. E., Aboshanab, K. M., & Aboulwafa, M. M. (2021). Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of A. baumannii to fluoroquinolones. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-99230-y Morita, Y., Tomida, J., & Kawamura, Y. (2012). MexXY multidrug efflux system of Pseudomonas aeruginosa. Frontiers in Microbiology, 3, 408. https://doi.org/10.3389/fmicb.2012.00408 Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019). The Mechanisms of Disease Caused by Acinetobacter baumannii. Frontiers in Microbiology, 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.01601 Nebreda-Mayoral, T., Miguel-Gómez, M. A., March-Rosselló, G. A., Puente-Fuertes, L., Cantón-Benito, E., Martínez-García, A. M., Muñoz-Martín, A. B., & Orduña-Domingo, A. (2022). Infección bacteriana/fúngica en pacientes con COVID-19 ingresados en un hospital de tercer nivel de Castilla y León, España. Enfermedades Infecciosas Y Microbiologia Clinica, 40(4), 158–165. https://doi.org/10.1016/j.eimc.2020.11.003 Nemec, A., Musílek, M., Maixnerová, M., De Baere, T., van der Reijden, T. J. K., Vaneechoutte, M., & Dijkshoorn, L. (2009). Acinetobacter beijerinckii sp. Nov. And Acinetobacter gyllenbergii sp. Nov., haemolytic organisms isolated from humans. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 1), 118–124. https://doi.org/10.1099/ijs.0.001230-0 Nguyen, M., & Joshi, S. G. (2021). Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. Journal of Applied Microbiology, 131(6), 2715–2738. https://doi.org/10.1111/jam.15130 Nie, D., Hu, Y., Chen, Z., Li, M., Hou, Z., Luo, X., Mao, X., & Xue, X. (2020). Outer membrane protein A (OmpA) as a potential therapeutic target for A. baumannii infection. Journal of Biomedical Science, 27(1). https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=10217770&v=2.1&it=r&id=GALE% 7CA618720239&sid=googleScholar&linkaccess=abs Nigro, S. J., & Hall, R. M. (2011). GIsul2, a genomic island carrying the sul2 sulphonamide resistance gene and the small mobile element CR2 found in the Enterobacter cloacae subspecies cloacae type strain ATCC 13047 from 1890, Shigella flexneri ATCC 700930 from 1954 and A. baumannii ATCC 17978 from 1951. Journal of Antimicrobial Chemotherapy, 66(9), 2175–2176. https://doi.org/10.1093/jac/dkr230 Nigro, S. J., & Hall, R. M. (2012). Tn6167, an antibiotic resistance island in an Australian carbapenem-resistant A. baumannii GC2, ST92 isolate. Journal of Antimicrobial Chemotherapy, 67(6), 1342–1346. https://doi.org/10.1093/jac/dks037 Nogbou, N.-D., Nkawane, G. M., Ntshane, K., Wairuri, C. K., Phofa, D. T., Mokgokong, K. K., Ramashia, M., Nchabeleng, M., Obi, L. C., & Musyoki, A. M. (2021). Efflux Pump Activity and Mutations Driving Multidrug Resistance in A. baumannii at a Tertiary Hospital in Pretoria, South Africa. International Journal of Microbiology, 2021, e9923816. https://doi.org/10.1155/2021/9923816 Noppe-Leclercq, I., Wallet, F., Haentjens, S., Courcol, R., & Simonet, M. (1999). PCR detection of aminoglycoside resistance genes: A rapid molecular typing method for Acinetobacter baumannii. Research in Microbiology, 150(5), 317–322. https://doi.org/10.1016/S0923- 2508(99)80057-6 Nutman, A., Lerner, A., Schwartz, D., & Carmeli, Y. (2016). Evaluation of carriage and environmental contamination by carbapenem-resistant Acinetobacter baumannii. Clinical Microbiology and Infection, 22(11), 949.e5-949.e7. https://doi.org/10.1016/j.cmi.2016.08.020 Obuekwe, C. O., Al-Jadi, Z. K., & Al-Saleh, E. S. (2009). Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleumcontaminated Kuwait desert environment. International Biodeterioration & Biodegradation, 63(3), 273–279. https://doi.org/10.1016/j.ibiod.2008.10.004 Ordoñez, O. F., Flores, M. R., Dib, J. R., Paz, A., & Farías, M. E. (2009). Extremophile culture collection from Andean lakes: Extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microbial Ecology, 58(3), 461–473. https://doi.org/10.1007/s00248-009-9527-7 Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum beta-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005 Peix, A., Lang, E., Verbarg, S., Spröer, C., Rivas, R., Santa-Regina, I., Mateos, P. F., Martínez- Molina, E., Rodríguez-Barrueco, C., & Velázquez, E. (2009). Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Systematic and Applied Microbiology, 32(5), 334–341. https://doi.org/10.1016/j.syapm.2009.03.004 Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews, 21(3), 538–582. https://doi.org/10.1128/CMR.00058-07 Perez, F., Endimiani, A., Ray, A. J., Decker, B. K., Wallace, C. J., Hujer, K. M., Ecker, D. J., Adams, M. D., Toltzis, P., Dul, M. J., Windau, A., Bajaksouzian, S., Jacobs, M. R., Salata, R. A., & Bonomo, R. A. (2010). Carbapenem-resistant A. baumannii and Klebsiella pneumoniae across a hospital system: Impact of post-acute care facilities on dissemination. Journal of Antimicrobial Chemotherapy, 65(8), 1807–1818. https://doi.org/10.1093/jac/dkq191 Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N., & Bonomo, R. A. (2007). Global Challenge of Multidrug-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 51(10), 3471–3484. https://doi.org/10.1128/AAC.01464-06 Petersen, K., Riddle, M. S., Danko, J. R., Blazes, D. L., Hayden, R., Tasker, S. A., & Dunne, J. R. (2007). Trauma-related Infections in Battlefield Casualties From Iraq. Annals of Surgery, 245(5), 803–811. https://doi.org/10.1097/01.sla.0000251707.32332.c1 Philipps, G., de Vries, S., & Jennewein, S. (2019). Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii. Biotechnology for Biofuels, 12, 112. https://doi.org/10.1186/s13068-019- 1448-1 Poirel, L., Bonnin, R. A., & Nordmann, P. (2011). Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life, 63(12), 1061–1067. https://doi.org/10.1002/iub.532 Poirel, L., Naas, T., & Nordmann, P. (2010). Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrobial Agents and Chemotherapy, 54(1), 24–38. https://doi.org/10.1128/AAC.01512-08 Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 70(1), 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002 Pontiroli, A., Rizzi, A., Simonet, P., Daffonchio, D., Vogel, T. M., & Monier, J.-M. (2009). Visual Evidence of Horizontal Gene Transfer between Plants and Bacteria in the Phytosphere of Transplastomic Tobacco. Applied and Environmental Microbiology, 75, 3314–3322. https://doi.org/10.1128/AEM.02632-08 Qader, M. K. (2021). MOLECULAR STUDY OF A. baumannii USING 16S RRNA AND BLA OXA-51 GENE ISOLATED FROM HOSPITALS IN DUHOK-KURDISTAN REGION, IRAQ. Journal of Duhok University, 24(1), Article 1. https://doi.org/10.26682/sjuod.2021.24.1.3 Qureshi, Z. A., Hittle, L. E., O’Hara, J. A., Rivera, J. I., Syed, A., Shields, R. K., Pasculle, A. W., Ernst, R. K., & Doi, Y. (2015). Colistin-Resistant Acinetobacter baumannii: Beyond Carbapenem Resistance. Clinical Infectious Diseases, 60(9), 1295–1303. https://doi.org/10.1093/cid/civ048 