Data Envelopment Analysis-based Scenario Selection for Sequencing Pattern in a Simulated Robotic Cell

Vaisi, Bahareh and Farughi, Hiwa and Raissi, Sadigh (2024) Data Envelopment Analysis-based Scenario Selection for Sequencing Pattern in a Simulated Robotic Cell. ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 12 (2). pp. 139-147. ISSN 2410-9355

[img] Text (Research Article)
ARO.11668.VOL12.NO2.2024.ISSUE23-PP139-147.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (1MB)
Official URL: http://dx.doi.org/10.14500/aro.11668

Abstract

In this study, the performance of suggested scenarios for part input sequences in a 3-machine robotic cell producing different parts is determined through the application of data envelopment analysis (DEA) and the Banker–Charnes–Cooper model. A single gripper robot supports the manufacturing process by loading and unloading products and moving them inside the system. This study addresses random machine failures and repairs to minimize cycle time based on two robot move cycles in a three-machine robotic cell and overall production costs. Here, simulation assists in the modeling of uncertainty and a simulation-based optimization approach is applied to find the best scenarios for sequencing patterns in the cell through several numerical examples using DEA. The results displayed that, efficient scenarios satisfying minimum time and cost, are those, in which the percentages of operations assigned to the machines are close to each other. This enables decision-makers in manufacturing systems to make precise selections of the optimal part sequencing pattern with the lowest production cost and cycle time for robotic cells.