Rangel, K., Chagas, T. P. G., & De-Simone, S. G. (2021). A. baumannii Infections in Times of COVID-19 Pandemic. Pathogens, 10(8), 1006. https://doi.org/10.3390/pathogens10081006 Rasmussen, S. A., Smulian, J. C., Lednicky, J. A., Wen, T. S., & Jamieson, D. J. (2020). Coronavirus Disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. American Journal of Obstetrics and Gynecology, 222(5), 415–426. https://doi.org/10.1016/j.ajog.2020.02.017 Rawson, T. M., Moore, L. S. P., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., Satta, G., Cooke, G., & Holmes, A. (2020). Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clinical Infectious Diseases, 71(9), 2459–2468. https://doi.org/10.1093/cid/ciaa530 Retailliau, H. F., Hightower, A. W., Dixon, R. E., & Allen, J. R. (1979). Acinetobacter calcoaceticus: A Nosocomial Pathogen with an Unusual Seasonal Pattern. The Journal of Infectious Diseases, 139(3), 371–375. Ribera, A., Ruiz, J., & Vila, J. (2003). Presence of the Tet M Determinant in a Clinical Isolate of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 47(7), 2310–2312. https://doi.org/10.1128/AAC.47.7.2310-2312.2003 Richardson, A. R., Payne, E. C., Younger, N., Karlinsey, J. E., Thomas, V. C., Becker, L. A., Navarre, W. W., Castor, M. E., Libby, S. J., & Fang, F. C. (2011). Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host & Microbe, 10(1), 33–43. https://doi.org/10.1016/j.chom.2011.06.004 Ripa, M., Galli, L., Poli, A., Oltolini, C., Spagnuolo, V., Mastrangelo, A., Muccini, C., Monti, G., De Luca, G., Landoni, G., Dagna, L., Clementi, M., Rovere Querini, P., Ciceri, F., Tresoldi, M., Lazzarin, A., Zangrillo, A., Scarpellini, P., Castagna, A., … Vinci, C. (2021). Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clinical Microbiology and Infection, 27(3), 451–457. https://doi.org/10.1016/j.cmi.2020.10.021 Ritchie, A. I., & Singanayagam, A. (2020). Immunosuppression for hyperinflammation in COVID-19: A double-edged sword? The Lancet, 395(10230), 1111. https://doi.org/10.1016/S0140-6736(20)30691-7 93 Roca, I., Espinal, P., Martí, S., & Vila, J. (2011). First identification and characterization of an AdeABC-like efflux pump in Acinetobacter genomospecies 13TU. Antimicrobial Agents and Chemotherapy, 55(3), 1285–1286. https://doi.org/10.1128/AAC.01142-10 Roca, I., Espinal, P., Vila-Farrés, X., & Vila, J. (2012). The A. baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace. Frontiers in Microbiology, 3, 148. https://doi.org/10.3389/fmicb.2012.00148 Roca Subirà, I., Espinal, P., Vila-Farrés, X., & Vila Estapé, J. (2012). The A. baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace. Frontiers in Microbiology, 3. https://www.frontiersin.org/articles/10.3389/fmicb.2012.00148 Rombot, D., & Y Semuel, M. (2021). Biochemical characteristics and antibiotic resistance of bacterial isolate from Ctenocephalides felis. 1968, 012006. https://doi.org/10.1088/1742- 6596/1968/1/012006 Rose, S., Desmolaize, B., Jaju, P., Wilhelm, C., Warrass, R., & Douthwaite, S. (2012). Multiplex PCR To Identify Macrolide Resistance Determinants in Mannheimia haemolytica and Pasteurella multocida. Antimicrobial Agents and Chemotherapy, 56(7), 3664–3669. https://doi.org/10.1128/AAC.00266-12 Roy, S., Chowdhury, G., Mukhopadhyay, A. K., Dutta, S., & Basu, S. (2022). Convergence of Biofilm Formation and Antibiotic Resistance in A. baumannii Infection. Frontiers in Medicine, 9, 793615. https://doi.org/10.3389/fmed.2022.793615 Saadati, M., Rahbarnia, L., Farajnia, S., Naghili, B., & Mohammadzadeh, R. (2021). The prevalence of biofilm encoding genes in multidrug-resistant A. baumannii isolates. Gene Reports, 23, 101094. https://doi.org/10.1016/j.genrep.2021.101094 Saipriya, K., Swathi, C. h., Ratnakar, K. s., & Sritharan, V. (2020). Quorum-sensing system in Acinetobacter baumannii: A potential target for new drug development. Journal of Applied Microbiology, 128(1), 15–27. https://doi.org/10.1111/jam.14330 Sales, A. J., Naebi, S., Bannazadeh-Baghi, H., & Saki, M. (2021). Antibiotic Resistance Pattern and Prevalence of blaOXA-51, blaNDM, blaVIM, blaPER, blaVEB, blaCTX, tetA and tetB Genes in A. baumannii Isolated from Clinical Specimens of Hospitals in Tabriz city, Iran. Journal of Clinical Research in Paramedical Sciences, 10(2), Article 2. https://doi.org/10.5812/jcrps.118521 Salgado-Camargo, A. D., Castro-Jaimes, S., Gutierrez-Rios, R.-M., Lozano, L. F., Altamirano- Pacheco, L., Silva-Sanchez, J., Pérez-Oseguera, Á., Volkow, P., Castillo-Ramírez, S., & Cevallos, M. A. (2020). Structure and Evolution of A. baumannii Plasmids. Frontiers in Microbiology, 11, 1283. https://doi.org/10.3389/fmicb.2020.01283 San Millan, A., Toll-Riera, M., Qi, Q., Betts, A., Hopkinson, R. J., McCullagh, J., & MacLean, R. C. (2018). Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. The ISME Journal, 12(12), 3014–3024. https://doi.org/10.1038/s41396-018-0224-8 Sarshar, M., Behzadi, P., Scribano, D., Palamara, A. T., & Ambrosi, C. (2021). Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens, 10(4), Article 4. https://doi.org/10.3390/pathogens10040387 Sebeny, P. J., Riddle, M. S., & Petersen, K. (2008). A. baumannii Skin and Soft-Tissue Infection Associated with War Trauma. Clinical Infectious Diseases, 47(4), 444–449. https://doi.org/10.1086/590568 Seifert, H., Dijkshoorn, L., Gerner-Smidt, P., Pelzer, N., Tjernberg, I., & Vaneechoutte, M. (1997). Distribution of Acinetobacter species on human skin: Comparison of phenotypic and genotypic identification methods. Journal of Clinical Microbiology, 35(11), 2819– 2825. https://doi.org/10.1128/jcm.35.11.2819-2825.1997 Sharifipour, E., Shams, S., Esmkhani, M., Khodadadi, J., Fotouhi-Ardakani, R., Koohpaei, A., Doosti, Z., & Ej Golzari, S. (2020). Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infectious Diseases, 20(1), 646. https://doi.org/10.1186/s12879-020-05374-z Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. The Lancet Infectious Diseases, 20(4), 425–434. https://doi.org/10.1016/S1473-3099(20)30086-4 Silva, D. L., Lima, C. M., Magalhães, V. C. R., Baltazar, L. M., Peres, N. T. A., Caligiorne, R. B., Moura, A. S., Fereguetti, T., Martins, J. C., Rabelo, L. F., Abrahão, J. S., Lyon, A. C., Johann, S., & Santos, D. A. (2021). Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. Journal of Hospital Infection, 113, 145–154. https://doi.org/10.1016/j.jhin.2021.04.001 Singh, A. K., Girija, A. S. S., Priyadharsini, J. V., & Paramasivam, A. (2020). Frequency of Chromosomally Encoded gyrA and parC Genetic Determinants of Fluoroquinolone Resistance in A. baumannii. http://imsear.searo.who.int/handle/123456789/215894 Souli, M., Galani, I., & Giamarellou, H. (2008). Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 13(47), 19045. Spahich, N. A., Vitko, N. P., Thurlow, L. R., Temple, B., & Richardson, A. R. (2016). Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence. Molecular Microbiology, 100(5), 759–773. https://doi.org/10.1111/mmi.13347 Stine, O. C., Johnson, J. A., Keefer-Norris, A., Perry, K. L., Tigno, J., Qaiyumi, S., Stine, M. S., & Morris, J. G. (2007). Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. International Journal of Antimicrobial Agents, 29(3), 348–352. https://doi.org/10.1016/j.ijantimicag.2006.11.015 Sung, J., Koo, S., Kim, S., & Kwon, K. (2014). Epidemiological Characterizations of Class 1 Integrons from Multidrug-Resistant Acinetobacter Isolates in Daejeon, Korea. Annals of Laboratory Medicine, 34, 293–299. https://doi.org/10.3343/alm.2014.34.4.293 Talyansky, Y., Nielsen, T. B., Yan, J., Carlino-Macdonald, U., Venanzio, G. D., Chakravorty, S., Ulhaq, A., Feldman, M. F., Russo, T. A., Vinogradov, E., Luna, B., Wright, M. S., Adams, M. D., & Spellberg, B. (2021). Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLOS Pathogens, 17(2), e1009291. https://doi.org/10.1371/journal.ppat.1009291 Tien, H. C., Battad, A., Bryce, E. A., Fuller, J., Mulvey, M., Bernard, K., Brisebois, R., Doucet, J. J., Rizoli, S. B., Fowler, R., & Simor, A. (2007). Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers. BMC Infectious Diseases, 7, 95. https://doi.org/10.1186/1471-2334-7-95 Towner, K. J. (2009). Acinetobacter: An old friend, but a new enemy. Journal of Hospital Infection, 73(4), 355–363. https://doi.org/10.1016/j.jhin.2009.03.032 Trottier, V., Segura, P. G., Namias, N., King, D., Pizano, L. R., & Schulman, C. I. (2007). Outcomes of A. baumannii infection in critically ill burned patients. Journal of Burn Care & Research: Official Publication of the American Burn Association, 28(2), 248– 254. https://doi.org/10.1097/BCR.0B013E318031A20F Turton, J. F., Woodford, N., Glover, J., Yarde, S., Kaufmann, M. E., & Pitt, T. L. (2006). Identification of A. baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. Journal of Clinical Microbiology, 44(8), 2974–2976. https://doi.org/10.1128/JCM.01021-06 Upmanyu, K., Haq, Q. Mohd. R., & Singh, R. (2022). Factors mediating A. baumannii biofilm formation: Opportunities for developing therapeutics. Current Research in Microbial Sciences, 3, 100131. https://doi.org/10.1016/j.crmicr.2022.100131 Vázquez-López, R., Solano-Gálvez, S. G., Juárez Vignon-Whaley, J. J., Abello Vaamonde, J. A., Padró Alonzo, L. A., Rivera Reséndiz, A., Muleiro Álvarez, M., Vega López, E. N., Franyuti-Kelly, G., Álvarez-Hernández, D. A., Moncaleano Guzmán, V., Juárez Bañuelos, J. E., Marcos Felix, J., González Barrios, J. A., & Barrientos Fortes, T. (2020). A. baumannii Resistance: A Real Challenge for Clinicians. Antibiotics, 9(4), Article 4. https://doi.org/10.3390/antibiotics9040205 Vila, J., Martí, S., & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy, 59(6), 1210– 1215. https://doi.org/10.1093/jac/dkl509 Vila-Farrés, X., Ferrer-Navarro, M., Callarisa, A. E., Martí, S., Espinal, P., Gupta, S., Rolain, J.- M., Giralt, E., & Vila, J. (2015). Loss of LPS is involved in the virulence and resistance to colistin of colistin-resistant Acinetobacter nosocomialis mutants selected in vitro. Journal of Antimicrobial Chemotherapy, 70(11), 2981–2986. https://doi.org/10.1093/jac/dkv244 Visca, P., Seifert, H., & Towner, K. J. (2011). Acinetobacter infection – an emerging threat to human health. IUBMB Life, 63(12), 1048–1054. https://doi.org/10.1002/iub.534 Wang, Z., Yang, B., Li, Q., Wen, L., & Zhang, R. (2020). Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clinical Infectious Diseases, 71(15), 769– 777. https://doi.org/10.1093/cid/ciaa272 Warburton, P. J., Amodeo, N., & Roberts, A. P. (2016). Mosaic tetracycline resistance genes encoding ribosomal protection proteins. Journal of Antimicrobial Chemotherapy, 71(12), 3333–3339. https://doi.org/10.1093/jac/dkw304 Weinberg, S. E., Villedieu, A., Bagdasarian, N., Karah, N., Teare, L., & Elamin, W. F. (2020). Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infection Prevention in Practice, 2(3), 100077. https://doi.org/10.1016/j.infpip.2020.100077 Wu, M.-C., Chen, Y.-C., Lin, T.-L., Hsieh, P.-F., & Wang, J.-T. (2012). Cellobiose-specific phosphotransferase system of Klebsiella pneumoniae and its importance in biofilm formation and virulence. Infection and Immunity, 80(7), 2464–2472. https://doi.org/10.1128/IAI.06247-11 Xu, C. F., Bilya, S. R., & Xu, W. (2019). AdeABC efflux gene in Acinetobacter baumannii. New Microbes and New Infections, 30, 100549. https://doi.org/10.1016/j.nmni.2019.100549 Yamada, K., Morinaga, Y., Yanagihara, K., Kaku, N., Harada, Y., Uno, N., Nakamura, S., Imamura, Y., Hasegawa, H., Miyazaki, T., Izumikawa, K., Kakeya, H., Mikamo, H., & Kohno, S. (2014). Azithromycin inhibits MUC5AC induction via multidrug-resistant A. baumannii in human airway epithelial cells. Pulmonary Pharmacology & Therapeutics, 28(2), 165–170. https://doi.org/10.1016/j.pupt.2014.05.006 Yang, S., Hua, M., Liu, X., Du, C., Pu, L., Xiang, P., Wang, L., & Liu, J. (2021). Bacterial and fungal co-infections among COVID-19 patients in intensive care unit. Microbes and Infection, 23(4), 104806. https://doi.org/10.1016/j.micinf.2021.104806 Yousefi Nojookambari, N., Sadredinamin, M., Dehbanipour, R., Ghalavand, Z., Eslami, G., Vaezjalali, M., Nikmanesh, B., & Yazdansetad, S. (2021). Prevalence of β-lactamaseencoding genes and molecular typing of A. baumannii isolates carrying carbapenemase OXA-24 in children. Annals of Clinical Microbiology and Antimicrobials, 20(1), 75. https://doi.org/10.1186/s12941-021-00480-5 Yuhan, Y., Ziyun, Y., Yongbo, Z., Fuqiang, L., & Qinghua, Z. (2016). Over expression of AdeABC and AcrAB-TolC efflux systems confers tigecycline resistance in clinical isolates of A. baumannii and Klebsiella pneumoniae. Revista Da Sociedade Brasileira de Medicina Tropical, 49, 165–171. https://doi.org/10.1590/0037-8682-0411-2015 Zahra, N., Zeshan, B., Qadri, M. M. A., Ishaq, M., Afzal, M., & Ahmed, N. (2021). Phenotypic and Genotypic Evaluation of Antibiotic Resistance of A. baumannii Bacteria Isolated from Surgical Intensive Care Unit Patients in Pakistan. Jundishapur Journal of Microbiology, 14(4), Article 4. https://doi.org/10.5812/jjm.113008 Zaki, M. E. S., Abou ElKheir, N., & Mofreh, M. (2018). Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of Acintobacter baumannii Resistant to Fluoroquinolone. The Open Microbiology Journal, 12, 116–122. https://doi.org/10.2174/1874285801812010116 Zarrilli, R. (2016). A. baumannii virulence determinants involved in biofilm growth and adherence to host epithelial cells. Virulence, 7(4), 367–368. https://doi.org/10.1080/21505594.2016.1150405
Subjects: Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science and Health > Department of Biology > M.Sc. Thesis
Depositing User: Mr. Rebwar Mohammed Jarjis
Date Deposited: 16 Nov 2023 09:02
Last Modified: 16 Nov 2023 09:02
URI: http://eprints.koyauniversity.org/id/eprint/434

Actions (login required)

View Item View Item