Item Type: Article
Additional Information: Akturk, M.S., and Gurel, A.S., 2007. Machining conditions-based preventive maintenance. International Journal of Production Research, 45(8), pp.1725-1743. DOI: https://doi.org/10.1080/00207540600703587 Ali, A.K., 2024. A comprehensive framework for integrating robotics and digital twins in façade perforation. Aro-the Scientific Journal of Koya University, 12(1), pp.191-202. DOI: https://doi.org/10.14500/aro.11351 Banker, R.D., Charnes, A., and Cooper, W.W., 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), pp.1078-1092. DOI: https://doi.org/10.1287/mnsc.30.9.1078 Banker, R., Førsund, F.R., and Zhang, D., 2017. Use of data envelopment analysis for incentive regulation of electric distribution firms. Data Envelopment Analysis Journal, 3(1-2), pp.1-47. DOI: https://doi.org/10.1561/103.00000020 Banks, J., Ed. 1998. Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. John Wiley and Sons, United States. Batur, G.D., Karasan, O.E., and Akturk, M.S., 2012. Multiple part-type scheduling in flexible robotic cells. International Journal of Production Economics, 135(2), pp.726-740. DOI: https://doi.org/10.1016/j.ijpe.2011.10.006 Emrouznejad, A., and Yang, G.L., 2018. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978-2016. Socio-Economic Planning Sciences, 61, pp.4-8. DOI: https://doi.org/10.1016/j.seps.2017.01.008 Farughi, H., Dolatabadiaa, M., Moradi, V., Karbasi, V., and Mostafayi, S., 2017. Minimizing the number of tool switches in flexible manufacturing cells subject to tools reliability using genetic algorithm. Journal of Industrial and Systems Engineering, 10 (special issue on Quality Control and Reliability), pp.17-33. Florescu, A., Barabaş, S., and Sârbu, F., 2017. Operational parameters estimation for a flexible manufacturing system. A case study. MATEC Web of Conferences. 112, p.05008. DOI: https://doi.org/10.1051/matecconf/201711205008 Foumani, M., and Tavakkoli Moghaddam, R., 2019. A scalarization-based method for multiple part-type scheduling of two-machine robotic systems with non-destructive testing technologies. Iranian Journal of Operations Research, 10(1), pp.1-17. DOI: https://doi.org/10.29252/iors.10.1.1 Fu, M.C., 2002. Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), pp.192-215. DOI: https://doi.org/10.1287/ijoc.14.3.192.113 Gultekin, H., Akturk, M.S., and Karasan, O.E., 2007. Scheduling in a three-machine robotic flexible manufacturing cell. Computers and Operations Research, 34(8), pp.2463-2477. DOI: https://doi.org/10.1016/j.cor.2005.09.015 Gultekin, H., Akturk, M.S., and Karasan, O.E., 2008. Bicriteria robotic cell scheduling. Journal of Scheduling, 11, pp.457-473. DOI: https://doi.org/10.1007/s10951-007-0033-9 Jain, S., Triantis, K.P., and Liu, S., 2011. Manufacturing performance measurement and target setting: Adata envelopment analysis approach. European Journal of Operational Research, 214(3), pp.616-626. DOI: https://doi.org/10.1016/j.ejor.2011.05.028 Kamalabadi, I.N., Sadeghi, H., and Maihami, R., 2012. Optimization of total cost of production and time in three-machine robotic cell. International Journal of Industrial Engineering, 23(3), pp.293-302. Karagiannis, P., Togias, T., Michalos, G., and Makris, S., 2021. Operators training using simulation and VR technology. Procedia CIRP, 96, pp.290-294. DOI: https://doi.org/10.1016/j.procir.2021.01.089 Khebouche, A., and Boudhar, M., 2024. Two-machine reentrant circular robotic cells with swap ability. International Journal of Computing Science and Mathematics, 19(3), pp.221-231. DOI: https://doi.org/10.1504/IJCSM.2024.137825 Kolny, D., Kaczmar-Kolny, E., and Dulina, Ľ., 2023. Modeling and simulation of the furniture manufacturing and assembly process in the arena simulation software. Technologia i Automatyzacja Montażu, 119(1), pp.13-22. DOI: https://doi.org/10.7862/tiam.2023.1.2 Leung, C.S., and Lau, H.Y., 2019. A multi-objective simulation-based optimization approach applied to material handling system. In: Innovative Computing Trends and Applications. Springer, Cham, pp.1-12. DOI: https://doi.org/10.1007/978-3-030-03898-4_1 Linnéusson, G., Ng, A.H., and Aslam, T., 2020. A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance. European Journal of Operational Research, 281(2), pp.402-414. DOI: https://doi.org/10.1016/j.ejor.2019.08.036 Liu, J.S., Lu, L.Y., Lu, W.M., and Lin, B.J., 2013. Asurvey of DEA applications. Omega, 41(5), pp.893-902. DOI: https://doi.org/10.1016/j.omega.2012.11.004 Mohammed, A.J., Abdulghafour, A.B., and AL-Enzi, A.M.J., 2024. Modeling of automobile assembly line performance using ARENA simulation software. Salud, Ciencia y Tecnología-Serie de Conferencias, 3, pp.828-828. DOI: https://doi.org/10.56294/sctconf2024828 Moradi, V., Yousefi Nejad Attari, M., and Farughi, H., 2018. Modeling for minimizing cycle time in a three-machine robotic cell with‎ assumption of tool switching. Journal of Industrial Engineering Research in Production Systems, 6(12), pp.1-17. Mourtzis, D., Doukas, M., and Bernidaki, D., 2014. Simulation in manufacturing: Review and challenges. Procedia CIRP, 25, pp.213-229. DOI: https://doi.org/10.1016/j.procir.2014.10.032 Mourtzis, D., Tsoubou, S., and Angelopoulos, J., 2023. Robotic cell reliability optimization based on digital twin and predictive maintenance. Electronics, 12(9), p.1999. DOI: https://doi.org/10.3390/electronics12091999 Negahban, A., and Smith, J.S., 2014. Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), pp.241-261. DOI: https://doi.org/10.1016/j.jmsy.2013.12.007 Pidd, M., 1986. Computer Simulation in Management Science. Wiley, United States. Pjevcevic, D., Nikolic, M., Vidic, N., and Vukadinovic, K., 2017. Data envelopment analysis of AGV fleet sizing at a port container terminal. International Journal of Production Research, 55(14), pp.4021-4034. DOI: https://doi.org/10.1080/00207543.2016.1241445 Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W., 1992. Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4, pp.331-358. DOI: https://doi.org/10.1007/BF01324886 Sinha, R., Vaisi, B., and Edalatpanah, S.A., 2024. Does managerial ability promote firm efficiency? Journal of Applied Research on Industrial Engineering, (Articles in Press). doi: 10.22105/jarie. 2024.448994.1600 Shannon, R.E., 1998. Introduction to the Art and Science of Simulation. In: 1998 Winter Simulation Conference. Proceedings (Cat. No. 98ch36274). Vol. 1. IEEE, Washington, DC, pp.7-14. DOI: https://doi.org/10.1109/WSC.1998.744892 Solgi, O., Gheidar-Kheljani, J., Saidi-Mehrabad, M., and Dehghani, E., 2019. Implementing an efficient data envelopment analysis method for assessing suppliers of complex product systems. Journal of Industrial and Systems Engineering, 12(2), pp.113-137. Vaisi, B., and Raissi, S., 2014. Productivity improvement in the pride’s spare parts manufacturing using computer simulation and data envelopment analysis. International Journal of Computer Applications, 95(7), pp.12-18. DOI: https://doi.org/10.5120/16605-6431 Vaisi, B., Raissi, S., and Vaisi, A., 2015. A simulation based strategy using data envelope analysis-goal programming for increasing customer satisfaction in a chain store. International Journal of Innovative Science and Research Technology, 2, pp.513-520. Vaisi, B., 2017. Productivity improvement in a manufacturing system using computer simulation: A comparison between DEA and DEAGP. Recent Applications of Data Envelopment Analysis, pp. 210-217. Vaisi, B., Farughi, H., and Raissi, S., 2018. Two-machine robotic cell sequencing under different uncertainties. International Journal of Simulation Modelling, 17(2), pp.284-294. DOI: https://doi.org/10.2507/IJSIMM17(2)434 Vaisi, B., Farughi, H., and Raissi, S., 2020. Schedule-allocate and robust sequencing in three-machine robotic cell under breakdowns. Mathematical Problems in Engineering, 2020, p.24. DOI: https://doi.org/10.1155/2020/4597827 Vaisi, B., Farughi, H., and Raissi, S., 2021. Utilization of response surface methodology and goal programming based on simulation in a robotic cell to optimize sequencing. Journal of Quality Engineering and Management, 10(4), pp.327-338. Vaisi, B., 2022. Areview of optimization models and applications in robotic manufacturing systems: Industry 4.0 and beyond. Decision Analytics Journal, 2, p.100031. DOI: https://doi.org/10.1016/j.dajour.2022.100031 Vaisi, B., Farughi, H., Raissi, S., and Sadeghi, H., 2023. A bi-objective optimal task scheduling model for two-machine robotic-cell subject to probable machine failures. Journal of Applied Research on Industrial Engineering, 10(1), pp.141-154. Vaisi, B., 2023. Simulation-based optimization of a transport robot via super-efficiency DEAGP approach. In: Transport and Logistics Planning and Optimization. IGI Global, United States, pp.256-273. DOI: https://doi.org/10.4018/978-1-6684-8474-6.ch011 Wen, Q., Hong, J., Liu, G., Xu, P., Tang, M., and Li, Z., 2020. Regional efficiency disparities in China’s construction sector: Acombination of multiregional input-output and data envelopment analyses. Applied Energy, 257, p.113964. DOI: https://doi.org/10.1016/j.apenergy.2019.113964 Woerner, S., Laumanns, M., and Wagner, S.M., 2018. Simulation-based optimization of capacitated assembly systems under beta-service level constraints. Decision Sciences, 49(1), pp.180-217. DOI: https://doi.org/10.1111/deci.12260 Yang, B., Chen, W., and Lin, C., 2017. The algorithm and simulation of multi-objective sequence and balancing problem for mixed mode assembly line. International Journal of Simulation Modelling, 16(2), pp.357-367. DOI: https://doi.org/10.2507/IJSIMM16(2)CO10 Zhao, X.F., and Guo, X.P., 2018. An effective chemical reaction optimization for cyclic multi-type parts robotic cell scheduling problem with blocking. Journal of Intelligent and Fuzzy Systems, 35,pp.3567-3579. DOI: https://doi.org/10.3233/JIFS-18096 Zhu, N., Zhu, C., and Emrouznejad, A., 2020. A combined machine learning algorithms and DEA method for measuring and predicting the efficiency of Chinese anufacturing listed companies. Journal of Management Science and Engineering, 6, pp.435-448. DOI: https://doi.org/10.1016/j.jmse.2020.10.001
Uncontrolled Keywords: Data envelopment analysis, Part sequencing, Robotic cell, Scenario design, Simulation
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: ARO-The Scientific Journal of Koya University > VOL 12, NO 2 (2024)
Depositing User: Dr Salah Ismaeel Yahya
Date Deposited: 07 May 2025 08:32
Last Modified: 07 May 2025 08:32
URI: http://eprints.koyauniversity.org/id/eprint/508

Actions (login required)

View Item View Item